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STORAGE IMPULSIVE PROCESSES ON INCREASING TIME
INTERVALS
UDC 519.21
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ABSTRACT. The Storage Impulsive Process (SIP) S(¢) is a sum of (jointly independent) random vari-
ables defined on the embedded Markov chain of a homogeneous Markov process.

The SIP is considered in the series scheme on increasing time intervals t/e, with a small parameter
e — 0, ¢ > 0. The SIP is investigated in the average and diffusion approximation scheme. The large
deviation problem is considered under corresponding scaling with an asymptotically small diffusion.
Anotauis. Immynbcui nponecu makonmuenns (IITH) 3agarorscs cymamu (He3aI€KHUMEH B CyKYyIIHO-
CTi) BUIIAIKOBUX BEJIMYMH, BU3HAYEHUX HA BKJIAJEHOMY JAHIIOry MapKoBa 0JHOPIIHOTO MapKOBCEKOTO
porecy.

IITH posruisigaroreest y cxemi cepiil Ha 3pocTardnx iHTEpBasax dacy t/e, 3 MajiuM napamerpom cepii
e — 0, e > 0. IITH pocnimKyroTecs y cxemMax ycepenaHeHHs Ta audysiiinol anpokcumarii. [Ipobiaema
BEJIMKUX BiJIXWUJIEHb PO3IJIsSJA€ThCs DU BiJNOBIHOMY HOPMYBAHHI 3 aCUMITOTHYHO MaJIO0 audy3iero.

AnHOTAIMA. VMmynbcuble nporeccsl Hakomtenus (VITH) 3agatorcs cymmaMu (He3aBHCHMBIME B CO-
BOKYIIHOCTH) CJIy9alHBIX BEJHMYHH, OIDEJEJEHHBIX HA BJIOXKEHHOH memu MapkoBa OJHOPOJHOTO Map-
KOBCKOTO IPOIIeCCa.

WITH paccmarpuBaroTcsi B CXxeMe Cepuil Ha BO3DACTAIOIINX MHTEPBAJIaX BPEMeHU /e, C MaJbIM Ma-
pamerpoMm cepun € — 0, ¢ > 0. UIIH uccnenyrorcsa B cxemMax yKpynHeHuss U auddy3uMOHHONR ammpo-
kcumanuu. [Ipobsema GObIIMX YKJIOHEHUN pPaCcCMaTPUBAETCS NPH COOTBETCTBYIONIEH HOPMUPOBKE C
ACHMITOTHYECKH Majoi nuddysueii.

1. INTRODUCTION

The Storage Impulsive Process (SIP) S(t) is a sum of (jointly independent) random
variables defined on the embedded Markov chain of a homogeneous Markov process

v(t)
St)=u+Y an(zy), t>0, ueR" (1)
n=1

The time homogeneous Markov process x(t), t > 0, is defined on a standard phase space
(E, ) by the generator

Qo) = ala) [ Plady)lets) ~pla)l. =€ F.
for a real valued test function p(x), x € E, with a bounded sup-norm:
le(@)| := sup |(x)].
zeE
The embedded Markov chain x,,, n > 0, is defined by

T = 2(Th), n >0,
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where the renewal moments of jumps are given by
Tnt+l = Tn + Ont1, n >0, 1o =0,
and the sojourn times 6,, 1, n > 0, are such that
P(Opyr >t |z =2) = 1@ = P(, >1).

The stochastic kernel P(z, B), x € E, B € &, defines the transition probabilities of
the embedded Markov chain

P(z,B) = P{xpt1 € B |z, = x}.
The counting process is defined by
v(t) :=max{n > 0: 7, < ¢}, t>0.
The random variables in (1) have the distribution functions
O, (dv) = P{ay(z) € dv} = P{ay(x,) € dv | x, =z}, r e FE.

The SIP may be considered as a random evolution process [1, Ch.2]. The switching
Markov process z(t), t > 0, describes a random environment.

A1l: The main assumption is the uniform ergodicity of the Markov process x(t), t > 0,
with the stationary distribution 7(B), B € &, satisfying the equation:

r(da)g(e) = gpldz), g = /E r(dz)q(z).

The stationary distribution p(B), B € &, of the embedded Markov chain z,, n > 0,
satisfies the equation

p(B) = /Ep(da:)P(a:,B), Beé&, p(E)=1.

Provided that the main assumption A1l takes place the potential operator Ry may be
given by a solution of the equation [1, Ch. 2]

QRy=RyQ=1-1, Ip(z) := /Ew(dx)ga(x).

