
Теоретичні і методологічні основи програмування

© N. Sydorov, 2020

110 ISSN 1727-4907. Проблеми програмування. 2020. № 4

UDC 004.415.2. (043.3) https://doi.org/10.15407/pp2020.04.110

N. Sydorov

TOWARD SOFTWARE ARTIFACTS ECOSYSTEM

In the process of developing and maintaining a software product, many things are created and used that are

called software artefacts. Software artifacts are changed, reused, and change relationships in the development

and maintenance processes of a software product. The complexity and variety of software artifact relationships

require adequate means of description and management. They may be a software artifacts ecosystem. In the ar-

ticle, for the first time, a concept of a software artifact ecosystem is proposed. The concept describes a generic

model of the software artifacts ecosystem, which is the Cornerstone ecosystem type and consists of three actors

– the platform, the software, and the artifact. Based on the generic model, the SD model of the software arti-

facts ecosystem is described. The roles of actors in the ecosystem are indicated, the relationships between ac-

tors are described. The developer's activities will be more efficient, the software is understandable, and the de-

velopment and maintenance is cheaper when the styles (standards) are used. As case study, based on the gener-

ic model of the software artifacts ecosystem, a declarative model of the programming style ecosystem has been

developed. Three-level model of programming style artifact is proposed. The tools and processes for creating

and using a programming style artifact are developed and described.

Key words: software engineering, software artifact, software ecosystem, programming, programming style,

ontology.

1. Introduction

In the processes of developing and

maintaining software products, many things

are created and used, which are called arti-

facts. Artifacts can be different in form and

presentation. They can be part of a software

product or provide processes for its develop-

ment and maintenance, be intermediate results

of processes, or be part of other artifacts.

Thus, there is a huge variety of software arti-

facts, including design plans, work products

(specifications, architectural and detailed de-

signs, code, and documentation), user stories,

bug reports, tools, including for processing

artifacts, but not limited to this. Various and

often complex connections are established

between artifacts. Artifacts change, reuse, and

change links in the development and mainte-

nance of a software product. Therefore, arti-

facts play an important role in the software

life cycle whatever of its model and require

the attention of all interested parties.

The software industry is constantly

evolving and changing. Not only products and

technologies are developing. Many software

companies are experimenting with new busi-

ness models, leading to fundamental changes

in the structures of both the company and its

client. Recently, many companies have been

using the concept of “software ecosystem” to

describe development, creating them around

themselves or their products, taking into

account customer connections. Ecosystems

have shown themselves to be a promising man-

agement tool, an evolving software product.

The complexity and diversity of soft-

ware artifact relationships require adequate

description and management tools. This could

be a software artifacts ecosystem. Such an

ecosystem points to more detailed level than a

software ecosystem, but at this level most of

the approaches, methods and tools that are

used in a software ecosystem can be used.

In the article, for the first time, a mod-

el of a software artifacts ecosystem is pro-

posed. Its application is shown on the case of

a programming style ecosystem. Within the

conception framework, a generalized model

of the software artifacts ecosystem is de-

scribed. The ecosystem belongs to the

Cornstoun ecosystem type and consists of

three actors – platform, software and artifact.

The roles of actors in the ecosystem are indi-

cated, connections between actors are de-

scribed. The types, rules, and attributes of

actors, relationships, and actions can be re-

fined for specific software artifacts ecosystem

models. The same applies to analyzing eco-

system properties.

Based on the generic model of the

software artifacts ecosystem, a declarative

model of the programming style ecosystem

has been developed. The programming style

Теоретичні і методологічні основи програмування

111

is an artifact that plays an important role in

the development and maintenance of soft-

ware. The description of the processes of cre-

ation and the use of the programming style is

made by using the ontology.

2. Related works

Software artifacts. In the software life

cycle to support the processes of creating and

maintaining a software product, many differ-

ent artifacts are created and used. Wide rang-

es of components are considered as artifacts,

from documentation, work products and their

parts, to auxiliary tools. Interacting, artifacts

ensure the efficient execution of software life

cycle processes.

