УДК 661.657.5; 621.762.5

Я. М. Романенко; М. П. Беженар, Л. М. Девін, доктори технічних наук; С. В. Ричев

Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України, м. Київ

ДЕМПФУЮЧІ ВЛАСТИВОСТІ РСВN КОМПОЗИТІВ СИСТЕМ cBN–Ti, cBN–Al–METAЛ, В ЗАЛЕЖНОСТІВІД ТЕХНОЛОГІЧНИХ УМОВ ОДЕРЖАННЯ

Досліджено демпфуючі характеристики (добротність, логарифмічний декремент затухання), а також фізико-механічні властивості (твердість, густина, електропровідність), PCBN композитів, отриманих реакційним спіканням при високому тиску порошків систем cBN–Ti та cBN– Al–перехідний метал (Me–Ti, Co, Ni) в залежності від складу шихти і параметрів спікання.

Ключові слова: кубічний нітрид бору, тиск, температура, шихта, реакційне спікання, твердість, добротність, логарифмічний декремент затухання, густина, електропровідність.

Вступ

Полікристали кубічного нітриду бору – це широкий клас надтвердих матеріалів, відомий в літературних джерелах і на світовому ринку як PCBN. Такі матеріали отримують спіканням в умовах високих тисків (до 8 ГПа) і температур (до 2500 К), переважно з добавками металів, тугоплавких сполук [1, 2].

За масштабом застосування в інструментальному виробництві PCBN не поступаються алмазним полікристалічним матеріалами (PCD), але області застосування їх не перекриваються. Безумовними перевагами PCBN є більш висока термічна стійкість, а також хімічна нейтральність до сплавів на основі заліза, тому PCBN як інструментальний матеріал не має конкурентів в лезовому інструменті для обробки вуглецевих і легованих сталей, чавунів, багатьох високолегованих спецсплавів [3].

Композити PCBN умовно поділяють на дві групи: з великим вмістом cBN (> 70 %, група *BH*) та малим cBN (40–70 %, група *BL*). Матеріали першої групи одержують спіканням шихти, що містить окрім cBN алюміній або перехідні метали. Ці матеріали мають міцний cBN каркас, призначені для роботи в лезовому інструменті за великого навантаження (чорнове та напівчорнове оброблення загартованих сталей, високоміцних чавунів, спеціальних сплавів, наплавлених та напилених покриттів). Особливість структури матеріалів другої групи – зв'язка на основі тугоплавких сполук перехідних металів, а зерна cBN, як правило, не контактують між собою. Такі матеріали призначенні для чистового високошвидкісного точіння [4].

Однією з причин, що ускладнюють широке використання високошвидкісних методів обробки, є вібрації, що виникають під час різання металів і призводять до прискореного, а часто і катастрофічного зношування інструменту [3]. Для конструкційних та інструментальних матеріалів, вібрації є майже постійним супроводжувальним фактором нормальної експлуатації. Зменшити шкідливий вплив вібрацій можна використовуючи матеріали з підвищеними демпфуючими властивостями, тому, поряд з використанням в якості підкладок під різальну пластину сплавів з високим внутрішнім тертям (сплавів високого демпфування) важливо вдосконалити демпфуючу здатність самого ріжучого інструментального матеріалу.

Раніше [5] нами досліджено демпфуючі властивості РСВN композитів систем cBN–Al та cBN–TiB₂–Al.

Мета даної роботи – дослідження впливу технології одержання PCBN композитів (тиску та температури спікання, складу шихти) систем cBN–Ti, та cBN–Al–перехідний 3d метал (Me–Ti, Co, Ni) на їх фізико-механічні та демпфуючі властивості.

Методи досліджень

Дослідні зразки одержували при реакційному спіканні мікропорошків cBN марки кубоніт з металами (титан, кобальт, нікель, алюміній). Основні характеристики вихідних порошків cBN наведено в табл. 1 (приведено визначені методом лазерної гранулометрії середній (D_{med}), мінімальний (D_{min}) і максимальний (D_{max}) розміри зерен для порошків кожної фракції, а також питому поверхню (S_{LMS}), крім того приведено питому поверхню порошків, визначену методом Брунауера, Еммета і Тейлора (S_{BET})).

