- С.И. Весельский, канд. техн. наук,
- Ф.М. Гагауз, канд. техн. наук,
- А.В. Гайдачук, д-р техн. наук,
- В.Е. Гайдачук, д-р техн. наук,
- Я.С. Карпов, д-р техн. наук,
- В.В. Кириченко, канд. техн. наук,
- А.В. Кондратьев, канд. техн. наук

НАУЧНОЕ ОБЕСПЕЧЕНИЕ ПРОЕКТИРОВАНИЯ И ПРОИЗВОДСТВА КОНСТРУКЦИЙ АВИАКОСМИЧЕСКОЙ ТЕХНИКИ ИЗ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ. СООБЩЕНИЕ 1

В Национальном аэрокосмическом университете им. Н.Е. Жуковского «Харьковский авиационный институт» в 2009 году завершен первый этап комплекса исследований, связанных с научным обеспечением проектирования производства И изделий техники (AKT) авиакосмической полимерных композиционных ИЗ материалов (ПКМ).

Этот комплекс исследований имеет приоритетное направление: инновационные технологии и ресурсосберегающие технологии в энергетике, промышленности и агропромышленном комплексе.

Основным объектом исследований этого комплекса являются композитные конструкции и их комбинации с сотовым заполнителем (СЗ) из фольги и бумаги; термодинамические процессы и поля, возникающие в процессе сушки бумажных сотов.

Предмет исследований составляют подходы, методики и методы проектирования многоотсековых трехслойных оболочечных систем, многолонжеронных крыльев, а также закономерности неравномерного тепло- и массопереноса компонентов связующего в процессе пропиточно-сушильных операций изготовления СЗ из полимерной бумаги.

Выбор именно этого приоритетного направления продиктован, воактуальностью первых. его В плане повышения массовой И эффективности АКТ экономической изделий И ИХ конкурентоспособностью; во-вторых – опытом участников работ и существующих заделов [1 - 8] и в-третьих – наличием заинтересованных в этих разработках и обладающих современной технологической и экспериментальной базами таких предприятий, как АНТК «Антонов», УкрНИИТМ и его контрагентов – ГКБ «Южное», ХГАПП и ряд ведущих фирм отрасли Украины и России.

В рамках первого направления этого комплекса исследований проведен обзор и анализ существующих подходов к оптимизации по

массе параметров трехслойных оболочечных систем из ПКМ с СЗ, начало которых положено в [1 - 3].

Вскрыты преимущества применения трехслойных конструкций с СЗ и трудности, возникающие при минимизации массы данного типа конструкций из ПКМ (рис. 1).

Рисунок 1 – Преимущества и трудности оптимального проектирования многоотсековых трехслойных оболочек из ПКМ с СЗ

Проведен подробный анализ существующих подходов к оптимизации по массе параметров многоотсековых трехслойных оболочек из ПКМ с СЗ, в процессе которого:

- выделены ограничения, накладываемые в оптимизационных задачах на параметры для трехслойных оболочек из ПКМ с СЗ, которые подлежат реализации в дальнейших исследованиях (рис. 2);

- выявлены основные тенденции при формулировании и постановке оптимизационных задач класса трехслойных оболочечных систем из ПКМ с СЗ, на базе которых показано, что использование алгоритмов оптимизации в стандартных комплексах метода конечных элементов (МКЭ) позволяет более полно реализовать скрытые резервы исследуемого класса конструкций (рис. 3).

Рисунок 2 – Ограничения, подлежащие реализации при решении задачи оптимизации параметров трехслойных оболочечных систем объектов АКТ из ПКМ с С3

Рисунок 3 – Недостатки аналитических моделей и преимущества синтеза стандартного комплекса МКЭ с аналитическими моделями для оптимизации многоотсековых трехслойных оболочек из ПКМ с С3 В рамках второго направления этого комплекса, начатого в работах [4 - 6], разработана модифицированная методика определения напряженно-деформированного состояния в поперечном сечении многолонжеронного крыла из композиционных материалов, которая базируется на основных гипотезах расчетной схемы многозамкнутого тонкостенного стержня (рис. 4).

Рисунок 4 – Математическая модель для определения НДС в поперечном сечении многолонжеронного крыла из композиционных материалов

Основные гипотезы, допущения и предположения расчетной схемы:

1. Контур сечения крыла абсолютно жесткий: $\varepsilon_s = 0$.