In [1], artifacts are analyzed in the

context of reuse as equipment in the sense of

work [2]. At the same time, three goals (writ-

ing, processing and transferring artifacts) and

three aspects of equipment (the in-order-to of

equipment, readiness-to-hand, presence-and-

hand) are considered. In addition, since arti-

facts are analyzed as reusable components

that are embedded in the created software

product, their characteristics are taken into

account: holism, commonality, reusability and

maturity. Considering an artifact as hardware

– a thing built into the context of a software

product, the interaction of the specified char-

acteristics of software artifacts is investigated.

In [3], artifacts are considered in the context

of a software product line and are divided into

three types – architecture, shared components,

and components made from shared ones. For

each type of artifacts, three levels of maturity

are identified, depending on the degree of

integration of the artifact of the corresponding

type into the software product line. In [4],

artifacts are considered as information parts

that are created, modified and used in the

RUP processes. Artifacts can be of different

types and take different forms, from UML

models to executable code, and can be used in

the creation and maintenance of a software

product. Artifacts are the input and output of

actions in RUP processes. In [5], software

documentation as an artifact is considered.

Artifact as a means of representing infor-

mation about software is defined. A mainte-

nance model of documentation as a software

artifact is introduced.

Artifact modeling. In the following

works, attempts are made to build a model of

the artifact.

The paper [6] presents a metamodel

for software artifacts aiming at providing a

new and structured way to represent artifact

content, other than current sections hierarchy.

This work defines an extension to UML/MOF

and SPEM meta-models by means of layers.

The paper [7] discusses the theoretical foun-

dations for the representation and interpreta-

tion of software artifacts. Based on different

levels of perception of artifacts by a person –

the user of artifacts introduces three levels of

representation of artifacts – physical (physical

representation), structural (syntactic structure)

and semantic (semantic content). In addition,

two steps for processing artifacts - parsing the

physical representation, and analyzing the

syntactic structure – the result of the first step

(interpretation) are introduced. A meta model

of artifacts is built on the basis of presentation

levels and processing steps. The work [8]

considers the architecture of tools that provide

the creation and maintenance of metadata

about software artifacts, which form an envi-

ronment consisting of resources – develop-

ment artifacts. Tools to manage the artifact

environment are used.

Artifacts in software development.
The experience of using artifacts in life cycle

processes in several works is considered.

In [9], artifact-oriented development

of embedded systems is considered. A con-

ceptual model of artifact-oriented develop-

ment is proposed, examples of its use are giv-

en. In [10], artifact-oriented model-driven

development is considered. Details a better

understanding on how explicating artifacts

and their relations facilitates traceability of

artifacts, change impact analysis, and interop-

erability of software tools are considered. The

paper [11] concentrates on the paradigm arte-

fact-orientation in requirements engineering

and presents a meta model. This meta model

is inferred from two concrete domain specific

requirements engineering models: one for the

application domain of embedded systems and

one for the application domain of business

information systems. In [12] shown, that сcol-

laborative development of software products

across organizational boundaries in software

Теоретичні і методологічні основи програмування

112

ecosystems adds new challenges to existing

software engineering processes. A new ap-

proach offered for handling the diverse soft-

ware artefacts in ecosystems by adapting fea-

tures from social network sites. In paper [13],

an industrial survey to create an Activity-

Based Artifact Quality Model to define what

this means from a stakeholder’s viewpoint is

proposed. Specifically was conducted. Quali-

ty factors of test artifacts that have a positive

or negative impact on the activities of Agile

testers are explored. Quality model contains

16 quality factors for six test artifacts that are

reportedly relevant to at least five stakehold-

ers in the process. In paper [14] reference

model and a metamodel for traceability are

proposed. The reference model, defined by

the conceptual basis, may be used in the crea-

tion of traceability approaches. The reference

model was used to develop a metamodel. In

paper [15], a generic artifact model based on an

empirical investigation is proposed. The results

of a mapping study in combination with a sys-

tematic literature review to analyze the usage of

artifacts in agile methods are presented.