Порошок	$D_{ m med}$, мкм	D_{\max} , мкм	D_{\min} , мкм	S_{LMS} , m ² /cm ³	S_{BET} , m ² /cm ³
KM 3/2	2,26	5,0	1,3	2,75	3,09
KM 7/5	5,49	8,2	4,2	1,27	1,45
KP 50/40,	43,8	60,5	36,6	0,22	0,18
KP 80/63	65,5	96,1	46,9	0,13	0,11

Таблиця 1. Розмір зерен і питома поверхня порошків сВЛ

Для одержання композитів систем cBN–Ti, і cBN–Ti–Al використовували мікропорошки кубічного нітриду бору марки KM 7/5, які були попередньо покриті титаном. Покриття наносилось CVD методом, використано газотранспортну реакцію при температурі 1200–1300 К, транспортними агентами виступали іодіди титану [6]. Приріст маси мікропорошку (і товщина покриття) регулювались технологічно, для поставлених задач вміст титану в порошку з покриттям складав 11, 26 або 37% за масою. На рис. 1 показано вихідний порошок cBN марки 7/5 (a), і порошки з загальним вмістом титану порошку 8,9% (б), і 31,4% (e) за об'ємом (за масою відповідно 11% (d) і 37 (e).

Рис.1. Порошок кубічного нітриду бору КМ 7/5 вихідний (а) і покритий плівкою на основі титану, загальний вміст титану в порошку 8,9 % (б), і 31,4 % (г) за об'ємом

Рентгеноструктурні дослідження порошків з покриттям показали, що їх фазовий склад це cBN, TiN і TiB₂, тобто в процесі осадження проходить хімічна взаємодія титану з нітридом бору по реакції BN + 3/2 Ti = TiN + 1/2 TiB₂. Нітрид титану, як правило нестихіометричний, є вакансії в підгратці азоту, а крім дибориду титану фіксували і інші фази, такі як Ti, TiB, Ti₃B₄, Ti₂B₅, але в дуже малих кількостях, ідентифікуються як сліди.

Для одержання композитів систем cBN–Co–Al, і cBN–Ni–Al використовували мікропорошки кубічного нітриду бору марок КМ 3/2 (без покриття), і КР 50/40, які були попередньо покриті кобальтом або нікелем. Для нанесення попокриття нікелю і кобальту на

поверхню шліфпорошків cBN марки КР 50/40 використовувався електрохімічний метод, за методикою, описаною в [7, 8]. На рис. 2, *а* показано вихідний порошок cBN марки КР50/40, на рис. 2, *б*, показано цей же порошок після ненесення на нього покриття нікелю (14,5 мас.%), а на рис. 2, *в* – кобальту (10 мас. %). Фазовий склад порошків з покриттям, зображених на рис. 2, – кубічний нітрид бору і метал (нікель, або кобальт), тобто між металом і cBN не було хімічної взаємодії в процесі осадження з рідини.

Рис. 2. Порошок кубічного нітриду бору КР 50/40 вихідний (а), покритий плівкою на основі нікелю (б) та кобальту (в)

В системах з алюмінієм використовувався порошок алюмінію марки АСД з розміром зерен менше 40 мкм.

Проведено дві серії дослідів.

Перша серія – спікання у сталевому апараті високого тиску (ABT) «КЗ-55» шихти складу сВN–Ті при тиску 4,2 ГПа, температурі – 1750 К та тривалості – 4 хв. В одному досліді одержували 6 зразків, три з яких були контрольними, а саме киборит-2 (система cBN–Al, кількість Al в шихті 10%, зернистість вихідних порошків cBN – 3/2 і 80/63). Для зразків системи cBN–Ti кількість титану в шихті – 11; 26 або 37% за масою, в окремому досліді зразки тільки одного складу шихти. Застосовувався проміжний етап при спіканні даних композитівпри наступних параметрах: p = 2,5 ГПа, T = 1300 К, $\tau = 30$ с.