2. Одноплоскостной закон распределения продольных деформаций:

$$\varepsilon_z = ax + by + c. \tag{1}$$

3. В любом сечении крыла нагрузки сводятся к изгибающему моменту M_x в плоскости y0z, изгибающему моменту M_y в плоскости x0z, крутящему моменту M_z , осевой N_z и поперечным силам Q_x и Q_y .

4. Разделение функций конструктивных элементов по восприятию компонентов напряженного состояния: в крыле из КМ полки лонжеронов воспринимают весь изгибающий момент, а обшивка и стенки - сдвиговые усилия от крутящего момента и перерезывающих сил.

Применение рациональных структур для изготовления основных силовых элементов крыла ([0°] для полок лонжеронов и [±45°] для стенок лонжеронов и панелей обшивки) позволяет практически осуществить разделение функций силовых элементов по восприятию компонентов напряженного состояния.

Традиционный подход к определению нормальных напряжений в сечении тонкостенного подкрепленного стержня заключается в решении

трех уравнений равновесия поперечного сечения и определении параметров одноплоскостного закона распределения деформаций.

В качестве альтернативного подхода предложена методика определения коэффициентов одноплоскостного закона распределения деформаций (*a*, *b*, *c*) по предельным деформациям полок лонжеронов и углу поворота нейтральной оси сечения (рис. 5), которая позволяет учесть прочностные характеристики КМ полок лонжеронов для всех возможных случаев нагружения.

Моделирование НДС для решения задачи оптимального проектирования: при $\varepsilon_z = 0$ уравнение нейтральной оси

$$y = -\frac{a}{b}x - \frac{c}{b}, \ tg\beta = -\frac{a}{b}.$$
 (2)

Для наиболее удаленных от нейтральной оси полок

$$\varepsilon_{e max} = ax_r + by_{er} + c;$$

$$\varepsilon_{H max} = ax_s + by_{Hs} + c,$$
(3)

где є *в тах*, є *н тах* характеризуют предельную несущую способность крыла;

$$a = -tg\beta \frac{\varepsilon_{e max} - \varepsilon_{H max}}{y_{er} - y_{HS} - tg\beta(x_r - x_s)};$$

$$b = \frac{\varepsilon_{e max} - \varepsilon_{H max}}{y_{er} - y_{HS} - tg\beta(x_r - x_s)};$$

$$c = \frac{y_{er}\varepsilon_{H max} - y_{HS}\varepsilon_{e max} - tg\beta(x_r\varepsilon_{H max} - x_s\varepsilon_{e max})}{y_{er} - y_{HS} - tg\beta(x_r - x_s)}.$$

(4)

Здесь $\beta = \alpha - \psi$ - угол наклона нейтральной оси x_1 (рис. 5), α - угол поворота главных центральных осей *u* и *v*, ψ - угол между нейтральной осью x_1 и главной центральной осью *u*.

Рисунок 5 – Поворот сечения относительно главных центральных осей *U* и *V*

В результате решения системы неравенств, в качестве которых выступают условия прочности полок лонжеронов в нескольких расчетных случаях:

$$\varepsilon_{\mathfrak{s}\,max}^{(\mathcal{D})} \frac{y_{\mathfrak{s}j} - y_{\mathfrak{H}s} - tg\beta(x_{j} - x_{s})}{y_{\mathfrak{s}r} - y_{\mathfrak{H}s} - tg\beta(x_{r} - x_{s})} + \varepsilon_{\mathfrak{H}\,max}^{(\mathcal{D})} \frac{y_{\mathfrak{s}r} - y_{\mathfrak{s}j} - tg\beta(x_{r} - x_{j})}{y_{\mathfrak{s}r} - y_{\mathfrak{H}s} - tg\beta(x_{r} - x_{s})} \leq \frac{M_{\chi 1}^{(\mathcal{D})}}{M_{\chi 1}^{(t)}} \frac{F_{z\mathfrak{s}j}^{(t)}}{E_{z\mathfrak{s}j}}; (5)$$