2. SIP ON INCREASING TIME INTERVALS IN AVERAGE SCHEME.

The SIP on increasing time intervals in average scheme is considered in the series
scheme with the small parameter € — 0, € > 0, in the following scaling:

v(t/e)
SSt)=u+e > an(zn), t=0,e>0 ueR% (2)
n=1

The random evolution approach [1, Ch. 3, 5] is an effective method of asymptotic analy-
sis (2) when € — 0.
Proposition 2.1. The SIP (2) in the average scheme convergences weakly

S(t) = SO(t) = u + aot, e —0, (3)

where the average velocity is such that
ap = qa, a= / pldz)a(z), a(z) = / v P, (dv). (4)
E Rd

Proof of Proposition 2.1 is based on the random evolution approach [1, Ch. 3] by using
a solution of the singular perturbation problem [1, Ch. 5].
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Remark 2.1. For simplcity without loss of generality the proof is realized for the SIP
given on real line R, d = 1.

According to the definition of a random evolution [1, Ch. 2] we consider the two
component Markov process

SE(t), z°(t) == x(t/e), t>0. (5)

Lemma 2.1. The Markov process (5) is characterized by the generator

Eptua) == 'a(a) [ Plady) [ @,(@0)letu+evm) = ool ©)

The proof of Lemma 2.1 is a direct consequence of the definition of the generator [1,
Ch. 3].

Remark 2.2. The generator (6) may be rewritten as follows

Lfo(u,x) = 1 [Q + Qo®%] ¢(u, x), (7)

where, by definition,
Qop() := Q(x)/ Pz, dy)e(y),
E

W)= [ @oldn)fplu+e0) = p(u)]
On a test function ¢(u) being smooth enough,

%p(u) = ela(x)p’ (u) + 0% (2)p(u)]
with the negligible term:

16 () p(u
Lemma 2.2. The generator (7

Lp(u,z) = [e_lQ + QoA(x) + (55(33)} o(u, x),

)| = 0, e — 0, p(u) € C*(R).
)

admits the following asymptotic expansion:

where
A(@)p(u) = a(z)¢ (u),
and the negligible term is such that

sup [|6°(z)p(u, )| = 0, =0, p(u,-) € C*(R).
zeE

Then a solution of the singular perturbation problem [1, Ch. 5] may be used for the
truncated operator

Lip(u, x) = [e7'Q + QoA(2)] p(u, z). (8)
Lemma 2.3. The truncated operator (8) on a perturbed test function
0" (u, x) = p(u) + o1 (u, ),

admits the following asymptotic representation [1, Proposition 5.1]:

Lt (u, ) = o' (u) + 6°(x)p(u).
The negligible term may be written in explicit form:

0% () p(u) = eQuA (@) RoA(2)p ().

Az) == Ao — QoA(z),  Ag:=TIQuA(x)IL
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Conclusion 2.1. The generator (6) of the random evolution (5) admits the asymptotic
representation
LF¢®(u, ) = oy’ (u) + 0% (2)p(u) (9)
with the negligible term 6°(x)p(u).
The representation (9) implies the weak convergence (3)—(4) [1, Ch. 6] because the
limit operator

Lop(u) :=ao¢' (u),  p(u) € CH(R), (10)
defines the evolution

SO(t) = u + aot, t>0, S°0) = u.

Remark 2.3. The limit operator (10) in the Euclidean space R? has the following repre-
sentation:

d
dog'(u) == S @k (w),  @h(w) = Do) /Duy,

W= o= [ e, o) = [ wbu)
E R

3. SIP IN DIFFUSION APPROXIMATION SCHEME.

It is well known that the diffusion approximation of stochastic systems may be realized
under some additional Balance Condition (BC).
We consider two different BC for SIP, namely the total and local ones.

3.1. SIP under total balance condition. The SIP in the series scheme with the
parameter ¢ — 0, € > 0, in the diffusion approximation scheme under the Total Balance
Condition (TBC):

a(x) = / v®,(dv) =0, (11)
Rd
is considered in the following scaling:

v(t/e?)
SE(t)=u+e Z an(Tn), t>0, e>0.
n=1

Proposition 3.1. Under the TBC (11), the weak convergence
SE(t) = W, (t), e — 0,

takes place.
The limit Brownian motion process W, (t), t > 0, is defined by the variance matriz

~

C=0'c= qB,
B:/Ep(dx)B(x), B(@:/Rd vt B (dv).