Друга серія – реакційне спікання в АВТ «тороїд-20» при тиску 7,7 ГПа, температурах 1300–2300 К та тривалості спікання 30–180 с композитів систем cBN–Al–Co, cBN–Al–Ni та cBN–Al–Ti. Для спікання композитів використовували 5 варіантів шихти: a) 80% cBN, 10% Ti, 10% Al; б) 67% cBN, 23% Ti, 10% Al; в) 57% cBN, 33% Ti, 10% Al; г) 83% cBN, 7% Ni, 10% Al, д) 85% cBN, 5 Co, 10 % Al.

Після спікання і механічної обробки (плоске шліфування та кругління алмазним абразивом) зразки мали правильну геометричну форму (циліндри). Розміри зразків, одержаних в ABT «K3-55» - 10 мм за діаметром і 5,5 мм за висотою, а в ABT «тороїд-20» -8 мм за діаметром і 4,5 мм за висотою.

Фазовий склад вивчали методами рентгеноструктурного аналізу (дифрактометр ДРОН-3, CuKα-випромінювання, зйомка в дискретному режимі: крок сканування 0,05°, експозиція 3 с, кутовий інтервал 20–140°).

Густину зразків визначали точним вимірюванням їх діаметра, висоти та маси; точність визначення густини становила 0,3%. Відносну густину визначали як відношення експериментально визначеної густини композиту до розрахованої за відомим фазовим складом.

Твердість визначали з використанням твердоміра UIT–HV–micro-1 методом вдавлювання чотиригранної алмазної піраміди (індентор Кнупа) з кутом при вершині 136°. Навантаження становило 9,8 Н, тривалість – 15 секунд.

Акустично-резонансним методом визначали демпфуючі властивості: добротність (ДБ), і логарифмічний декремент затухання (ЛДЗ).

Електричний опір вимірювали з використанням цифрового омметра Щ34, призначеного для діапазону вимірювань $10^{-3}-10^9$ Ом. Відносна інструментальна похибка в досліджуваному діапазоні вимірювань становила до 5%.

Результати досліджень та їх обговорення

В першій серії дослідів були одержані композити систем cBN-Ti та cBN-Al.

Вище було сказано, що в процесі осадження титану на порошки cBN при температурі 1200–1300 К відбувається хімічна взаємодія між компонентами. При спіканні порошків з покриттям хімічна взаємодія в системі продовжується, в результаті в складі композиту ідентифікуються три фази – cBN, TiB+ i TiN.

Для композитів системи cBN–Al поряд з cBN та AlN можливе утворення кількох боридів (AlB₂, AlB₁₀, AlB₁₂) [9]. В наших дослідах фіксували тільки AlB₂.

Результати дослідження густини, питомого опору, електро- та теплопровідності експериментальних зразків сВN–Ті та сВN–АІ подано в табл. 2.

Таблиця 2. Фізико-механічні властивості композитів систем cBN–Ti та cBN–Al (*T* = 1750 K; *p* = 4,2 ГПа; *t* = 4 хв)

% Ti (Al) в	Густина,	Відносна	Твердість	Питомий	Питома електропро-
шихті, % мас.	г/см ³	густина, %	ГПа	опір,	відність, Ом ⁻¹ ·м ⁻¹
				Ом·м	
11,2	3,45	94	16	6,7·10 ⁻³	150
26,0	3,80	97	22	$4 \cdot 10^{-3}$	250
37,2	4,05	98	26	$1,5 \cdot 10^{-3}$	670
10 (Al)	3,36	99	28	$3,1.10^{6}$	3.10-8

У композитах системи cBN–Ti, одержаних при тиску 4,2 ГПа і температурі 1750 К при зменшенні вмісту надтвердої фази cBN, зростає твердість зразків від 16 до 26 ГПа. Дану поведінку можна пояснити підвищенням відносної густини композитів при збільшенні вмісту Ti у вихідній шихті (див. табл. 2), тобто зменшенням залишкової пористості у композитів. Максимальна твердість (26 ГПа) досягається при вмісті 37,2% мас. титану у шихті. Твердість композитів системи cBN–Al в середньому становить 28 ГПа.