$$\varepsilon_{\mathfrak{s}\,max}^{(\mathcal{D})} \frac{y_{\mathfrak{H}i} - y_{\mathfrak{H}s} - tg\beta(x_{i} - x_{s})}{y_{\mathfrak{s}r} - y_{\mathfrak{H}s} - tg\beta(x_{r} - x_{s})} + \varepsilon_{\mathfrak{H}\,max}^{(\mathcal{D})} \frac{y_{\mathfrak{s}r} - y_{\mathfrak{H}s} - tg\beta(x_{r} - x_{i})}{y_{\mathfrak{s}r} - y_{\mathfrak{H}s} - tg\beta(x_{r} - x_{s})} \leq \frac{M_{\chi 1}^{(\mathcal{D})}}{M_{\chi 1}^{(t)}} \frac{F_{z\mathfrak{s}j}^{(t)}}{E_{z\mathfrak{H}i}}; (6)$$

где *j* = 1,...,*n*; *i* = 1,...,*n*, получены соотношения для определения предельных деформаций поперечного сечения крыла, которые достаточно удобны для реализации на ЭВМ

$$\varepsilon_{e\ max}^{(5)} = \min_{j,t} \left[\frac{M_{x1}^{(5)}}{M_{x1}^{(t)}} \left(\frac{F_{zej}^{(t)}}{E_{zej}} \frac{y_{er} - y_{HS} - tg\beta(x_r - x_s)}{y_{ej} - y_{HS} - tg\beta(x_j - x_s)} - \varepsilon_{H\ max}^{(5)} \frac{y_{er} - y_{ej} - tg\beta(x_r - x_j)}{y_{ej} - y_{HS} - tg\beta(x_j - x_s)} \right) \right];$$

$$\varepsilon_{H\ max}^{(5)} = \min_{i,t} \left[\frac{M_{x1}^{(5)}}{M_{x1}^{(t)}} \left(\frac{F_{zHi}^{(t)}}{E_{zHi}} \frac{y_{ej} - y_{HS} - tg\beta(x_j - x_s)}{y_{ej} - y_{HI} - tg\beta(x_j - x_i)} - \frac{F_{zej}^{(t)}}{E_{zej}} \frac{y_{Hi} - y_{HS} - tg\beta(x_i - x_s)}{y_{ej} - y_{HI} - tg\beta(x_j - x_i)} \right) \right];$$

$$(7)$$

$$\varepsilon_{H\ max}^{(\mathcal{D})} = \min_{i,t} \left[\frac{M_{x1}^{(\mathcal{D})}}{M_{x1}^{(t)}} \left(\frac{F_{zHi}^{(t)}}{E_{zHi}} \frac{y_{er} - y_{Hs} - tg\beta(x_r - x_s)}{y_{er} - y_{Hi} - tg\beta(x_r - x_i)} - \varepsilon_{e\ max\ i}^{(\mathcal{D})} \frac{y_{Hi} - y_{Hs} - tg\beta(x_i - x_s)}{y_{er} - y_{Hi} - tg\beta(x_r - x_i)} \right) \right];$$

$$\varepsilon_{e\ max\ i}^{(\mathcal{D})} = \min_{j,t} \left[\frac{M_{x1}^{(\mathcal{D})}}{M_{x1}^{(t)}} \left(\frac{F_{zej}^{(t)}}{E_{zej}} \frac{y_{er} - y_{Hi} - tg\beta(x_r - x_i)}{y_{ej} - y_{Hi} - tg\beta(x_j - x_i)} - \frac{F_{zHi}^{(t)}}{E_{zHi}} \frac{y_{er} - y_{ej} - tg\beta(x_r - x_j)}{y_{ej} - y_{Hi} - tg\beta(x_j - x_i)} \right) \right].$$

$$(8)$$

Для определения неизвестных потоков касательных усилий, действующих по контурам поперечного сечения крыла (рис. 6), получены рекуррентные соотношения

$$q_{0i} = q_{01}A_i + \theta B_i + C_i;$$
(10)

$$q_{01} = \theta \frac{\Omega_n - B_n a_{nn} - B_{n-1} a_{nn-1}}{A_n a_{nn} + A_{n-1} a_{nn-1}} + \frac{b_n - C_n a_{nn} - C_{n-1} a_{nn-1}}{A_n a_{nn} + A_{n-1} a_{nn-1}} = \theta A^* + B^*.$$
(11)

