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STOCHASTIC ANALYSIS WITH THE GAMMA MEASURE -
MOVING A DENSE SET
UDC 519.21

D. HAGEDORN

ABSTRACT. The Gamma measure corresponds to a measure on a marked configuration space with an
infinite measure on the marks. We construct Dirichlet forms for the movement of marks and positions.
These include the movement of the support, which is a dense set in R¢, d € N. The key ingredient
is a recently discovered integration by parts formula for the directional derivative w.r.t. the positions
(ctf. [4]). We briefly introduce the geometry and then concentrate on the construction of the Dirichlet
forms.

Anorauisa. 'amma mipa Bignosigae mipi Ha npocropi BigMivenunx koudirypariii 3 HeCKiHYEHHOH Mi-
PpOI0, 30CepeJi’KeHor0 Ha MiTKax. Mu Oyayemo dopmvn [lipixme pas pyxiB miTok i mosumiit. Jlo mux
BiHOCSTECST PyXu HOCIst, sKu# € CKpizb minbpuon Muokuaol B RY, d € N. Kio4uoBoo CKIaI0BOI0 €
HEIOIaBHO OTPUMAaHa (pOpMYJIa iHTErpyBAHHS YACTHHAMMA JJIsT TIOXITHOT 1O HAMPSIMKY BiJHOCHO TTO3MILIT
(mumB. [4]). Mu KOPOTKO HpecTaBEMO reoMeTpiio, a noriM 30cepeanumoch Ha 1o0yaosi dopm Jlipixie.

AnHOTAIIMA. [amMma Mepa COOTBETCTBYET Mepe Ha MPOCTPAHCTBE OTMEYeHHbIX KOHMburypanuii ¢ Oe-
CKOHEYHOW Mepoit, cocpenoTodenHoll Ha MeTkax. Mbl ctponm (opmbr JInpuxiie s JBUXKEHUS MeTOK
u no3unuii. K HUM OTHOCSATCS JBUXKEHUs] HOCUTENsl, KOTOPbIH, KAK IIPABUIIO, SIBISETCS BCIOAY ILIO-
BV MHOKecTBOM B RY, d € N. Kiroueroif COCTaRISIONMEH HANIMX KOHCTPYKIINH SIBISETCS HEJaBHO
BBIBEJIEHHAsT (DOPMY/Ia MHTErPUPOBAHUS 110 YACTAM /sl IIPOU3BOAHON 110 HAIPABJIEHUIO) OTHOCUTE b
Ho no3urmn (cM. [4]). MBI KpaTKo TPeACTaBAM T€OMETPHUIO, & TIOTOM COCPEAOTOUNMCST HA MOCTPOCHUH
dbopm Tupuxme.

1. INTRODUCTION

A Gamma measure can be considered as a measure on a “marked configuration space
with an infinite measure on the marks”. To my knowledge only Dirichlet forms moving
the marks and positions were considered for marked configuration spaces with finite
measure on the marks.

In this article we concentrate on the Dirichlet forms which we can construct for a
Gamma measure. It is supported by the cone of positive, locally finite discrete measures,
which are of the form

n= Z S04

zeT(n)

Here, 7(n) € RY, d € N fixed, denotes the support of 7, which is typically dense in R.
Moreover, s, € Ry := (0,00) and d, is the Dirac measure at z € R?. We refer to the
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points & € 7(n) of the support of each finite discrete measure 7 as positions and to the
S as marks.

In [4] a proper geometry on the cone of positive finite discrete measures is introduced
and the existence of an integration by parts rule is shown. Here, we only briefly introduce
the directional derivatives, gradients and tangent spaces involved and state the integra-
tion by parts formula. Regarding the Dirichlet forms we are more detailed. For further
applications we refer to [4].

Projecting the associated stochastic process to the support, we get a stochastic process
moving a dense set: If we consider a compact subset of the support, we encounter typically
infinitely many points lying dense in this set. For the other mentioned Dirichlet forms
the number of points in each compact set of the support is a finite number.