Питома електопровідність композитів системи cBN–Ti збільшується з ростом вмісту титану в шихті від 250 до 670 Ом⁻¹·м⁻¹, тобто вони електропровідні. Для порівняння, питома електропровідність нітриду титану 250, а дибориду титану – 1100 Ом⁻¹·м⁻¹. Композити системи cBN–Al є діелектриками, середнє значення їх питомої електропровідності – 3·10⁻⁸ Ом⁻¹·м⁻¹. Висока електропровідність зразків системи cBN–Ti пояснюється їх фазовим складом. Зі збільшенням вмісту тугоплавкої зв'язки, що складається з електропровідних сполук TiB₂ та TiN, які утворюють неперервний каркас, росте електропровідність композиту. На рис. З приведена структура композиту, одержаного з порошку cBN з покриттям титану (11,2% за масою) в ABT K3-55 при температурі спікання 1750 K, з якого видно, що зв'язка утворює неперервний каркас, в той же час зерна cBN такого каркасу не утворюють.

Рис.3. Структура композиту, одержаного з порошку сВNз покриттям титану (11,2% за масою), температура спікання 1750 К

На рис. 4 приведені залежності логарифмічного декременту затухання та добротності від вмісту титану у шихті, для композитів системи cBN–Ti.

Рис.4. Залежність логарифмічного декременту затухання та добротності від вмісту титану у шихті для зразків сВN-Ті одержаних в АВТ КЗ-55.

Як видно з рис. 4, збільшення вмісту Ті у вихідній шихті приводить до зменшення значення ЛДЗ композиту від $0,58 \cdot 10^{-3}$ до $0,42 \cdot 10^{-3}$, добротність відповідно зростає від 540 до 810. Для порівняння декремент затухання композиту системи cBN–Al становив $\delta = 0,54 \cdot 10^{-3}$ (добротність становила 570). Найвищі значення ЛДЗ (δ =0,58 · 10⁻³) отримано при вмісті титану у вихідній шихті 11,2%. Відомо, що пори та інші дефекти структури сприяють ефективному розсіюванню механічної енергії, ілюстрацією цього є зменшення добротності з ростом пористості (див. рис. 4 і табл. 2).

В другій серії дослідів були одержані композити систем cBN–Al–Ti, cBN–Al–Co, cBN– Al–Ni. В табл. 3 приведені результати дослідження густини, твердості та електроопору експериментальних зразків композитів систем cBN–Al–перехідний метал (Me – Ni, Co, Ti), отриманих в ABT «тороїд-20» при тиску *p* = 7,7 ГПа, температурах 1300–2300 К.

Для композитів системи cBN–Ti–Al густина збільшується з ростом температури спікання для всіх варіантів шихти, при цьому збільшення кількості Ti в шихті сприяє збільшенню густини зразків. Для композитів систем cBN–Ni–Al та cBN–Co–Al густина майже не залежить від температури спікання.