Proof of Proposition 3.1. As in Section 2, we start by characterizing the coupled Markov
process.
Lemma 3.1. The Markov process

SE(t), 2°(t) ==z (t/e?), t >0,

is characterized by the generator

L p(u,z) = e2q(z) /E Pz, dy) / B (do)lp(u +ev.y) — pluz).  (12)

d
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The generator (12) may be rewritten as follows

Lfo(u,x) = e 2[Q + Qod]o(u, ), (13)
where
2 1 " £
PLp(u) = /Rd Co(dv)[p(u +ev) = p(u)] = e | 5 B(2)¢" (u) + 8" (2)p(w)| . (14)

with the negligible term 6¢(x)p(u).
Lemma 3.2. The generator (13)-
Lé(u, ) = [e7°Q + QoB(2)] ¢(u, x) + 6°(2)p(u)

with negligible term 6°(x)p(u). Here by definition

B(x)p(u) = 5 B@)¢! (u). (15)

Then the solution of singular perturbation problem [1, Ch. 5] can be used for the truncated
operator

(14) admits the asymptotic expansion

Lop(u,z) = [72Q + QuB(2)] ¢(u, z). (16)
Lemma 3.3. The truncated operator (16) on a perturbed test function
¢€(uax) = Sﬁ(u) +E2302(u,$), (17)

admits the asymptotic representation
1~
Lop™(u,z) = 509" (u) + % (@) (u).
Proof. Considering (16) and (17),
007 = [e72Q + QuB(2)] [p(u) + epa(u, z)]
= e 2Qup(u) + [Qpa(u, ) + QoB(x)p(u)] + 6°(2)p(u).
It is obvious
Qp(u) = 0.
The equation

Qs (u, ) + QuB(x)p(u) = Lop(u)
can be solved under the solvability condition [1, Ch.5]:

Loll = IQoB(2)11.
Transforming (15) gives us

~ 1~
Lop(u) = 5C¢" ()

Indeed
T 1 1/ U
Lopte) = [ wlda)ate) [ Pla.dy)B)e" )
- 20 /E p(dr) B¢ (u) = $aBe!'(u). O

Remark 3.1. The limit generator Eo in the Euclidean space R is represented as follows:

d
T q 2 :
LOQO(U') = 5 Bkr@gr(u)a
k,r=1

B = [Bpr;1 < k,r < d], Opr(u) == 82¢(u)/8uk8ur,

Biy = [E p(d2)Bir (@), Bun(z) = /]R Oty By (d).
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The proof of Proposition 3.1 is finished by using the asymptotic representation

L#¢* (u,2) = Lop(u) + 6 (@) (u), (18)
and convergence Theorem 6.3 [1, Ch.6]. The negligible term in (18) may be written in
the explicit form. 0

3.2. SIP under the Local Balance Condition (LBC). The LBC means that the
average value of jumps is such that

a ::/ p(dx)a(zx) # 0. (19)
E

The SIP in the series scheme under the LBC (19) with the parameter ¢ — 0, € > 0, is
considered in the following scaling:

v(t/e?)
Sty =u+e Z ap (zyn) — qat /e, t>0. (20)

n=1
Proposition 3.2. Under the LBC (19), the weak convergence
SE(t) = W, (t), e —0,

takes place.
The limit Brownian motion W, (t), t > 0, is defined by the variance matrix

aza*a:qg, §:§o+§17
Bo= [ panBofe).  Bale) = [ vud(a)
E R4

B = [E p(d2)Bi(z),  Bi(z) = 20" (2) Rot(x), (21)
a(x) = aolx) — a.
aol) = a(a) [ Pla.dy)a(y)
Here the potential operator Ry is defined as the solution of the equation
QRy=RyQ=11-1
1, Ch. 3].

Proof of Proposition 3.2. As in the previous section we start using the generator of the
two component Markov process.

Lemma 3.4. The two component Markov process S€(t), x°(t) = z(t/e?), t > 0, is
characterized by the generator

Eptu) = < a(a) [ Plady) [ o(@olitu+ e.9) = ol =g (. 0). (22
This generator can be written as follows
Logp(u,w) = [£72Q + Qo®3] — =71 Ao | (u, 2) (23)
with Ao (u) = oy’ (u)

B = [ @uldv)lolu +20) = ola)]

= ca(e)p!(u) + 25 Ba)g! () + 0% (@) (u).
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Lemma 3.5. The generator (22) admits the asymptotic expansion
Lio(u,z) = |e72Q + e 'Ax) + QQB($):| o(u, ) + 0%(x)p(u, x).
Here

Note that the following balance condition
IMa(z) =0 (25)
takes place.