Towards a software artifacts ecosys-

tem. We are not aware of any work directly

devoted to the consideration of problems as-

sociated with the study of software artifacts

ecosystems. However, there are works, the

results of which can be used to solve these

problems. In [16], attention is rightly drawn

to the fact that in software ecosystems, atten-

tion is now paid to the participants only at the

top level - these are organizations and teams

that create, implement and maintain software

products. However, there is a lower level –

artifacts, the role of which in the life cycle

processes can hardly be overestimated. In

[17], there are requirements for describing

and analyzing software ecosystems, which in

our paper to model software artifacts ecosys-

tems are used.

3. The generic model of software ar-

tefacts ecosystem

This section discusses a generic model

of the software artifact ecosystem. Several

methods are now used to model software eco-

systems [18]. The application of a particular

method depends on the type of ecosystem and

the goals of the modeling. To represent the

software artifacts ecosystem, this work uses

the i* modeling approach [19]. In contrast to

the most commonly used SSN method, which

focuses on describing the software ecosystem

at the top level (product, developer, vendor,

user), the i* approach provides a description

of the ecosystem of a more detailed software

presentation layer that corresponds to the lev-

el software artifacts. Fig. 1 presents generic

model of the software artifacts ecosystem.

When designing an ecosystem, two groups of

requirements are used [17]: descriptive and

analytical.

The first group includes the require-

ments for the definition of actors, connections

between them and their actions. In addition,

the requirements for determining the types,

rules and attributes of actors, connections and

actions are formulated, as well as the re-

quirements for determining the specific char-

acteristics of both the ecosystem as a whole

and its elements, for example, productivity,

efficiency, security.

Fig. 1. The generic model of the software artifacts ecosystem

Теоретичні і методологічні основи програмування

113

The second group includes require-

ments for defining characteristics that provide

analysis of the ecosystem from incentives and

motivation to sustainability and productivity.

Table the actors and roles in the soft-

ware artifacts ecosystem are given (Tabl 1).

The software artifacts ecosystem belongs to

the Cornerstone type, since the basis of the

ecosystem is a technological platform for the

development and maintenance of software,

the functionality of which is extended by us-

ing artifacts [20]. Thus, the actors of the eco-

system are a platform with a management

role, software with a software product role, an

artifact with a support service provider role.

Common connections between actors can be

indicated (Fig. 2). The platform, in the con-

text of which such components as the life

cycle model, organizational and technical

support for development and maintenance are

considered, defines and uses the artifact as an

auxiliary means of implementing processes

and filling the structure of a software product.

The software depends on the platform, which

is the main mean for the implementation of

development and maintenance processes. The

platform uses the artifact directly as a compo-

nent in the software structure or indirectly as

a means of improving the efficiency of the

platform's processes.

The types, rules, and attributes of ac-

tors, relationships, and actions can be refined

for specific ecosystem models of a software

artifact. The same applies to meeting the re-

quirements for the analysis of ecosystem

properties [17].

Table 1. Actors and roles in the software artifacts ecosystem

Ecosystem type Actors The role of the actor in the ecosystem

Cornstoun

ecosystem

Platform Orchestration

Software Product

Artefact Support service provider

Fig. 2. The SD model of the software artefact ecosystem

Теоретичні і методологічні основи програмування

114

4. Case study. The programming

style ecosystem

Today, methods and tools that are
based on reuse have become widespread for
the development and maintenance of software
products. The application of these methods
and tools requires the developer to read, ana-
lyze and understand a significant number of
representations of work products from differ-
ent phases of the software life cycle. Reuse is
now widespread from requirements specifica-
tions to source code and documentation.
Therefore, one of the main requirements for
software is understandability. The developer's
activities will be more efficient, the software
is understandable, and the development and
maintenance is cheaper when the styles
(standards) are use. They will ensure that the
work products of different phases of the life
cycle are understandable [21].

