РОЗПОДІЛИ ВИПАДКОВИХ НЕПОВНИХ СУМ ЗНАКОДОДАТНОГО РЯДУ З НЕЛІНІЙНОЮ ВЛАСТИВІСТЮ ОДНОРІДНОСТІ

УДК 519.21

М. В. ПРАЦЬОВИТИЙ I І. О. САВЧЕНКО

Анотація. Робота присвячена встановленню лебегівського типу, тополого-метричних і фрактальних властивостей спектра розподілу випадкової величини

$$\xi = \sum_{n=1}^{\infty} a_n \xi_n,$$

де $\sum_{n=1}^{\infty}a_n=a_1+a_2+\cdots+a_n+r_n$ — збіжний знакододатний ряд, який має властивість $r_{n+1}=a_{n+1}a_n$ для всіх $n\in\mathbb{N},$ (ξ_n) — послідовність незалежних випадкових величин, які набувають значень 0 та 1 з ймовірностями p_{0n} та p_{1n} відповідно. У випадку дискретності описано точковий спектр, у випадку неперервності доведено, що розподіл є сингулярним розподілом канторівського типу з аномально фрактальним спектром. Доведено також, що n-кратна згортка розподілу випадкової величини ξ має аномально фрактальний розподіл.

ABSTRACT. In the paper, we study Lebesgue type, topological, metric and fractal properties of spectrum of distribution of random variable

$$\xi = \sum_{n=1}^{\infty} a_n \xi_n,$$

where $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_n + r_n$ is a convergent positive series having the property $r_{n+1} = a_{n+1}a_n$ for any $n \in \mathbb{N}$, (ξ_n) is a sequence of independent random variables taking the values 0 and 1 with probabilities p_{0n} and p_{1n} respectively. For discrete case, we describe the point spectrum; for continuous case, we prove that distribution is a Cantor type singular distribution with anomalously fractal spectrum. We also prove that distribution of n-fold convolution of random variable ξ is anomalously fractal.

Аннотация. Работа посвящена исследованию лебеговского типа, тополого - метрических и фрактальных свойств спектра распределения случайной величины

$$\xi = \sum_{n=1}^{\infty} a_n \xi_n,$$

где $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_n + r_n$ — сходящийся знакоположительный ряд, который облает свойством $r_{n+1} = a_{n+1}a_n$ для всех $n \in \mathbb{N}$, (ξ_n) — последовательность независимых случайных величин, которые принимают значения 0 та 1 с вероятностями p_{0n} и p_{1n} соответственно. В случае дискретности описано точечный спектр, в случае непрерывности доказано, что распределение есть сингулярным распределением канторовского типа с аномально фрактальным спектром. Доказано также, что n-кратная свертка распределения случайной величины ξ имеет аномально фрактальное распределение.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60G30, 11K55, 28A80.

Ключові слова і фрази. Згортка Бернуллі, сингулярно неперервний розподіл ймовірностей, множина неповних сум ряду, розмірність Хаусдорфа-Безиковича спектра розподілу випадкової величини.

1. Вступ

Розглядається випадкова величина

$$\xi = \sum_{n=1}^{\infty} a_n \xi_n,\tag{1}$$

де

$$r_0 = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + r_n$$
 (2)

— збіжний знакододатний ряд, для якого виконується умова однорідності:

$$r_{n+1} = a_{n+1}a_n, \quad \forall n \in \mathbb{N}, \tag{3}$$

 (ξ_n) — послідовність незалежних випадкових величин з розподілами:

$$P\{\xi_n = 0\} = p_{0n} \ge 0,$$
 $P\{\xi_n = 1\} = p_{1n} \ge 0,$ $p_{0n} + p_{1n} = 1.$