Рисунок 6 – К определению касательных усилий

Из уравнения равновесия поперечного сечения крыла

$$\theta = \frac{-\oint q_p \rho dS + M_z + Q_y x_Q - Q_x y_Q - \sum_{i=1}^n \Omega_i (A_i B^* + C_i)}{\sum_{i=1}^n \Omega_i (A_i A^* + B_i)}.$$
 (12)

Коэффициенты A_i , B_i , C_i вычисляются по рекуррентным соотношениям

$$A_{1} = 1; A_{0} = B_{0} = C_{0} = B_{1} = C_{1} = 0;$$

$$A_{j} = \frac{A_{i-1}a_{i-1i-1} + A_{i-2}a_{i-1i-2}}{a_{i-1i}};$$

$$B_{j} = \frac{\Omega_{i-1}}{a_{i-1i}} - \frac{B_{i-1}a_{i-1i-1} + B_{i-2}a_{i-1i-2}}{a_{i-1i}};$$

$$C_{j} = \frac{b_{j-1}}{a_{i-1j}} - \frac{C_{i-1}a_{j-1i-1} + C_{i-2}a_{i-1i-2}}{a_{i-1j}},$$
(13)

где *i* = 2,...,*n*.

Соотношения (10) совместно с (11) – (13) позволяют получить суммарные потоки касательных усилий в обшивке и стенках лонжеронов.

В рамках первого этапа третьего направления этого комплекса проведены исследования причин возникновения неравномерного теплои массопереноса компонентов связующего в операциях пропитки и сушки C3 из ПКМ, ранее начатые в [7 - 8].

Это завершающий комплекс исследований, направленных на разработку и совершенствование технологических методов повышения стабильности показателей качества и физико-механических характеристик (ФМХ) СЗ из полимерных бумаг для конструкций АКТ, завершенных ранее.

На данном этапе обоснована и разработана последовательность проведения исследований процесса возникновения неравномерного тепло- и массопереноса состава пропитки в каналах сотов.

Проведены экспериментальные исследования распределения температуры в зонах расположения пакетов сотоблоков в камере аэродинамической печи, выявлен характер дефектов на сотоблоках и источник их появления (рис .7).

Проведено измерение градиента температуры по толщине сотоблока, являющегося причиной появления скрытых дефектов внутри сотовых каналов как следствия неравномерности слоя связующего в сотовом канале (рис .8).

Цвет наружных сторон блоков после высокотемпературной обработки

Цвет сотоблоков до высокотемпературной обработки

Показания термодатчиков в аэродинамической печи высокотемпературной сушки сотоблоков

Характер дефектов на сотоблоках

Рисунок 7 – Исследование распределения температуры в зоне расположения пакетов сотоблоков в камере аэродинамической печи

«Скрытый» дефект внутри сотовых каналов на грани III, связанный с перавномерностью слоя связующего в сотовом канале

Распределение толщины слоя связующего и температуры по длине сотового канала при симметричном нагреве сотоблока

Рисунок 8 – Измерение градиента температуры по толщине сотоблока

Последним звеном первого этапа исследований этого направления явилось экспериментальное определение процентного содержания компонентов в связующем на этапах пропитки и сушки сотоблоков (таблица и рис. 9).

Параметры слоя связующего на этапах пропитки сотоблока из полимерной бумаги «Nomex» (ПСП–1–2,5–4,5,толщина панели *H*=2·10⁻² м,

площадь поверхности сотов $S=7,839 \text{ м}^2$)