Fig. 3 shows the model of a program-

ming style ecosystem, which is built based on

a generic model of a software artifact ecosys-

tem (Fig. 1).
The artifact in this model is the pro-

gramming style, and the actor, the software, is
represented by that part of it – the source code
for which the programming style is applied.
Artifact – the programming style is platform-
specific, as the style rules depend on a num-
ber of platform conditions, such as the pro-
gramming language, management goals, sche-
dule, risks, and project budget. The program-
ming style is used in the source code con-

struction (the phase of software live cycle)
and affects the efficiency of the construction
and maintenance processes.

Based on the artefact model from

work [7], described the programming style

artefact by the three levels of perception and

the two processing steps (Fig. 4).

Level 1 – Semantic content. The con-

tent represents the meaning of an artefact. The

content is interpreted in the context of the

individual knowledge of the stakeholder (pro-

grammer) or the interpreter of the machine (in

this case – Protégé The content is based on

the rules of the programming style, which are

described by the ontology.

Level 2 – Syntactic Structure. The

structure of an artifact represents the syntactic

expression of its content. The structure of the

artifact is described in Web Ontology Lan-

guage (OWL).

Level 3 – Physical Representation.

The artefact is represented in the file of OWL

text format.

There are two the processing steps.

Processing Step 1 – Parsing. The out-

come of the parsing process is the syntax

structure of the artefact. This process is per-

formed by the OWL parser implemented us-

ing the OWL API [22].

Processing Step 2 – Interpretation. In-

terpretation is the process of extracting the

content (i.e. the meaning) from the structure.

This process is performed by Protégé system.

Fig. 3. The SD model of programming style ecosystem

Теоретичні і методологічні основи програмування

115

Semantics

(Content)

Syntax

(Structure)

Physical

Representation

Protégé

Parsing

Interpretation

Include

Composite structure

Content structure

Meaning

Fig. 4. The levels of perception of programming style artefact

The characteristics of the domain in

which the style is applied are given in tab. 2.

[21]. The activities of a programmer in a do-

main are shown in Fig. 5. The use of the pro-

gramming style as an artifact involves the

implementation of three processes [23]: the

creation of an artifact, as a result of which the

programming language style is built, the use

of the style when programs are writing and

the process changed of the artifact.

Table 2. Characteristics of the style of the program domain

Epoch

Characteristic

Property Factors Means

Period Idea

Principle

of im-

portance

Historical Social Style Elements

Application

of

standards

in coding

2000

Readability,

quality,

safety

Productivity,

maintenance

Standar-

dization

Programming

team, re-

quirements

Modular,

mega pro-

gramming

Composition,

classification

in program-

ming

languages

Теоретичні і методологічні основи програмування

116

Programmer Programming

language style
Program

Studies style

Gets style

Writes the text of

the program

Gets style

Fig. 5. Domain sequence diagram

In fig. 6. The ontology of creating a

programming style is presented. The ontology

describes in detail the participants and actions

taking place in this regard in the programming

style ecosystem. All ontology concepts are

categorized as resources in i* terminology,

with the exception of the <<event>> concept,

which represents a goal. At the same time, the

concepts Coding phase, Party, Programming

language refer to the Platform actor, and the

concepts Creating work product style, Style

party create guide, Style and Programming

language style to the Programming style

actor.