Властивості розподілу випадкової величини ξ однозначно визначаються послідовністю (a_n) членів ряду і нескінченною стохастичною матрицею $||p_{in}||$. Зазначимо, що розподіл випадкової величини ξ належить класу нескінченних згорток Бернуллі, властивості яких вивчаються майже століття. Інтерес до них в силу різних причин в останні роки значно посилився [1, 2, 6, 7, 8, 9, 12, 14, 15, 16]. Це пов'язано, зокрема, з дослідженнями їх фрактальних властивостей. В теорії нескінченних згорток Бернуллі існує ряд складних ймовірнісних проблем. Однією з таких є проблема поглиблення теореми Джессена-Вінтнера, яка стверджує лебегівську чистоту (дискретність, абсолютну неперервність, сингулярність) розподілу суми з ймовірністю одиниця збіжного випадкового ряду з незалежними дискретно розподіленими доданками, але не дає відповіді на питання: коли який? Інша стосується топологометричних та фрактальних властивостей спектра розподілу (множини точок росту функції розподілу). Третя стосується поведінки модуля характеристичної функції на нескінченності. Поки що вони не піддаються розв'язанню в загальній постановці, а тому дослідники їх вивчають в окремих класах. До одного з таких відноситься об'єкт нашого дослідження — випадкова величина (1).

З теореми Джессена—Вінтнера [3] випливає, що випадкова величина ξ має чистий лебегівський тип розподілу, тобто її функція розподілу є або чисто дискретною, або чисто абсолютно неперервною, або сингулярною (неперервною функцією, похідна якої майже скрізь рівна нулю у розумінні міри Лебега). Відома теорема П. Леві [5] разом з теоремою Джессена—Вінтнера дає необхідні і достатні умови дискретності та неперервності розподілу ξ .

2. Аналіз умов однорідності

Будемо казати, що ряд (2) володіє властивістю однорідності (по n), якщо існує ціле невід'ємне число k і функція f такі, що $r_n \vee f(a_n, a_{n-1}, a_{n-2}, \ldots, a_{n-k+1})$ для всіх натуральних $n \geq k$, де символ " \vee " означає один із знаків: ">", "<", "<", "<", "=". Дослідимо властивості ряду (2), який володіє умовою однорідності (3).

Лема 2.1. Якщо $a_1, a_2 - dodamhi$ дійсні числа, то двопараметрична послідовність

$$a_{n+2} = \frac{a_{n+1}}{1 + a_{n+1}} a_n, \qquad n = 1, 2, 3, \dots,$$
 (4)

 ϵ нескінченно малою, а відповідний їй ряд $\sum_{n=1}^{\infty} a_n - 3$ біжним.

Доведення. З рівності (4) маємо

$$q_n \equiv \frac{a_{n+2}}{a_n} = \frac{a_{n+1}}{1 + a_{n+1}} < 1.$$

Тому послідовності (a_{2n-1}) та (a_{2n}) є спадними. Більше того, оскільки $a_{n+1} > a_{n+3}$ для всіх $n \in \mathbb{N}$, то

$$q_n - q_{n+2} = \frac{a_{n+1}}{1 + a_{n+1}} - \frac{a_{n+3}}{1 + a_{n+3}} = \frac{a_{n+1} - a_{n+3}}{(1 + a_{n+1})(1 + a_{n+3})} > 0,$$

тобто, спадними є і послідовності (q_{2n-1}) та (q_{2n}) . Тоді

$$a_{2n+1} = a_1 \prod_{k=1}^{n} q_{2k-1}, \qquad a_{2n+2} = a_2 \prod_{k=1}^{n} q_{2k}.$$

I тому

$$a_{2n-1} \leq a_1q_1^{n-1} o 0$$
 і $a_{2n} \leq a_2q_2^{n-1} o 0$ при $n o \infty$.