The difference to e.g. [1] is that we obtain some Dirichlet forms without using a quasi-
invariance formula. Although in [4] we also obtain an integration by parts formula for the
directional derivative w.r.t. the marks via the quasi-invariance, this is not possible for the
one w.r.t. the movement of the positions. Nevertheless, we have deduced an integration
by parts formula for this directional derivative.

We first of all calculate for each gradient its adjoint and then produce the correspond-
ing Dirichlet forms, to which correspond to stochastic processes on the cone.

2. GAMMA MEASURE

Let (R?, B(R%),m) denote the measure space of R?, d € N fixed, with the Borel o-
algebra B(R?) and the Lebesgue measure m. Let R be equipped with B(R,) being the
trace Borel o-algebra B(R) N R..

The cone of positive finite real discrete measures is defined as

K = {77 = Zziém

Zi €R+,xi GIR,d, Vi,7€Nuz; #xj

whenever i # j and YA € B.(RY) : n(A) < oo}, (2.1)

where B.(R?) denotes the collection of measurable sets lying in a compact set in R
Definition 2.1. A Levy measure A is a measure on (R, B(R4)) satisfying A\((1, 00)) <
00, fol 2d\(z) < oo and A((0,00)) = cc.

Definition 2.2 (cf. [7, Definition 2.1]). A Levy process on the space (X, m) with Levy
measure X on Ry is a Poisson process on K, which law Py has Laplace transform

Ep, [exp (—(a,-))] = exp (— / (1 - e @) dx(z) dm<x>> ,

+><]Rd

where (a,n) := [, a(z)dn(z) and a: R? — R is a compactly supported, bounded, non-
negative Borel function.

Definition 2.3 (Gamma measure). A Gamma process with shape parameter § > 0 is
the Levy process defined by the Levy measure

dho(t) =0t e tdt Wt > 0.
Its law Gy, given by the Laplace transform

Eg, [exp (=(a,-))] = exp (—9 log(1+ a(w))dm(x)> 7 (2.2)

is called Gamma measure where a: R? — R is such that log(1 + a(+)) € L*(R?, m).

Rd

In [8] the Gamma measures are discussed in the context of representation theory of
groups. A constructive approach is presented in [7, Definition 2.2], where R¢ is replaced
by [0,1].
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Quasi-invariance of Gp. Fix 6 > 0 and set
M= {f € C’b(Rd)‘ f is supported by a compact set} (2.3)

Definition 2.4 (cf. [7, Chapter 3]). For each h € M we define the multiplicator
M,: K — K
n o ehpi= D wer(n) M@ 5,6,
That is (Myn)(z) = e"®)n(x).

This multiplicator changes the weights of the discrete measure n € K at a point
z € 7(n) depending on that point. ILe., in our interpretation the mark of a particle is
changed.

Theorem 2.5 (see [4] and cf. [7, Theorem 3.1)). For each h € M, the Gamma measure
Gy is quasi-invariant under My, and the corresponding density is given by

d(];[igega)(n) = exp (—G/Rd h(z) m(dw)) exp (— /]Rd (e*h(w) — 1) d77(»®)> .

3. DIFFERENTIAL GEOMETRY

After introducing a gradient w.r.t. the movement of the marks and one w.r.t. changing
the positions, we merge them to obtain one acting on both components. The results of
this section are explained in more detail in [4, 3].

3.1. Gradient w.r.t. the motion of marks. If no confusion is possible we denote
without any further remarks by F' that cylindrical function F € FCL (K, M) given by

Fn) =gr((p1;n), - (on,m), (3.1)

where gp € CH(RY), n€ K and fori =1,...,N, N € N and p; € M.

We note that the transformation My, ¢ € R and h € M, only changes the marks
of the discrete measure 7. Thus the related directional derivative is a property of the
marks.

Definition 3.1. The directional derivative of a function F' : K — R in direction h € M
is defined as

d
V{Q,hF(n):: EF(Mth(U)) )
t=0

whenever the expression on the right-hand side exists.
We set the tangent space to K at n € K as
Tr, 5 = L*(R%, 7).
Definition 3.2. We define the gradient V]{{Jr of a function F': K — R by
Vi, F: K—>TK
n— (Vi,F)(n) €Tk,
whenever the directional derivative of F' in each direction h € M exists and

VE L F(n) = <V{§+F(n),h> = (VEER@) forallhe M.  (32)

Rym
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Lemma 3.3. For each F € FC}(K, M) the gradient is well-defined (and independent
of the representation of F):

N
(VE F)0) =Y 0igr((pr,m)s - (o m))pis
i=1

where 0;gr denotes the partial derivative w.r.t. the i-th component of gp.