Has-Knowledge-in

<<kind>>

Coding phase

<<category>>

Party

<<event>>

Creating work

products style

<<associative>>

Style party create guide

1

1

11

Is-part-of

<<kind>>

Team
<<kind>>

Person

uses
Is- created-according-to

1

**

Governs

<<kind>>

Programming

language style

*

*

Is-part-of

1

*

<<kind>>

Programming

language

<<category>>

Style

1
1

Fig. 6. Ontology of programming style creation

Теоретичні і методологічні основи програмування

117

Fig. 7. The ontology of using the pro-

gramming style is presented. An ontology

describes the relevant actors and activities in a

programming style ecosystem. The Party,

Coding phase concepts belong to the Platform

actor, the Program, Program style concepts to

the Software actor, and the Using work prod-

uct style, Style party using guide, Program

language style concepts to the Programming

style actor.

To implement the processes of creat-

ing and using a programming style, tools are

created that can be considered, on the one

hand, as resources of the Programming style

artifact, and on the other hand, as artifacts as

part of the Platform artifact. These include the

programming style knowledge base and the

Reasoner. Thus, the programmer, while cod-

ing the program, applies the ontology of the

programming style, both for learning the style

and for checking the observance of the style

in the program. Therefore, two tools are need-

ed - one to create an ontology and support the

programmer in the coding process, and the

second, to control the application of the pro-

gramming style in the source code of the pro-

gram (Fig. 8) [23].

Has-Knowledge-in

<<kind>>

Coding phase

<<category>>

Party

<<kind>>

Program

<<kind>>

Programming

language style

<<event>>

Using work product

style

<<associative>>

Style party using guide

1

1

1

1

Is-part-of

 Use

<<kind>>

Team
<<kind>>

Person

1
*

uses

Is- created-according-to

1

**

Governs

aquire

<<kind>>
Program style

1

1

aquire

<<kind>>

Party style

aquire

1

*

Fig. 7. Ontology of using programming style

Fig. 8. Tools usage diagram

Теоретичні і методологічні основи програмування

118

The style analyst, using the first tool -

Protégé, setting up the ontology to the appro-

priate programming style, creating a TBox

(Fig. 6). After setting up, the programmer is

introduced to the programming style with the

help of Protégé. The second tool is functional-

ly similar to the reasoner, but adds a function

for identifying style errors. In terms of de-

scriptive logic, the reasoner verifies the con-

sistency of the ontology (Fig. 9).

Fig. 9. Knowledge base of programming style

Protégé is used to create TBox. It is

part of an ontology with terms describing a

programming style. Assertions about the

source code (ABox) written by the

programmer are created by the corresponding

part of the reasoner. It provides the

appropriate service using the knowledge base

(TBox and ABox). The service includes,

firstly, the verification of the consistency of

the ontology (a direct function of the

reasoner), and secondly, the search for

stylistic errors in the source code of the

program.

5. Results Analysis and Discussion

The results are a development of the

solutions obtained in the works of the author

[21–24]. For the first time, the concept of the

software artifact ecosystem is proposed.

Within the framework of the concept, the ge-

neric model of the software artifact ecosystem

is described. Model belongs to the Cornstoun

ecosystem type and consists of three actors –

platform, software, and artifact. The roles of

actors in the ecosystem are indicated, connec-

tions between actors are described. Based on

the generic model of the software artifact eco-

system, a declarative model of the program-

ming style ecosystem has been developed.

The programming style is an artifact that

plays an important role in the development

and maintenance of software. Using [7], a

three-level artifact model of - programming

style is proposed. The description of the pro-

cesses of creating and using a programming

style is made by applying the ontology. In

continuation of research of the software arti-

fact ecosystem, the description of the actors

of the ecosystem will be expanded and the

types, rules and attributes of actors, links and

actions will be developed. In addition, the

metric provision of the ecosystem in relation

to determining the effectiveness, sustainabil-

ity and reliability of the ecosystem of soft-

ware artifacts will consider.

The work done in research “Research

on software artifacts ecosystems”,

№ 0120U104329.

References

1. Nuwangi S.M., Darshana S. Software arte-

facts as equipment: a new conception to soft-

ware development using reusable software ar-

tefacts. Thirty-Sixth International Conference

on Information Systems. 2015. Texas, USA.