Отже, послідовності (a_{2n-1}) та (a_{2n}) є нескінченно малими і такою є вся послідовність (a_n) . Таким чином, необхідна умова збіжності ряду виконується. Оскільки

$$\sum_{n=1}^{\infty} a_{2n-1} \le a_1 \sum_{n=1}^{\infty} q_1^{n-1} = a_1(1+a_2) \quad \text{i} \quad \sum_{n=1}^{\infty} a_{2n} \le a_2 \sum_{n=1}^{\infty} q_2^{n-1} = a_2(1+a_3),$$

то даний ряд збігається.

Теорема 2.1. Для того, щоб ряд (2) задовольняв умову однорідності (3), необхідно і достатнью, щоб для його членів виконувалась рівність (4).

Доведення. Необхідність. Якщо ряд збіжний і задовольняє умову однорідності (3), то для всіх $n \in \mathbb{N}$ має місце система

$$\begin{cases} a_{n+1}a_n = r_{n+1} = a_{n+2} + a_{n+3} + a_{n+4} + \dots, \\ a_{n+2}a_{n+1} = r_{n+2} = a_{n+3} + a_{n+4} + \dots. \end{cases}$$

Віднявши від першої рівності другу, отримаємоз

$$a_{n+1}a_n - a_{n+2}a_{n+1} = a_{n+2}, (5)$$

звідки і випливає рівність (4).

Достатність. Покажемо тепер, що з умови (4) випливає умова (3). Оскільки даний ряд збіжний (див. лему 2.1), то з рівності (4) маємо рівність (5). Врахувавши, що $a_{n+2} = r_{n+1} - r_{n+2}$, отримаємо

$$r_{n+1} - r_{n+2} = a_{n+1}a_n - a_{n+2}a_{n+1},$$

що рівносильно

$$r_{n+1} - a_{n+1}a_n = r_{n+2} - a_{n+2}a_{n+1}, \qquad n = 1, 2, 3, \dots,$$

звідки $r_{n+1}-a_{n+1}a_n=r_{n+1+l}-a_{n+1+l}a_{n+l}=\mathrm{const}$ для всіх $l\in\mathbb{N}.$ Оскільки

$$\lim_{n \to \infty} (r_{n+1} - a_{n+1}a_n) = \lim_{n \to \infty} r_{n+1} - \lim_{n \to \infty} a_{n+1}a_n = 0,$$

то

$$r_{n+1} - a_{n+1}a_n = 0 \Leftrightarrow r_{n+1} = a_{n+1}a_n \quad \forall n \in \mathbb{N}.$$

Достатність і вся теорема доведені.

Лема 2.2. Ряд (2), що задовольняє умову однорідності (3), має суму

$$r_0 = a_1 + a_2 + a_1 a_2. (6)$$

Доведення. З рівності (3) маємо рівність

$$a_1a_2 = a_3 + a_4 + a_5 + \dots$$

Додавши до обох частин рівності $a_1 + a_2$, отримаємо (6).

Лема 2.3. Для членів ряду (2), що задовольняє умову однорідності (3), мають місце рівності

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 0,$$

$$\lim_{n \to \infty} \frac{a_n}{q^n} = 0,$$
(8)

$$\lim_{n \to \infty} \frac{a_n}{q^n} = 0, \tag{8}$$

$$\lim_{n \to \infty} a_n n! = 0,\tag{9}$$

 $\partial e q - \partial o в i л b h e \, \partial i \ddot{u} c h e \, u u c n o \, s \, (0,1).$

Доведення. Врахувавши збіжність даного ряду та рівність (3), маємо

$$a_n = \frac{r_{n+1}}{a_{n+1}} = \frac{a_{n+2} + a_{n+3} + a_{n+4} + \dots}{a_{n+1}} = \sum_{m=2}^{\infty} \frac{a_{n+m}}{a_{n+1}}.$$

Останній ряд збігається при кожному $n \in \mathbb{N}$, а його сума разом з a_n прямує до нуля при $n \to \infty$, тобто

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{a_{n+2}}{a_{n+1}} + \frac{a_{n+3}}{a_{n+1}} + \frac{a_{n+4}}{a_{n+1}} + \dots \right) = 0.$$

А отже і $\lim_{n \to \infty} \frac{a_{n+m}}{a_{n+1}} = 0, \, m = 2, 3, 4, \ldots$, і рівність (7) доведено.