3.2. Gradient w.r.t. the change of the positions. Let V5(R?) denote the set of all
C>=-vector fields on R? with compact support. For any z € R?, v € V;(R?) the curve
R >t ¢} (x) € R? is defined as the solution to the following Cauchy problem

Lov(x) = (¢} (x))
gy(zr) =ua

We fix v € Vp(R?). Having the group ¢?, ¢ € R, we can consider for any € K the curve
R>t—¢y(n) € K.

Definition 3.4. For a function F' : K — R we define the directional derivative along

the vector field v € Vo(RY) as

d x
(Via o ) () := 2 F (67" n) li=o,

provided the right-hand side exists. Here, * means that we take the image measure.

Definition 3.5. We define the tangent space T]ég , o the cone K at the positive dis-
crete measure 17 € K to be the Hilbert space of measurable n-square integrable sections
(measurable vector fields) V;, : R? — R? with the scalar product

ViV = [ 0@ Vi @hsente),
where an, Vn2 € TRKd "

Definition 3.6. Let the function F' : K — R fulfill that for all v € V(R?) the directional
derivative V{{d I exists. The intrinsic gradient of such a function ' : K — R is defined

as the mapping K 3 1+ (VE,F)(n) € T,K such that for any v € Vo (R?)
(Vi o F) () = ((VEF) (1), v) 1 E (3.3)
The intrinsic gradient VD@ is defined for all those functions for which the above holds.

3.3. Gradient on the cone. After having defined the gradient w.r.t. the motion of the
marks and the one w.r.t. the change of positions, we glue the pieces together.

Definition 3.7. Let h € M and v € V,(R?), then the directional derivative of a function
F: K — R at the point n € K is defined to be

(Vi E)(0) = (VE,_n F) (1) + (Viga , F) (n)
and the gradient as
V= (VE,, Vi),

whenever the objects exist.

Furthermore, we set the tangent space of K at n € K to be
T,K =Ty, , & T . (3.4)

Lemma 3.8. For each F € FCL(K,C§(R?)) the gradient VE exists.
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4. DIRICHLET FORMS

Our aim is to define some Dirichlet forms on the cone K of positive discrete measures
over R?. In the framework of [5] the case of a finite measure on the marks is treated.
Translating our task to that framework requires an infinite measure on the marks. Al-
though we lack a quasi-invariance formula on the space of points, we obtain a Dirichlet
form on the cone K. The Dirichlet form approach (cf. e.g. [2], [6]) is used to obtain the
Dirichlet forms, i.e., we define a bilinear form, whose closure is a Dirichlet form.

4.1. Integration by parts formula.

Theorem 4.1 (see [4]). For each h € M, v € Vo(R?) and n € K we define the following
logarithmic derivative

(B9 (n), (b, 0))m, K =(Ba(n), W)z + (B (), v) e

Ry, rd n

== 0fnm) + () + [ @i vl

We obtain for all F, G € FC(K,Cg°(RY)), allh € M and allv € Vo(R?) an integration
by parts formula, i.e.,

/vhv 7)Ga (dn) = /F )V, G(n)Ga (dn)
/K F(n)G() (% (1), (hy )z, 1:Go ().

Definition 4.2. A function V : K — R is called a differentiable cylindrical vector field,
iff it is of the following form

N N
)= (Z 9i(n) i, Z hi(n)vz)

where for i = 1,..., N g;,h; € FC°(K,C*(R?)), ¢; € M and v; € Vo(R?). B chl we
denote the set of them. Moreover,

N

N
Ve, ==Y gi(m¢; and  Vga =Y hi(n)v
=1

i=1

The gradient of a function F' € FC° (K, C§°(R?)) is exactly of that form, i.e., VEF €
Vcly(l Before we derive a formula for the adjoint of such vector fields, we have to check

that the following integrals are finite. This ensures that the adjoint of the gradient can
be well-defined.