Шихта	Температура	Густина,	Відносна	Твердість,	Електроопір,
	спікання, Т (К)	$ρ_{cp}$ ($Γ/cM^3$)	густина,	ГПа	$R_{\rm cp}$ (Ом·м)
			$ρ_{ekcп./}ρ_{teop}$ (%)		
80 % cBN,	1300	3,46	96	17,5	$8,11 \cdot 10^{-4}$
10 % Ti,	1750	3,56	99	27	9,77·10 ⁻⁴
10 % Al	2100	3,59	99,8	25,5	1,43.10-3
	2300	3,60	100	24	1,61.10-3
67 % cBN,	1300	3,68	96	20,5	5,69.10-4
23 % Ti,	1750	3,77	98	26,5	7,26.10-4
10 % Al	2100	3,79	99	22	8,19.10-4
	2300	3,79	99	21	5,92·10 ⁻⁴
57 % cBN,	1300	3,81	95	20,7	4,88.10-4
33 % Ti,	1750	3,90	97	23,5	5,33.10-4
10 % Al	2100	3,90	98	20	5,04.10-4
	2300	3,93	98	19	5,76.10-4
85% cBN,	1300	3,50	99	19,5	5,33·10 ⁻²
5% Co,	1750	3,51	99	27,5	$1,61 \cdot 10^3$
10% Al	2100	3,50	99	27,2	$6,67 \cdot 10^3$
	2300	3,50	99	27	$2,13 \cdot 10^3$
83% cBN,	1300	3,47	100	22,5	1,08
7% Ni,	1750	3,48	100	26,5	$2,09 \cdot 10^5$
10% Al	2100	3,48	100	27,5	$1,08 \cdot 10^5$
	2300	3,48	100	28	6,83·10 ⁴

Таблиця 3. Густина, твердість і електроопір композитів систем cBN–Me–Al, (Me – Ni, Co, Ti), одержаних в ABT «тороїд» при тиску 7,7 ГПа

Електроопір композитів суттєво залежить від складу шихти і менш суттєво від температури спікання. Всі композити системи cBN–Ti–Al мають низький електроопір, порядок 10^{-3} – 10^{-4} Ом·м, чим більше титану в шихті тим нижчий електроопір. Залежність від температури спікання неоднозначна, на електроопір впливають 2 чинники – пористість та наявність вільного алюмінію. Дія цих чинників протилежна, зі збільшенням температури спікання кількість вільного алюмінію зменшується, після 1750 К він зникає взагалі і електроопір мав би зростати. Від комбінації цих чинників і залежить реальна залежність електроопору композиту від температури спікання. Композити систем cBN–Ni–Al та cBN–Co–Al – діелектрики, якщо одержані при температурі спікання 1750 К і вище, а одержані при 1300 К електропровідні завдяки наявності вільного алюмінію.

Відносна густина зразків є характеристикою залишкової пористості. Спікання шихти при тиску 7,7 ГПа і при температурах 2100–2300 К забезпечує отримання композитів з відносною густиною ≥ 97%, а при збільшенні тривалості процесу і при температурі 1750 К.

Температура спікання суттєво впливає на твердість композитів досліджуваних систем. Для композитів системи cBN–Ti–Al твердість змінюється в межах 17,5–27 ГПа в досліджуваному діапазоні температур спікання. Залежності з екстремумом, максимум твердості при температурі спікання 1750 К. Твердість залежить від двох основних факторів – фазового складу і структури матеріалу. Екстремуми кривої можна пояснити залежністю твердості від субструктури матеріалу. При 1750 К відбувається деформаційне зміцнення структури, коли досягається максимальна щільність дефектів структури. При більш високих температурах (2100, 2300 К) відбувається відпал дефектів, перебудова дислокаційної структури, що веде до зниження твердості [10]. Зі збільшенням кількості титану в шихті твердість композитів зменшується, виключення – температура спікання 1300 К, коли низька твердість при мінімальному вмісті титану в шихті повязана з підвищеною пористістю. Для композитів системи сBN–Ni–Al крива твердості з екстремумом, максимальне значення (до 27,5 ГПа) – при температурі спікання 1750–2100 К. Подібна ситуація спостерігається і для композитів систем сBN–Co–Al, твердість збільшується зі збільшенням температури спікання, максимальні значення (до 28 ГПа) для зразків, спечених при 2300 К.

Залежність логарифмічного декременту затухання і добротності для системи cBN–Al– Ті, від вмісту титану у шихті, і тривалості спікання, приведені на рис. 5 та 6.