З рівності (7) випливає існування такого $n_0 \in \mathbb{N}$, що для довільного достатньо малого $\varepsilon>0$ і для всіх $n>n_0$ виконується нерівність $\frac{a_{n+1}}{a_n}<\varepsilon$ або $a_{n+1}<\varepsilon a_n$ Нехай $a_{m+s} < 1$ для всіх $s = 0, 1, 2, \dots$ Маємо нерівності

$$a_{m+s} < \varepsilon a_{m+s-1} < \varepsilon^2 a_{m+s-2} < \dots < \varepsilon^s a_m < \varepsilon^s$$
.

Отже, $a_{m+s}<\varepsilon^s$ або $a_n<\varepsilon^{n-m}=\frac{1}{\varepsilon^m}\varepsilon^n=c\varepsilon^n$, де s=n-m, $c={\rm const.}$ Взявши $\varepsilon < q$, отримаємо рівність (8).

З рівності (7) випливає існування такого номеру m, що для всіх $n \geq m$ має місце $a_{n+1} < a_n < 1$. Оцінимо члени ряду:

$$a_{m+2} = \frac{a_{m+1}a_m}{1 + a_{m+1}} < a_m a_{m+1} < a_m^2,$$

$$a_{m+3} = \frac{a_{m+2}a_{m+1}}{1 + a_{m+2}} < a_{m+2}a_{m+1} < a_m^2 a_{m+1} < a_m^3,$$

$$a_{m+4} = \frac{a_{m+3}a_{m+2}}{1 + a_{m+3}} < a_{m+3}a_{m+2} < a_m^3 a_m^2 = a_m^5,$$

$$a_{m+5} = \frac{a_{m+4}a_{m+3}}{1 + a_{m+4}} < a_{m+4}a_{m+3} < a_m^5 a_m^3 = a_m^8.$$

Нескладно побачити, що показники степенів u_{j+1} членів $a_m^{u_{j+1}}$, якими обмежені члени a_{m+j} , утворюють класичну послідовність Фібоначчі із загальним членом

$$u_j = \frac{1}{\sqrt{5}} \left((\varphi)^j - (\psi)^j \right) = \frac{1}{\sqrt{5}} \left(1 - \left(\frac{\psi}{\varphi} \right)^j \right) \cdot \varphi^j \to \frac{1}{\sqrt{5}} \varphi^j, \qquad j \to \infty,$$

де $\varphi = \frac{1+\sqrt{5}}{2}, \ \psi = \frac{1-\sqrt{5}}{2}.$ Отже, маємо

$$a_n = a_{m+j} < a_m^{u_{j+1}} = a_m^{u_{n-m+1}} = p^{\varphi^n},$$

де $p = a_m^{\frac{\varphi^{1-m}}{\sqrt{5}}}$ — деяке число з (0,1).

Для доведення рівності (9) достатньо показати, що $\lim_{n\to\infty}(p^{\varphi^n}\cdot n!)=0$. А це випливає з того, що $n! < n^n$ при кожному n > 2 і того, що $\lim_{n \to \infty} (p^{\varphi^n} \cdot n^n) = 0$ (більше того, ряд з членом $b_n = p^{\varphi^n} \cdot n^n$ є збіжним).

Наслідок 2.1. Для довільного $q \in (0,1)$ існує номер n_0 такий, що для всіх $n > n_0$ виконується нерівність $a_n < q^n$.

3. Критерій дискретності. Точковий спектр.

Якщо M — підмножина множини натуральних чисел \mathbb{N} , то вираз $\sum_{n\in M\subset \mathbb{N}} a_n$ називається підрядом ряду (2), а його сума x=x(M) — підсумою (неповною сумою) $p \pi \partial y$ (2). Множину всіх неповних сум ряду (2) позначатимемо через $E(a_n)$.