Now a solution of singular perturbation problem [1, Ch.5] can be used for the truncated
operator

Lip(u,z) = |e72Q + e Az) + QoB() | ¢(u, ). (26)
Lemma 3.6. The truncated operator (26) on a perturbed test function
% (u, 2) = p(u) + ep1(u, 2) + £%p2(u, )
admits the asymptotic representation
Ly (u,2) = 50" (u) + 6 (@)p(w).
Proof. Let us consider
Lo (u,2) = [2Q + e 1A (2) + QB(@)][p(u) + 1 (u, @) + 20 (u, )
=72Qp(u) + £ [Qp1 + Ax)¢] + [Qp2 + Ax)p1 + QuB(z)¢]
+ 0% (x)p(u).
We get the equations
Qp(u) =0,
Qi1 (u,7) + A)p(u) =0,
Qs (u,z) + A(z)1 (u, 7) + QuB(x)p(u) = Lop(u).

The first equation is obvious. The second equation satisfies the solvability condition (25).
Hence

¢1(u, @) = RoA(z)p(u).
Now the third equation is
Qp2 + [Bo(@) + QoB(x)| ¢(u) = Low(u), (27)

where R R R
Ag(z)p(u) := Ax) RoA(z)p(uw). (28)
The solvability condition for (27) gives

Loll = II [&O(x) + QOIB%(x)} IL.
Using (28), (24), and (15) we calculate the limit generator
- 1~
LOSO(U) = 5050”(’“'))

where the variance matrix C is represented in (21).
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Note that (see (24))

Rofa)p(u) = A(x) Roh(w)p(u) = A(x) Roii(w)¢ (u) = alx)Ro(2)¢" (u) = 3 Bu(x)" ().

Here
a(x) = ao(x) — aop. o d
4. LARGE DEVIATION IN THE SCHEME OF ASYMPTOTICALLY SMALL DIFFUSION

The SIP in the scheme of asymptotically small diffusion is considered under two dif-
ferent balance conditions, namely total and local ones.

4.1. The SIP under the total balance condition. The total balance condition means
that the mean values of jumps of SIP equal totaly zero:

a(z) = /]R 0 () = 0. (29)

The SIP in the scheme of asymptotically small diffusion is considered in the following
scaling [3]:
v(t/e%)
SEt)=u+e > an(wn), t>20,e>0, ucR” (30)
n=1

The coupled Markov process
Se(t), 2°(t) ==z (t/e%),  t>0,
is defined by the generator

Leo(u,z) = e 3q(x) /EP(x,dy) /Rd Py (dv) [p(u+*v,y) — o(u, z)]
which can be rewritten as follows

LESO(UJ’ (E) = Eig[Q + Qoq);]w(uv l’), (31)
where, by definition,

Bp() 1= [ B [ (u+220) = (] = !Bl + 5 @)l
Here
B(x)p(u) = 3 B(x)e! (u).
Hence the generator (31) admits the asymptotic expansion
Lop(u, z) = Lop(u, ) 4 6% (2)p(u, x), (32)
Lip(u,x) = [e7°Q + eQoB(2)] p(u, ).
The truncated operator (32) on a perturbed test function
¢° (u,2) = p(u) + o (u, ),
admits the asymptotic representation
L§e® (u, @) = e[Qp1 + QoB(x)p(u)] + 6% (2)p(w). (33)
The representations (32) and (33) give
L7 (u,w) = & [Coplu) + 0 (@)p(u, )
where the main part
Cp(u) = e5C¢" (1)

is the generator of a small diffusion.
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4.2. Large deviation for SIP under the total balance condition. We investigate
the large deviation problem for SIP by using the asymptotic analysis of the exponential

generator of large deviation
Hep(u, x) = e #/c[fe?/¢

[2, Part I].

