MUKPOBOJJIHOBAA TEXHUKA U TEXHOJIOTNU

UDC 537.87:621.371

PROPERTIES OF DECELERATING NON-DIFFRACTIVE

ELECTROMAGNETIC AIRY PULSES

A.G. NERUKH, D.A. ZOLOTARIOV, D.A. NERUKH

The existence of electromagnetic pulses in time domain with the Airy function envelope is shown. The pulses
satisfy an equation similar to the Schrodinger equation but in which the time and space variables play opposite
roles. The pulses are generated by an Airy time varying field at a source point and propagate in vacuum pre-
serving their shape and magnitude. The pulse motion is according to a quadratic law with the velocity chang-
ing from infinity at the source point to zero in infinity. Properties of such pulses are investigated in detail.
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An Airy beam or Airy wave packet is a wave
described by the Airy function [1]. The Airy beams are
characterised by very special properties: they are non-
diffractive (remain invariant during propagation) and
accelerating(increasetheirenvelopevelocitywithtime)
[2-9]. Recently there has been active development
in the theory and experimental applications of
optical Airy beams. Among the striking applications
of the optical Airy beams are the transport of small
particles and living cells along a parabolic trajectory
and the self-healing property of the beam, when the
beam form is restored after passing an obstacle [10].
A new way of generating Airy beams by using three
wave mixing processes in nonlinear media has been
examined experimentally in [11].

The detailed analysis of the mathematical aspects
as well as physical interpretation of electromagnetic
Airy beams is done by considering the wave as a func-
tion of spatial coordinates only and assuming that their
time dependence is harmonic, exp(iw?), [2-7]. Yet,
the idea of electromagnetic Airy beams comes from the
analogy of the paraxial equation describing these beams
with the time dependent Schrodinger equation [2, 12],
where the time variable is replaced with a spatial coor-
dinate. The solution of the Schrodinger equation pro-
duces time dependent Airy wave packets in free space
[12, 13]. Their features such as the diffraction free form
and continuous acceleration has been explained on the
basis of the semi-classical approximation. (It is worth
to note that the Airy wave function is known in quan-
tum mechanics for a long time [14] as a solution to the
stationary Schrodinger equation.) As for the time de-
pendent solution of the three-dimensional electromag-
netic problem, the possibility of the existence of non-
diffractive Bessel (not Airy) waves has been pointed out
in [2, 15]. However, the three dimensional solutions to
the paraxial equations containing the time variable do
not include the parabolic variable responsible for the
accelerating feature of the beams.

Therefore, it is important to investigate the ex-
plicitly time dependent solutions of the electromag-
netic problem in the form of an Airy pulse and deduce
whether it possesses the unique features described
above. We show that it is not only possible to find the
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Airy pulse solution starting from the first principles,
rather than by exploiting the analogy with the parax-
ial equation, but also that the obtained beam has the
same property of non-diffractive propagation and
velocity change without any external influences (in
vacuum). There are, however, important conceptual
differences that lead to the pulse deceleration, rather
than acceleration as in quantum mechanics.

We consider here the role of the time variable in
the solution of a ‘paraxial’ equation including explicit
presence of time. We start with the wave equation,
followed from the Maxwell equations,

03 Et,2) -0, E(1,2)=0 )

which describes the electric field of a wave
propagating along the z axis. Substitution of the field

in the form E(t,z)=F(t,2)e™ , k=w/c and under
the assumption that |Fz"z|<<|2isz' |, typical for the

paraxial approximation [16-18], the wave equation is
reduced to the form

Fi20,F +0. F+x’F =0, (2)
where the normalized dimensionless variables are
&zz/(kczt(f), t=1/1, with ¢, being the temporal
scale and the dimensionless parameter is k=kct, .
Comparing this equation with the commonly
considered spatial paraxial equation in the X,z
coordinates

i20,®+0,®=0 (3)

we see that the longitudinal spatial variables & are the
same and the transverse variable s=x/x, (x, =ct,)
corresponds to the temporal variable t in (2). The
equation (3) is considered in the literature as the
analogue to the Schrodinger equation