Lemma 4.3. Let V1, V5 € Vf;l, then

[ @) Vo, i Goti) < o (4.1)

Proof. The differentiable cylindrical vector fields are bounded and finitely supported.
Thus the integral is finite because the moments of the Gamma measure Gy exist and are
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finite: We know that there exist A € B.(R%) and C,C > 0 such that

[ i Valmh, i Golan) = / (Vi(n), Va (1), xc Go. ()
K K(A)

IS
X_:/K(A)/d)l )8;(x) + (vi; vj)ga n(dx)Go,a (dn)

c (Ia,m) Goa(dn) < co. O
K(A)

HMZ

IN

Theorem 4.4. Fiz

N N
= (Z gi(n)@,zhi(n)vi) eVE
i=1 i=1
Then we have for all F € FC°(K,C§(RY)) that

| (KB V), Gotan) = [ F o) ((75)7 V) ()Gt
K K

N
= [ PO (VE o)+ (Vb Gol (42)

+ | P (20 Ve )|+ (55500, Vs iy, ) Gl

Proof. This follows by the definition of the tangent space (cf. (3.4)) and using Theo-
rem 4.1 twice (once for h = 0 and once for v being the identity). The finiteness of the
involved integrals follows by Lemma 4.3.

In detail, we see that

[ ATEE) 0.V )y, Gt
= / <(V§5+F) (n),VR+(n)>TK Go(dn) + / ((VE.F) (n),VRd(n»TIZ Go(dn)
K K Rd,n

Ry ,m

N
Z/KF(U) <—Z<Vn§+gu¢i>ﬂ + (825 (n )7VR+(77)>TD§M> Go(dn)

i=1 Rpom

+/I'( ( Z<deh’“vZ>TK . mt ) VRd( )>TD‘§1,n> ga(dn)
~ [ F) ((VK)*’% V) (n)Gad(dn).
K

where we used the definition of the adjoint in the last line. O

4.2. Extrinsic Dirichlet form. We define for F,G € FC} (K, M)

e (R.G) = [ (VEFOLVEGO), Goldn).

Ry,m

It is well-defined by Lemma 4.3.
Proposition 4.5. We have for F,G € FCZ(K, M) that

£9(F,G) = / (L%, F)(n)C()Go ().



STOCHASTIC ANALYSIS WITH THE GAMMA MEASURE 137

Here,

(LZ, F)(n Z ulPs pr)TI |+ B (Vi F(n),m)
l,k=1

where for 1 <1,k <N
gik(n) == Aokg((p1,m), ..., (pn,m)) Vn€ K.

Proof. This follows by Theorem 4.4. Namely, for an arbitrary cylindrical function F(n) =
gr({p1,m), ..., {pn,n)) € FCZ(K, M) we choose for i =1,...,N ¢; = p; and

9i(n) = 0igr(({p1,m): -, (PN 1)) (4.3)
Moreover, the generator is independent of the representation of F' (cf. [3, Section 6.2]).
O

Proposition 4.6. (5%, FCZ(K, M)) is a closable, symmetric positive definite bilinear
form.

Proof. Since FCp°(K, M) is a dense linear subspace of L?(K,Gp) (cf. [3, Subsection
6.2.1]), the bilinear form is densely defined. Obviously &g, is a symmetric bilinear form.
We prove the positive definiteness: For F' € FCZ(K, M) it holds that (using (4.3))

N
£9%,(F,F) = / / S 3" e (e @)pan(do)Go(dn)

k=11=1

B /K /Rd (; 3kF(77)Pk(SE)> n(dz)Ge (dn),

which is positive, because n € K. By [6, Proposition 1.3.3] follows the rest of the
claim. 0

(4.4)

(599 D(ggs

28, D(EZL)) we denote the closure w.r.t.