Аналіз результатів, приведених на рис. 5 і 6, дозволяє стверджувати наступне. Збільшення вмісту Ті у вихідній шихті до 23%, при 30 с витримки, підвищують показники ЛДЗ від $0,65 \cdot 10^{-3}$ до $0,73 \cdot 10^{-3}$, проте подальше збільшення вмісту Ті у вихідній шихті більше 23% зменшує показники ЛДЗ до $0,27 \cdot 10^{-3}$. Така закономірність спостерігається і при 90 с (див. рис. 5). Варто відмітити, що композити отримані при 30 секундах спікання з вмістом Ті до 23% за масою, мають вищі показники логарифмічного декременту затухання (добротність відповідно менша), ніж композити, спечені при 90 с (ЛДЗ $0,65-0,73 \cdot 10^{-3}$, добротність 480–430; проти ЛДЗ $0,34-0,47 \cdot 10^{-3}$, добротність 920–660). Отже, для системи cBN–Al–Ti оптимальним є вміст 23% Ті у вихідній шихті.

Рис. 5. Залежність логарифмічного декремента затухання та добротності від вмісту титану у шихті для зразків cBN–Al–Ti,отриманих в ABT «тороїд-20» за тиску 7,7 ГПа та температури 1750 К: а – 30 с спікання; б – 90 с спікання

Рис. 6. Залежність логарифмічного декременту затухання та добротності від тривалості спікання для зразківс BN–Al–Ti, отриманих в ABT «тороїд-20», за тиску 7,7 ГПа та температури 1750 К: а –10% Ti; б – 23% Ti; в – 33% Ti)

При заданих *p*, *T* умовах спікання такий склад шихти забезпечує отримання однорідного і майже безпористого композиту з високою твердістю, логарифмічним декрементом затухання, низькою добротністю. Зі збільшенням тривалості спікання (рис. 6) підвищується добротність композитів і відповідно зменшується логарифмічний декремент затухання, через зменшення залишкової пористості.

На рис. 7 приведені залежності логарифмічного декременту затухання та добротності від тривалості спікання для композитів системи cBN–Al–Ni (*a*) та cBN–Al–Co (*б*).

Рис. 7. Залежність логарифмічного декременту затухання та добротності від тривалості спікання для зразків, отриманих в ABT «тороїд – 20», за тиску 7,7 ГПа, та температурі 1750 К в шихті: a – cBN–Al–Ni; б – cBN–Al–Co

Аналіз даних рис. 7 дозволяє стверджувати, що зразки, одержані з шихти cBN–Al–Co при витримці 90 с, мають вищі показники логарифмічного декременту затухання ($\delta = 0,46 \cdot 10^{-3}$) і нижчу добротність(Q = 860), ніж зразки з шихти cBN–Al–Ni ($\delta = 0,36 \cdot 10^{-3}$; Q = 1250). Збільшення часу спікання (0,5–3 хв) при тиску 7,7 ГПа і температурі 1750 К, суттєво підвищує демпферні характеристики для даних композитів, можлива причина – зміни в субструктурі композиту. Демпферні характеристики даних композитів суттєво підвищуються при збільшення часу спікання від 0,5 до 3 хв (*p*,*T*–параметри спікання –7,7 ГПа, 1750 К). Можлива причина – зміни в субструктурі композиту.

Висновки

Методом акустичного резонансу визначені демпфуючі властивості PCBN композитів, отриманих реакційним спіканням при високому тиску порошків систем cBN–Ti, cBN–Al, та cBN–Al–перехідний метал (*Me* – Ti, Co, Ni).

Для композитів системи cBN–Ti зі збільшенням кількості титану в шихтi від 11,2% до 37,2% відносна густина зростаєвід 94% до 98%, добротність від 540 до 810 (логарифмічний декремент затухання відповідно зменшується від 0,58·10⁻³ до 0,42·10⁻³), твердість від 16–26 ГПа, питома електропровідність від 150 до 670 Ом⁻¹·м⁻¹. Пористість (відносна густина) має вирішальний вплив на фізико-механічні і демпфуючі властивості композитів даної серії.