27 m T h?6% W (x,1) +ihd, ¥ (x,t) =0 4)

from which the Airy wave packet originated in
[12] if the temporal variable ¢ in (4) is replaced by
the longitudinal variable z (& in (3)). Thus, the
variable z (&) along which an electromagnetic wave
propagates playsthe role of time in the electromagnetic
phenomenon. As it was shown in [12] equation (4) has
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a solution in the form of a non-spreading wave packet
with the envelope as the Airy function (designations
asin [12])

P(x,f) = Ai[Bﬁ’m (x-Bm /4)}
(5)
exp[iB3(2mh)’1 (- Brm /6)]

This function describes the accelerating wave
packet which moves uniformly with the veloc-
ity x=B%%/2m> and the constant acceleration
%=B/2m*. Contrary to the equation (3), which
describes a beam harmonically oscillating in time, the
function (5) represents the pulse with a complicated
time varying envelope enclosed in the Airy function.
The Airy function in the solution to (3)

® = Ai[s— &> /4]exp{i[—s§/2+§3 /12]} (6)

describes the inhomogeneous distribution with
respect to the spatial coordinates s and & of the
wave paraxial propagating along the z axis but with
harmonic temporal variation E = ®(x,z)e " .

Our equation (2), derived from the first prin-
ciple rather than by the analogy with the Schrod-
inger equation, shows that the roles of the time and
space variables in the electromagnetic time paraxial
equation (2) are opposite to those of the Schrod-
inger equation (4). This destroys the analogy be-
tween the equations (2) and (4)and, therefore, the
direct correspondence between the time and space
variables of the Schrodinger equation and the
space variables of the spatial paraxial equation(3).
Thus, we need to solve the equation (2) in order to
find the time-spatial pulse originating from it.

The solution to the equation (2) can be construct-
ed followingthe procedure described in [8]. The sought
function is represented as F =W (n)e®™® | where
W(n) and ©(n,&) are real functions of the argument
& and the quadratic variable n=-at+1, - E2 /4 +DbE .
The parameter a=+1 determines the movement for-
ward or backward along the time axes. The param-
eters 1, and b in n allow changing the model. This
representation leads to the equation for the phase

O(n,&)=+a*(-&/2+bmF
27'a? (53 J12-bE% J2+(B% + asz)g) '
and to the equation for the envelope which is the Airy

equation W"(n)-nW(n)=0. Its solution is the Airy
function

W)=Ail -(£/2-b) —at+1y+b°].  (8)

(7

Fig. 1. Direction of temporal changing of the envelope
against on the parameter a: a=1 onthe leftand a=-1
on the right
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Dependence of the envelope (8) on time for a
fixed value of a spatial coordinate is shown in Fig. 1.
As one can see the parameter ¢ =1 corresponds to the
envelope movement with a main lobe ahead (it ap-
pears at first and then a tail does) whereas a=-1 cor-
responds to the opposite movement. The trajectory of
the main lobe movement is given by the equation

~(&/2-b) —at+1,+b*=0 9)

following from (8) and it is shown in Fig. 2 where
a=1 corresponds to a left parabola.

Fig. 2. The trajectories of the envelope: the left hand side
for a=1, the right fora=-1

Evidently, such movement is impossible because
for a given initial condition at #=0 in Fig. 2 realiza-
tion of this movement means a backward time course.
On the other hand, if the initial condition corresponds
to a certain negative time moment the movement along
the left parabola will lead to stop of a time at 7=0. Itis
consequence of a parabolic kind of the equation (2). It
is known that an equation of a parabolic kind describes
solutions with the infinite value of an influence velocity.

So, the physical sense can have only the solution
with a=-1 that corresponds to the trajectory on the
right-hand side in Fig. 2. In this case the solution to
the equation (2) is

F(r,8)= Ail-(&/2-b) +t+71 +b*|x
xexp{ii[—bf’ +(2b2 —k2)E /2
~bE? /248 /12 (v, +07)(8/2-B) )
This function satisfies the boundary condition

F(t,6=2b)= At +1, +b2]exp{ii[—b(|<2 +b? /3)]}

(10)

that can be interpreted as a time varying source located
at the point &=2b. Therefore, the solution (10)
describes the propagation of this source radiation

E = F(z,£)e* = Ai[_(g/z_b)2 teT, +b2}<

xexp{ii[—(t+ro +b%)(&/2-b)+
183 /12— bE? / 2+ (2b* +K2)g/2—b3]}.