EE L= (Ve g + LY

Theorem 4.7. (£99,D(E9,)) is a conservative Dirichlet form.

ext’

Proof. Let p. € Cg°(R) such that

(1) pe: R — [~&,1+¢] and p_ < 1,

(2) polt) =t ¥t e [0,1],

(3) Vt1 > tar pe(t1) < pe(t2).
Then |p-(t)] < |pL(#)||t| < |t|. For any F € FCZ(K, M) we have that p. o F € D(ngt)
and we see using (4.4) that

hmsup(‘!eg)ft(pE oF,p.oF) < &Y%

ext

(F,F).

e—0
Hence, by [6, Proposition 1.4.10], the closure is a Dirichlet form. That it is conservative
is obvious. O

4.3. Intrinsic Dirichlet form. We define for F,G € FC?(K,C2(R%)) the gradient
bilinear form

EP (F,G) = / (VEF (), VEG0)) e Goldn) (45)
K

rd p

By Lemma 4.3 it is well-defined.
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Proposition 4.8. For F € FCZ(K,C2(R%)) we set using its standard representation

N
L9 F)m=— 3" gi;(n) / (VR pu(), V* p; (2)gadn(z)

i.j=1 ke

N d
+>an) [ A @i

where VR is the gradient in R¢ and AR denotes the Laplace operator on R%. Then we
have for all F,G € FC%(K,CZ(R%))

ERR.C) = [ (L5 P)a)CGa(dn) (16)
and 551} 1s a well-defined, positive definite, symmetric bilinear form. Moreover, it is
closable.

Proof. For the proof we use Theorem 4.1 and that divR VR = AR?.

£ (F.6) = [ (VEF0).VECm) s Gotdn) = [ (L% FY)Gn)G(d).
K o K

This implies the symmetry, bilinearity and the generator form of the form. We see its
positive definiteness by

ERPF)= [ (VEF@).TEF@)rg Gotdn > 0.

>0

The closability now follows by [6, Proposition 1.3.3]. |

By (£, D(ERY)) we denote its closure w.r.t.

int ? int
K . g
gint,l C <°7 °>L2(K,ge) + ginet'

Theorem 4.9. The closure (£9%, D(EY°

nt? int

)) 4s a Dirichlet form.

Proof. Using p. as in the proof of Theorem 4.7 we see

E54(p: 0 Fupe o F) = [ (VEi(pe o F)0). V(o o P}y, Golan)

N
= [ 3 apeogr)lmprd. (. on )0, 0 0 ) (i) (o)

ij=1

x / (% i), VE* pj (@) () Go (dn)
Rd

N
ij=1

x / (V" pi(), V& o () (d) Go ()
Rd

S ggﬂ

int

(F, F)

Thus by [6, Propositions 1.4.7 and 1.4.10] the bilinear form is a Dirichlet form. (]
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4.4. Dirichlet form. We define for F,G € FCZ(K, C3(R?))

£9(F,G) = / (VEF,VEG)1, 1cGo(dn).
K
It is well-defined by Lemma 4.3.

Corollary 4.10. We have for F,G € FC?(K,C3(R?)) that

£9(F,G) = / F(n)(L9 G)(1)Ge(dn),

K
where
(L9 G)(n) := (L, G)(n) + (L7, G) ()
Proof. This follows by Theorem 4.4 and by Propositions 4.5 and 4.8. (]

Proposition 4.11. (£9¢, FCZ(K, M) is a closable, symmetric positive definite bilinear
form.

Proof. This follows by (3.4), Proposition 4.6 and Proposition 4.8. |
We denote its closure w.r.t.
5199 = <.7 ‘>L2(K,gg) + 599

by (£9¢,D(£99)). In general this closure does not have to coincide with the ones corre-
sponding to the Dirichlet forms £%%, and £9¢

ext int*

Theorem 4.12. (£9¢,D(E£9)) is a conservative Dirichlet form.
Proof. This follows by the arguments used to prove Theorems 4.7 and 4.9. (]

Remark 4.13. In addition one can show the quasi-regularity of the Dirichlet forms and
obtain an associated Markov process with “nice” path properties.

All the presented results hold for the more general setting of R? being replaced by an
arbitrary connected, separable orientated C'*°-Riemannian manifold X with the volume
element v and the intensity measure being m(dz) = p(z)v(dx), where p2 € HIIO’S(X, v).

These result are presented in [3], whose publication is under preparation.
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