Для композитів системи cBN–Ti–Al відносна густина збільшується з ростом температури спікання для всіх варіантів шихти, при цьому збільшення кількості Ті в шихті сприяє підвищенню густини зразків. Залежності логарифмічного декременту затухання (добротності) від вмісту Ті в шихті – криві з екстремумом, максимальне значення ЛДР при вмісті 23% Ті в шихті. Зі збільшенням тривалості спікання ЛДР зменшується для всіх

температур спікання і корелює зі зменшенням пористості. Максимальне значення декременту затухання 0,73·10⁻³ (добротність 430). Твердість композитів змінюється в межах 17,5–27 ГПа в досліджуваному діапазоні температур спікання. Залежності з екстремумом, максимум твердості – при температурі спікання 1750 К. Питомий електроопір композитів суттєво залежить від складу шихти і менш суттєво від температури спікання. Всі композити системи cBN–Ti–Al мають низький електроопір, порядок 10⁻³–10⁻⁴ Ом·м, чим більше титану в шихті, тим нижчий електроопір.

Для композитів систем cBN–Ni–Al та cBN–Co–Al густина майже не залежить від температури спікання, відносна густина становить 99–100%. Зі збільшенням тривалості спікання ЛДР зменшується. Максимальне значення декременту затухання 0,36·10⁻³ (добротність 870) – для композитів системи cBN–Ni–Al і 0,46·10⁻³ (добротність 700) для композитів системи cBN–Ni–Al і 0,46·10⁻³ (добротність 570). Твердість композитів збільшується з підвищенням температури спікання, максимальні значення до 27,5 ГПа для композитів системи cBN–Ni–Al і до 28 ГПа для композитів системи cBN–Co–Al. Композити систем cBN–Ni–Al та cBN–Co–Al – діелектрики, якщо одержані при температурі спікання 1750 К і вище, а одержані при 1300 К – електропровідні завдяки наявності вільного алюмінію.

Исследованы демпфирующие характеристики (добротность, логарифмический декремент колебаний), а также физико-механические свойства (твердость, плотность, электропроводность) PCBN композитов, полученных реакционным спеканием при высоком давлении порошков систем cBN-Ti и cBN–Al-переходный металл (Me – Te, Co, Ni) в зависимости от состава шихты и параметров спекания.

Ключевые слова: кубический нитрид бора, давление, температура, шихта, реакционое спекание, твердость, добротность, логарифмический декремент затухания, плотность, электропроводность.

DAMPING PROPERTIES PCBN COMPOSITES OF THE cBN–Ti, cBN–Al–METAL SYSTEMS, IN DEPENDENCE FROM TECHNOLOGICAL CONDITIONS OF RECEIPT

It was investigated the physico-mechanical properties (hardness, density, electrical conductivity) and mechanical damping properties (quality factor, logarithmic decrement damping) PCBN composites, of the resulting reaction sintering at a high pressure test specimens of the composites cBN–Ti and cBN–Al–Me, where Me - Co, Ni, Ti, with a varying contents of transition metal in the mixture and sintering parameters.

Key words: cubic boron nitride, pressure, temperature, mixture, reaction sintering, density, hardness, quality factor, logarithmic decrement damping, density, conductivity.

Література

- 1. Синтез, спекание и свойства кубического нитрида бора / А. А. Шульженко, С. А. Божко, А. Н. Соколов и др. // К.: Наук. думка, 1993. 256 с.
- 2. Astakhov V. P., Davim P. J. Tools (geometry and material) and tool wear // Machining: Fundamentals and Recent Advances London: Springer, 2008. P. 29–58.
- Сверхтвердые материалы. Получение и применение: В 6 т. / Под общ. ред. Н. В. Новикова. – Обработка материалов лезвийным инструментом / Под ред. С. А. Клименко. – К.: ИСМ им. В. Н. Бакуля; ИПЦ «Алкон» НАНУ, 2006. – Т. 5. – 316 с.
- 4. Application areas for PCBN materials / J. Barry, G. Akdogan, P. Smyth et all // Industrial Diamond Rev. 2006. –66. N 3 P. 46–53.
- 5. Фізико-механічні і демпфуючі властивості надтвердих PCBN композитів в залежності від умов одержання / М. П. Беженар, Л. М. Девін, Я. М. Романенко та ін. // Породоразрушающий и металлообрабатывающий инструмент техника,

технология его изготовления и применения. Вып. 19. – К.: ИСМ им. В. Н. Бакуля НАН Украины, 2016. – С. 343–352.