2. Heidegger M. (1927/1962) Being and Time,

Translated by John Macquarrie & Edward

Robinson. USA: Harper & Row.

3. Bosch J. Maturity and Evolution in Software

Product Lines: Approaches, Artefacts and Or-

ganization, Software Product Lines, Second

International Conference, SPLC 2, San Diego,

CA, USA, August 19–22, 2002,

4. Rational Unified Process: Best Practices for

Software development Teams, Rational Soft-

ware White Paper TP026B, Rev. 11/01. 1998.

18 p.

5. Glass R. Software maintenance documenta-

tion, SIGDOC '89, Pittsburg, Pennsylvania,

USA, ACM Press. 1989. Р. 18 – 23.

6. Silva M., Oliveira T., Bastos R., Software

Artifact Metamodel, XXIII Brazilian Sympo-

sium on Software Engineering, 2009.

P. 176 – 186.

7. Fernandez D M., Bohm W., Broy M. Arte-

facts in Software Engineering: A Fundamental

Positioning, International Journal on Software

and Systems Modeling. 2018. 26. 9 p.

https://www.researchgate.net/publication/242502052_Software_Product_Lines_Second_International_Conference_SPLC_2_San_Diego_CA_USA_August_19-22_2002_Proceedings
https://www.researchgate.net/publication/242502052_Software_Product_Lines_Second_International_Conference_SPLC_2_San_Diego_CA_USA_August_19-22_2002_Proceedings
https://www.researchgate.net/publication/242502052_Software_Product_Lines_Second_International_Conference_SPLC_2_San_Diego_CA_USA_August_19-22_2002_Proceedings

Теоретичні і методологічні основи програмування

119

8. Dewar R.G. Managing Software Engineering

Artefact Metadata, Department of Computer

Science, Heriot-Watt University, Edinburgh,

UK. (2005)

9. Bohm W., Vogelsang A. An Artifact-oriented

Framework for the Seamless Development of

Embedded Systems, Model-Based Engineer-

ing of Embedded Systems. Springer Berlin

Heidelberg. 2012. P. 225–234.

10. Butting, A., Greifenberg T, Rumpe B. Wort-

mann: A. On the Need for Artifact Models in

Model-Driven Systems Engineering Projects.

In: Software Technologies: Applications and

Foundations, LNCS 10748. Springer. 2018.

P. 146–153.

11. Fernández D.M., Penzenstadler B., Kuhrmann

M., Broy M., A Meta Model for Artefact-

Orientation:Fundamentals and Lessons

Learned in Requirements Engineering, Lec-

ture Notes in Computer Science. October

2010.

12. Seichter D., Dhungana D., Pleuss A., Haupt-

mann B. Knowledge Management in Software

Ecosystems: Software Artefacts as First-class

Citizens. ECSA 2010. August 23–26, 2010.

Copenhagen. Denmark. P. 119–126.

13. Fischbach J., Mendez D. What Makes Agile

Test Artifacts Useful? An Activity-Based

Quality Model from a Practitioners’ Perspec-

tive, ESEM ’20, October 8–9, 2020, Bari,

Italy.

14. Azevedo B., Jino M., Modeling Traceability

in Software Development: A Metamodel and

a Reference Model for Traceability, ENASE,

School of Electrical and Computer Engineer-

ing. University of Campinas, Brazil, 8 p.

15. Kuhrmann M., Fernández D., Towards Arti-

fact Models as Process Interfaces in Distribut-

ed Software Projects, IEEE workshop pro-

ceedings, 10 p.

16. Seichter D., Dhungana D., Pleuss A., Haupt-

mann B. Knowledge Management in Software

Ecosystems: Software Artefacts as First-class

Citizens, ECSA 2010 August 23–26, 2010.

Copenhagen. Denmark. P. 119–126.

17. Sadi M., Yu E. Designing Software Ecosys-

tems: How Can Modeling Techniques Help?