П∕п ⊴И	Параметры Операции с сотоблоками	Масса сотоблока m, кг	Время сушки t, ч	Общая масса слоя после операции, кг	Испарившаяся масса растворителя из слоя, кг	Плотность слоя связующего р, кг/м ³	Масса оставшегося растворителя, кг; масс %
1	2	3	4	5	6	7	8
1	До аппретирования	m ₁ = 0,2375	0	0	0	0	
2	Сразу после аппретирования	m ₂ = 0,280	0	m ₂ -m ₁ = 0,0425	0	810	
3	После аппретирования и воздушной сушки	m ₃ = 0,243	t=24 при 20ºС	m ₃ -m ₁ = 0,0055	m ₂ -m ₃ = 0,037	900	0,00253; 47 %
4	После 1-й пропитки связующим	m ₄ = 0,384	0	m₄-m₃= 0,1400	0	800	
5	После 1-й пропитки и воздушной сушки	m₅= 0,319	t=24 при 20ºС	m₅-m₃= 0,0570	m ₄ -m ₅ = 0,084	900	0,0112; 48 %
6	После 2-й пропитки связующим	m ₆ = 0,4525	0	m ₆ -m₅= 0,1230	0	880	
7	После 2-й пропитки и воздушной сушки	m ₇ = 0,343	t=24 при 20ºС	m ₇ -m ₅ = 0,1055	m ₆ -m ₇ = 0,080	900	0,0587; 48 %
8	После 3-й пропитки связующим	m ₈ = 0,510	0	m ₈ -m ₆ = 0,1670	0	880	
9	После 3-й пропитки и воздушной сушки	m ₉ = 0,390	t=24 при 20ºС	m ₉ -m ₇ = 0,0470	m ₈ -m ₉ = 0,120	900	0,07784; 49 %
10	После высоко- температурной сушки в печи	m ₁₀ = 0,350	t=7 при (20÷ 190)ºС	0	m ₁₀ -m ₉ = 0,040	920	0,03484; 31 %

Рисунок 9 – Определение процентного содержания компонентов в связующем на этапах пропитки и сушки сотоблоков

Весь изложенный выше комплекс проведенных исследований будет положен в основу создания метода и способов определения толщины слоя связующего вдоль каналов сотов.

Результаты этих исследований уже используются УкрНИИТМом.

Список использованных источников

1. Гайдачук В.Е. Концептуальные подходы к оптимизации по массе многоотсековых сотовых конструкций летательных аппаратов В.Е. Гайдачук, B.B. Кириченко, В.И. Вопросы Сливинский проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Х., 2005. – Вып. 43 (4). – С. 7-26.

2. Гайдачук В.Е. Концепция оптимизации композитных корпусов летательных аппаратов с сотовым заполнителем на основе синтеза метода конечных элементов и аналитических моделей / В.Е. Гайдачук, В.В. Кириченко, А.В. Кондратьев // Вопросы проектирования и производства летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 56 (5). – Х., 2008.– С. 7-14.

3. Оптимизация проектных параметров головного обтекателя ракеты-носителя «Циклон-4» / В.Е. Гайдачук, А.В. Кондратьев, В.И. Сливинский, А.П. Кушнарев // Сб. материалов III междунар. науч.-

практ. конф. «Эффективность сотовых конструкций в изделиях авиационно-космической техники» 27-29 мая 2009 г., г. Днепропетровск. – Днепропетровск: «Арт-пресс», 2009. – С.88-95.

4. Гагауз Ф.М. Проектирование многолонжеронного крыла из композиционных материалов// Авиационно-космическая техника и технология: науч.-техн. журнал. – Х.: Нац. аэрокосм. ун-т «ХАИ», 2005. – №2(18). – С. 28 – 32.

5. Гагауз Ф.М. Итерационный метод проектирования сечения крыла большого удлинения из композиционных материалов // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Х., 2006. – Вып. 44 (1). – С. 109 - 113.

6. Гагауз Ф.М. Рациональное проектирование силовых элементов сечения крыла из композиционных материалов // Авиационно-космическая техника и технология: науч.-техн. журнал. – Х.: Нац. аэрокосм. ун-т «ХАИ», 2006. – №2(28). – С. 56 – 58.

7. Гайдачук А.В. Исследование массопереноса компонентов связующего при изготовлении сотовых заполнителей из полимерной бумаги «Nomex» / А.В. Гайдачук, М.В. Сливинский, Е.К. Островский // Авиационно-космическая техника и технология: науч.-техн. журнал. – Х.: Нац. аэрокосм. ун-т «ХАИ», 2006. – №4(30). – С. 5 – 10.

8. Гайдачук А.В. Формирование слоя связующего на поверхности полимерной бумаги в процессе пропитки сотовых заполнителей / А.В. Гайдачук, М.В. Сливинский, Е.К. Островский // Авиационно-космическая техника и технология: науч.-техн. журнал. – Х.: Нац. аэрокосм. ун-т «ХАИ», 2007. – №3(39). – С. 34 – 41.

Поступила в редакцию 13.12.09. Рецензент: д-р техн. наук, проф. С. А. Бычков, АНТК «Антонов», г. Киев