(34)

Proposition 4.1. The large deviation for SIP (30) under the total balance condition (29)

is realized by the exponential generator of small diffusion

Cle' (W),

N}Ir—\

Ho(u) =

~

C= q/ p(dx)B(z), B(x) :/ v @, (dv).
E Rd
Proof of Proposition 4.1.
Lemma 4.1. The exponential generator (34) on a perturbed test function
¢ (u,2) = p(u) +en [1 + 21 (u, 7)]
admits the asymptotic representation
Ho (u,2) = Qg1 + 5QuB) ()] + 1 (z)o(u)
with the negligible term
Ih*(@)e(u)]| =0, €0, p(u) € C*(R).
Proof of Lemma 4.1. Let us calculate

Hep® = e ¥/¢ [14—5 01 5L€1+e gal]e‘P/E

= e /7 [1 = 1] e L1 + e%¢1]e?/* + h (x)p(u)

I
]

= e_“’/6 [1—e2p1] e72Q [1+£%p1] €95 + e ¥/5c2Qo @5 e¥/® + h¥ () ()
)

(35)

1 £
= Q1+ 5QoB()[p ")) + B (2)p(u). H
Now the solution of the singular perturbation problem [1, Ch.5] gives
He o™ (u, ) = Ho(u) + h°(x)p(u). (36)
The asymptotic representation (36) completes the proof of Proposition 4.1. g

Remark 4.1. The exponential generator of small diffusion (35) in the Euclidean space R?,

d > 2, is represented as follows:

Hep(u) = =" (w)Cy' (u),

2

where ¢'*(u) = (¢} (u),1 < k < d) is a vector-row, ¢'(u) = (¢} (u),1 < k < d) is a

vector-column, C' = [Clpi1<k,r<d] is the variance matrix.
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4.3. Large deviation for SIP under the local balance condition. The Local Bal-
ance Condition (LBC) means that the average value of jumps is not equal to zero:

. / p(dz)a(z) £ 0. (37)
E

The SIP under LBC (37) is considered in the following scaling:

v(t/e?)
SE(t)=u+e > an(wn) - dot/e. (38)

n=1

Lemma 4.2. The coupled Markov process S€(t), x°(t) := x(t/e3), t > 0, is determined
by the generator (compare (22))

Lptus) == a(a) [ Plasdy) [ @,(d0) [ofu+ 2v.9) = pl.2)] =g (u,2)
Or, in a different form,
Lop(u,a) = [71Q + Qo] — ¢~ Ao w(u, @),
W) = [ @) [olu+20) — o(w)].

Proposition 4.2. The large deviation for SIP (38) under the LBC (37) is realized by
the exponential generator of small diffusion

Heou) = 5Ol ()] (39)
C = Q[gl + EQ];
B — /Ep(dx)Bk(a:), k=12, (40)

The exponential generator of large deviation (39)—(40) contains two components. One
of them is the variance matrix of the second moment of jumps. The second component Bs
is defined by the fluctuation of the first moment of jumps.

Proof of Proposition 4.2. To prove the proposition we need the following lemma:

Lemma 4.3. The exponential generator (34) under the local balance condition (37) on
the perturbed test function

o (u,z) = p(u) +eln [1 + e (u, ) + %o (u, x)}
admits the asymptotic representation

Ho (u,) = 7" | Qo1 + A@)e(w)|

: (a)
+ @6 - 1001+ JQBEI W] + 1 @)et)

with the negligible term
[p°(@)p(u)]| =0, =0, p(u) € C*(R).
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Proof. Proof of Lemma 4.3 is based on the following asymptotic representations:
Hy¢% (u,z) = e~ ? /5 72Qe?™ /% = e 71 Qp1 + [Qw2 — p1Q1] + hi(z)p(uw),
HE o (u, ) = e 7/5e72Qu®@5e? /* = e QoA (x) (1) + QoA(w)pr (u, ) + he (x)e(u),
H: o (u, ) := e P/ hoe? e = e agy! (u) + he(x)p(u).
Thus, the relation
He¢(u,x) = [Hg + H, — Hglo® (u, x)
gives (41) with (see (24)—(25))
Ax)e(u) = a(x)¢ (u),
a(z) = Qoa(z) — aop. O
Now the solution of the singular perturbation problem [1, Ch. 5] may be used for the
equations _ ~
Qo1+ A(x)p(u) = 0,ITA(z) = 0;
Qp2 — ¢1Q1 + 3B ()] = Fip(u)
The first equation in (42) has the solution

(42)

p1(u, x) = Roa(z)@'(u),  Qp1 = a(x)e' (u).

Hence, the second equation in (42) may be rewritten as follows

Qs+ S [Br(x) + Ba(o)][¢ (W) = Aep(u)

2
with Ba(z) given in (40).
The solvability condition [1, Ch. 5] for the last equation gives Proposition 4.2. O
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