Springer-Verlag, Berlin Heidelberg. 2015.

15 p.

18. Sydorov N. Software Ecology. Software En-

gineering. 2010. Р. 53–61.

19. Yu E. Modelling Strategic Relationships for

Business Process Reengineering. Ph.D., the-

sis. Dept. of Computer Science, University of

Toronto. 1995.

20. Knodel J., Manikas K. Towards a typification

of software ecosystems. In Fernandes et al.

Software Business – 6th International Confer-

ence. ICSOB 2015. Braga, Portugal. June 10–

12, 2015. Proceedings 2015. vol. 210 of Lec-

ture Notes in Business Information Pro-

cessing. Springer. Р. 60–65.

21. Sydorov N.A. Software Stylistics. Problems

of Programming. 2005. 2,3. P. 245–254.

22. Sidorov N., Sidorova N., Pirog A. Ontology-

driven tool for utilizing programming styles.

Вісник НАУ. 2017. Том 71. № 2. С. 84–93.

23. Sydorov N., Sydorova N., Sydorov E.,

Cholyshkina O., Batsurovska I. Development

of the approach to using a style in software

engineering. Eastern-European Journal of

Enterprise Technologies. 2019. 4/2 (100).

P. 41–51.

24. Sydorov N.A., Sydorova N.N., Sydorov E.N.

Description model of programming style

ecosystem. Problems in programming, special

issue. Proceeding of the UkrProg'2020.

N 2–3. P. 74–81.

Література

1. Nuwangi S.M., Darshana S. Software arte-

facts as equipment: a new conception to soft-

ware development using reusable software ar-

tefacts. Thirty-Sixth International Conference

on Information Systems. 2015. Texas, USA.

2. Heidegger M. (1927/1962) Being and Time,

Translated by John Macquarrie & Edward

Robinson. USA: Harper & Row.

3. Bosch J. Maturity and Evolution in Software

Product Lines: Approaches, Artefacts and Or-

ganization, Software Product Lines, Second

International Conference, SPLC 2, San Diego,

CA, USA, August 19–22, 2002,

4. Rational Unified Process: Best Practices for

Software development Teams, Rational Soft-

ware White Paper TP026B, Rev. 11/01. 1998.

18 p.

5. Glass R. Software maintenance documenta-

tion, SIGDOC '89, Pittsburg, Pennsylvania,

USA, ACM Press. 1989. Р. 18 – 23.

6. Silva M., Oliveira T., Bastos R., Software

Artifact Metamodel, XXIII Brazilian Sympo-

sium on Software Engineering, 2009.

P.176–186

7. Fernandez D M., Bohm W., Broy M. Arte-

facts in Software Engineering: A Fundamental

Positioning, International Journal on Software

and Systems Modeling. 2018. 26. 9 p.

8. Dewar R.G. Managing Software Engineering

Artefact Metadata, Department of Computer

https://www.researchgate.net/publication/242502052_Software_Product_Lines_Second_International_Conference_SPLC_2_San_Diego_CA_USA_August_19-22_2002_Proceedings
https://www.researchgate.net/publication/242502052_Software_Product_Lines_Second_International_Conference_SPLC_2_San_Diego_CA_USA_August_19-22_2002_Proceedings
https://www.researchgate.net/publication/242502052_Software_Product_Lines_Second_International_Conference_SPLC_2_San_Diego_CA_USA_August_19-22_2002_Proceedings

Теоретичні і методологічні основи програмування

120

Science, Heriot-Watt University, Edinburgh,

UK. (2005)

9. Bohm W., Vogelsang A. An Artifact-oriented

Framework for the Seamless Development of

Embedded Systems, Model-Based Engineer-

ing of Embedded Systems. Springer Berlin

Heidelberg. 2012. P. 225–234.

10. Butting, A., Greifenberg T, Rumpe B. Wort-

mann: A. On the Need for Artifact Models in

Model-Driven Systems Engineering Projects.