This field is uniquely defined in the half-space
£>2b, Fig. 3a.

Starting from the source point the field pro-
file propagates according to the quadratic law
T+1—(&/ 2-b)* +b* =const preserving its form.
Fig. 3a illustrates the lines of propagation of the field
equal values determined by the parabola
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t+1y—&’ /4+bs=const (one of the branches for
const =0 is shown using the solid line in the figure).
The quadratic variable n is positive inside the region
bounded by the parabola and negative outside of
it. It determines that the main lobe of the Airy
envelope, corresponding to nearly zero argument of
the Airy function at the source point, comes off the
source leaving the space free of the field, Fig. 3b.
The velocity of this movement decreases with

distance, £=2/(£-2b) and time =1/ t+1,+b* ,
therefore the acceleration &=-4/(£-2b)° or

E=—(t+1y+b 2 /2 is negative. Such a slowing
motion leads to a complete stop as its velocity and
acceleration tend to zero at the infinite distance from
the source. The contours of the envelope constant
values in the time-spatial diagram are shown in Fig. 4.

\
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Fig. 3. The region of definition of the electric field
(hatched region) (@). The movement of the field
distribution given by the Airy function envelope

in (the magnitudes of this envelope is shown
on the vertical axes) (b)

20

Fig. 4. The contours of the envelope constant values

The presence of the exponent factor in (11) does
not change substantially the main feature of the tra-
jectory but adds property of interference between os-
cillatory character of the Airy function of the enve-
lope and oscillatory character of the exponent factor,
Fig. 5. It is seen here that homogeneity of the field
distribution in space and time is broken and regions of
more sophisticated field changing appear in the time-
spatial diagram of the function (11) in Fig. 5.
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A swinging character of the field oscillatory ap-
pears in the vicinity of the point £=0 and the time
moment T, =—(t0 +b2). This swinging propagates
with the infinite velocity, that is nature for equations
of parabolic kind, to other values of ¢ . It is seen very
well in Fig. 6.

w0}

-30 -20 -10 0 10 20

A

Fig. 5. The contour plot for the whole filed
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Fig. 6. The picture of interference in the neighborhood
of the moment 1,

Fig. 7 illustrates details of this interaction and
shows that such behaviour appears only due to
interference of two multipliers.

The considered Airy pulses are of little practical
importance because of their infinite energy. To over-
come this deficiency it was suggested in [2, 3] to con-
sider the exponentially decaying version at the input
of the system. Following this suggestion we consider a
different boundary condition

F(t,6=2b)=Ai[t+7, +b%]x
exp{:Fib(K2 +b7 /3)+ a7y +b7))

for obtaining the pulse with finite energy. To solve
the equation (2) with the boundary condition (12) we
represent the solution as the Fourier transform

F(1,£)= 2i j dve™ F(v,g) .

T
—»

12)

(13)
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Fig. 7. A swinging character of the field oscillatory:
the exponent multiplier (left) and the Airy function (right)
are on the top; their product is on the bottom

The equation for this Fourier transform follows
from (2)
:Fi28§F(v,§) ~(vV2=x})F(v,e)=0
and has the solution satisfying the condition (12)
F(v,e)= exp[iv(ro +bA)Fib )3+

V(8 /2-b)Fix% /2 +i(v+ia) /3]

Applying the Fourier transform (13) we obtain
finally the electric field of the pulse

E(v,)= Aift+1y+ b —(&/2-b)* Fi2a(& / 2-b)]
xexpi{ib(K2 —b*/3)+x3(E/2-b)+2io(E /2-b)* £
2A&/2-b) /3F(8/2-bxia)(t+1y +b) T
o’ (&/2-b)}

Introduction of the exponentially decaying blurs
the lines of constant field values but preserve the main
features of the phenomenon.

It is seen in Fig. 8, where influence of the param-
eter o is shown for two values of the parameter «
which characterises spatial changing of the field.

Fig. 8 shows also influence of the parameter «
on the solution of the equation considered. Indeed,
the value of this parameter is crucial for correctness

of the paraxial approximation |F§é| / |2i|<Fg | <<1.Asit

(14)

(15)

(16)

seen in Fig. 9 the correctness of the paraxial approxi-
mation is valid for « =25 and greater.