- 6. Весна В. Т., Маслов В. П. Взаимодействие кубического нитрида бора с иодидами титана // Порошковая металлургия 1984. № 10. С. 57–59.
- 7. Дуда Т. М. Металлизированные никелем, медью и титаном алмазные и кубонитовые шлиф- и микропорошки // Інструментал. світ. 1999. № 4-5. С. 28–29.
- 8. Дуда Т. М. Эффективные покрытия для порошков алмаза и КНБ, их структурные особенности и области промышленного применения // Синтез, спекание и свойства сверхтвердых материалов: Сб. науч. тр. К.: ИСМ им. В. Н. Бакуля НАН Украины, 2005.– С. 86–95.
- 9. Фазовый состав поликристаллов, полученных при реакционном спекании кубического нитрида бора с алюминием / Н. П. Беженар, С. А. Божко, Н. Н. Белявина и др. // Сверхтвердые материалы. 2002. № 1. С. 37–48.
- Перестройка деформационной субструктуры поликристаллов при спекании в условиях высоких давлений микронных и субмикронных порошков КНБ / Н. П. Беженар, А. А. Шульженко, С. А. Божко и др. // Сверхтв. материалы. – 2002. – № 4. –С. 24–34.

Надійшла 17.07.17

УДК 548.211.55

Т. В. Коваленко, В. А. Каленчук¹, В. Н. Квасница, д-р геол.-мин. наук²; **С. А. Ивахненко**, член-корр. НАН Украины; **Е. М. Супрун¹, А. В. Бурченя**¹

¹Институт сверхтвёрдых материалов им. В. Н. Бакуля НАН Украины, г. Киев ²Институт геохимии, минералогии и рудообразования им. М. П. Семененка НАН Украины, г. Киев

МОРФОЛОГИЯ КРИСТАЛЛОВ АЛМАЗА, ВЫРАЩЕНЫХ В СИСТЕМЕ Fe-Co-Mg

Методом температурного градиента в системе Fe–Co с добавлением 5 и 10 мас.% Mg были выращены монокристаллы алмаза. Изучена их морфология: на кристаллах, полученных в системе Fe– Co с 5 мас.% Mg развиты грани октаэдра, куба, ромбододекаэдра и тетрагон-триоктаэдра {311}; при увеличении содержания магния в сплавах-растворителях до 10 мас.% при тех же условиях роста грани тетрагон-триоктаэдра {311} на кристаллах алмаза отсутствуют. Топография граней изученных форм кристаллов алмаза, выращенных в разных системах, свидетельствует, что октаэдр и куб являются формами активного роста со своими пирамидами нарастания, а ромбододекаэдр и тетрагон-триоктаэдр {311} – формами пассивного роста.

Ключевые слова: алмаз, морфология, простые формы, топография, метод температурного градиента

Исследование кристаллизации алмаза в различных системах при высоких давлениях и температурах представляет большой интерес в связи с изучением механизмов зародышеобразования и роста кристаллов и возможностью получения монокристаллов с различными свойствами в лабораторных условиях. Большинство исследований при этом выполнено в ростовых системах с применением растворителей на основе переходных металлов (Fe, Co, Ni) [1–3]. В последнее время значительное внимание уделяется поиску новых растворителей, содержащих магний [4, 5]; как установлено ранее в системах с магнием возможно выращивать монокристаллы алмаза типа IIb, обладающие полупроводниковыми