In: Software Technologies: Applications and

Foundations, LNCS 10748. Springer. 2018.

P.146–153.

11. Fernández D.M., Penzenstadler B., Kuhrmann

M., Broy M., A Meta Model for Artefact-

Orientation:Fundamentals and Lessons

Learned in Requirements Engineering, Lec-

ture Notes in Computer Science. October

2010.

12. Seichter D., Dhungana D., Pleuss A., Haupt-

mann B. Knowledge Management in Software

Ecosystems: Software Artefacts as First-class

Citizens. ECSA 2010. August 23–26, 2010.

Copenhagen. Denmark. P.119–126.

13. Fischbach J., Mendez D. What Makes Agile

Test Artifacts Useful? An Activity-Based

Quality Model from a Practitioners’ Perspec-

tive, ESEM ’20, October 8–9, 2020, Bari,

Italy.

14. Azevedo B., Jino M., Modeling Traceability

in Software Development: A Metamodel and

a Reference Model for Traceability, ENASE,

School of Electrical and Computer Engineer-

ing. University of Campinas, Brazil, 8 p.

15. Kuhrmann M., Fernández D., Towards Arti-

fact Models as Process Interfaces in Distribut-

ed Software Projects, IEEE workshop pro-

ceedings, 10 p.

16. Seichter D., Dhungana D., Pleuss A., Haupt-

mann B. Knowledge Management in Software

Ecosystems: Software Artefacts as First-class

Citizens, ECSA 2010 August 23–26, 2010.

Copenhagen. Denmark. P. 119–126.

17. Sadi M., Yu E. Designing Software Ecosys-

tems: How Can Modeling Techniques Help?

Springer-Verlag, Berlin Heidelberg. 2015.

15 p.

18. Сидоров Н.А. Экология программного

обеспечения. Інженерія програмного за-

безпечення. 2010. № 1. C. 53–61.

19. .Yu E. Modelling Strategic Relationships for

Business Process Reengineering. Ph.D., the-

sis. Dept. of Computer Science, University of

Toronto. 1995.

20. Knodel J., Manikas K. Towards a typification

of software ecosystems. In Fernandes et al.

Software Business – 6th International Confer-

ence. ICSOB 2015. Braga, Portugal. June 10–

12, 2015. Proceedings 2015. vol. 210 of Lec-

ture Notes in Business Information Pro-

cessing. Springer. Р. 60–65.

21. Сидоров Н.А. Стилистика программного

обеспечения. Проблеми програмування.

2018. 2, 3. С. 245–254.

22. Sidorov N., Sidorova N., Pirog A. Ontology-

driven tool for utilizing programming styles.

Вісник НАУ. 2017. Том 71. № 2. С. 84–93.

23. Sydorov N., Sydorova N., Sydorov E.,

Cholyshkina O., Batsurovska I. Development

of the approach to using a style in software

engineering. Eastern-European Journal of

Enterprise Technologies. 2019. 4/2 (100).

P. 41–51.

24. Сидоров Н.А., Сидорова Н.Н., Сидоров

Е.Н. (2020) Дескриптивная модель

экосистемы стиля программирования,

Проблеми програмування, Спеціальний

випуск, Матеріали конференції, УкрПрог.

2020. № 2-3. С. 74–81.

Received 04.11.2020

About author:

Sydorov Nikolay,

Doctor of Technical Sciences, Professor,

Number of scientific publications in

Ukrainian publishing houses – 105.

Number of scientific publications in

foreign publishing houses – 35.

https://orcid.org/0000-0002-3794-780X.

Affiliation:

National Technical University of Ukraine

Igor Sikorsky Kyiv Polytechnic Institute,

Department of Automated Information Pro-

cessing and Control Systems,

03056, Kiev - 56, Prosp. Peremohy, 37.

E-mail: nyksydorov@gmail.com

https://orcid.org/0000-0002-3794-780X
mailto:nyksydorov@gmail.com