CONCLUSION

In conclusion, we derived the time dependent
electromagnetic Airy pulses that satisfy the ‘parax-
ial’ equation similar to the Schrodinger equation in
which the time and space variables interchange their
roles. The solution to the electromagnetic equation
is the Airy pulse which propagates with deceleration
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along its trajectory and stops at the infinite distance
from the source. The realistic situation when an ini-
tial wave has a finite energy is considered also and it
is shown that the main features of the phenomenon
are preserved. Dependence of the derived Airy pulses
on the phenomenon parameters is investigated in de-
tails.
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Fig. 8. The contour plots for the whole filed for a.=0
(left) and oo =0.035 (right)
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Fig. 9. Correctness of the paraxial approximation
versus the parameter « : from top
to bottom k =5, 15, 25, 50
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Hepyx Anekcanap I'eoprueBud, 10K-
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3aBeAylOlInil  Kadeapoil  BbICHICH
MaTeMaTuKK  XapbKOBCKOTO  Ha-
LIMOHAJIBHOTO YHMBEPCUTETA Paauo-
3JeKTpOHUKKU. O0JacTh HAyYHBIX
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BibHOIOTECA / O.I'. Hepyx, [.0. 3onorapes, /1.0 Hepyx
// IlpuxiiagHa pamioeneKTpoHiKa: HayK.-TeXH. XypHas. —
2012. Tom 11. Ne 1. — C. 77-81.

¥ crarTi noka3aHo iCHyBaHHS €JIeKTPOMAarHiTHUX iM-
nynbciB Elipi y gacoBiit o6macTi. IMITy/IbcH 3aI0BOJIBHSI-
I0Th PiBHSIHHIO, 1110 TIoniOHe piBHsiHHIO Llpeninrepa, ane
B SIKOMY YacoBa Ta IMPOCTOPOBAa KOOPIAUHATH I'PalOTh MPO-
TWJIEXHI poJjii. IMITyJIbC TEHEePYETHCS KEPESIOM, SIKe 3Mi-
HIOETHCS B yaci sik pyHkitist Eitpi, Ta po3MOBCIOIKYETHCS B
BaKyyMi, 30epiratoun cBowo (hopMy Ta BeJIMUUHY. IMITysIbC
PYXa€ThCS 32 KBAAPATUYHUM 3aKOHOM 3i IIBUAKICTIO, 1110
3MIHIOETHCS Bifl HECKIHYEHHOCTI B TOYIIi [EKepesa 10 HyJIs
Ha HeCKiHYeHHOCTi. JleTasibHO BUBYEHI BIIACTUBOCTI TAKUX
IMITYJTbCIB.

Karouoei cnoea: immrynbe Efipi, mapakciaabHe HaOmm-
JKEHHSI, PO3IMTOBCIO/IKEHHS, 1110 YITOBITbHIOETHCS
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B cTaTbe mokaszaHo CylecTBOBaHUE JIEKTPOMArHUT-
HBIX UMIYJIbCOB DPU BO BpeMeHHOM obsacTu. UMmyib-
Cbl YJIOBJIETBOPSIIOT YPABHEHUIO, TOTOOHOMY YPaBHEHUIO
lpenuHrepa, HO B KOTOPOM BpEeMEHHasi W MPOCTPaH-
CTBEHHAasl KOOPJMHATHI UTPAIOT TPOTUBOIOJIOKHBIE POJIU.
Mnynbe reHepupyeTcsl UCTOYHUKOM, W3MEHSIONIMMCS
BO BpeMEHM KakK (PyHKIUSI DUPU, U pacIipoCTpaHsIeTcs B
BaKyyMe, cOXpaHsisi cBoio ¢hopMmy M BeJuuuHy. MMmyibe
JIBUTAETCSI COMJIACHO KBAaIpaTMYHOMY 3aKOHY CO CKOPO-
CTbIO, U3MEHSIIONIIENCSl OT OECKOHEYHOCTHU B TOUKE UCTOYU-
HMKa 710 HYJIs1 HA 0eCKOHEUYHOCTH. JleTaibHO UcCeIOBaHbI
CBOICTBA TAKMX UMITYJIbCOB.

Karouegvie cnosa: umiyiabc DipH, MnapakcuaibHOe
MpUOIMXKEHNE, 3aMeUISIIoNIeecs] paclipOCTpaHEHUE.
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