Лема 3.1. Якщо ряд (2) мае властивість однорідності: $r_n < a_n$ для всіх $n \in \mathbb{N}$, то для різних підмножин M_1 і M_2 множини натуральних чисел відповідні їм підсуми $x_1 = x(M_1)$ і $x_2 = x(M_2)$ теж різні.

Доведення. Нехай

$$x_1 = \sum_{n \in M_1} a_n = \sum_{n=1}^{\infty} \varepsilon_n a_n, \ x_2 = \sum_{n \in M_2} a_n = \sum_{n=1}^{\infty} \varepsilon'_n a_n.$$

Оскільки $M_1 \neq M_2$, то існує $m \in \mathbb{N}$ таке, що $\varepsilon_m \neq \varepsilon_m'$, але $\varepsilon_j = \varepsilon_j'$ при j < m. Не порушуючи загальності, вважатимемо, що $\varepsilon_m = 1, \, \varepsilon_m' = 0$. Розглянемо різницю

$$x_1 - x_2 = \varepsilon_m a_m + r_m^{(1)} - r_m^{(2)},$$

де
$$r_m^{(1)} = \varepsilon_{m+1} a_{m+1} + \varepsilon_{m+2} a_{m+2} + \dots$$
 і $r_m^{(2)} = \varepsilon'_{m+1} a_{m+1} + \varepsilon'_{m+2} a_{m+2} + \dots$

де $r_m^{(1)}=\varepsilon_{m+1}a_{m+1}+\varepsilon_{m+2}a_{m+2}+\dots$ і $r_m^{(2)}=\varepsilon_{m+1}'a_{m+1}+\varepsilon_{m+2}'a_{m+2}+\dots$ Оскільки $r_m^{(2)}\leq r_m$ і $a_m>r_m$, то $x_1-x_2=a_m+r_m^{(1)}-r_m^{(2)}\geq a_m-r_m>0$, звідки маємо $x_1\neq x_2$, що й вимагалося довести.

Лема 3.2. Для послідовності (a_n) членів ряду (2), що задовольняє умову (3), існує номер $n_0 \in \mathbb{N}$ такий, що для всіх $n \geq n_0$ виконується нерівність $a_n > r_n$.

Доведення. Розглянемо рівність $r_n=a_na_{n-1}$. Оскільки $a_n\to 0$ $n\to \infty$, то існує номер $n_0 \in \mathbb{N}$ такий, що для всіх $n \geq n_0$ виконуються нерівність $a_{n-1} < 1$, а разом з нею і нерівність $a_n > r_n$.

Теорема 3.1. Розподіл випадкової величини ξ є дискретним тоді і тільки тоді, $\kappa o \pi u$

$$L = \prod_{n=1}^{\infty} \max\{p_{0n}, p_{1n}\} > 0.$$

У випадку дискретності, якщо для ряду (3) виконується умова $a_n > r_n$ для всіх $n\in\mathbb{N}$, то точковий спектр D_{ξ} складаеться з точки x_0 такої, що

$$x_0 = \sum_{n=1}^{\infty} c_n a_n, \quad \partial e \ p_{c_n n} = \max\{p_{0n}, p_{1n}\} \equiv p_n^*,$$
 (10)

і всіх точок х таких, що

$$x = \sum_{n=1}^{m} \varepsilon_n a_n + \sum_{n=m+1}^{\infty} c_n a_n, \tag{11}$$

 $\partial e \ \varepsilon_n \in \{0,1\}, \ p_{\varepsilon_n n} \neq 0 \ npu \ n \leq m.$

Доведення. Перша частина твердження безпосередньо випливає з теорем Джессена-Вінтнера [3] і П. Леві [5]. Доведемо другу частину твердження.

Нехай розподіл випадкової величини ξ є дискретним, тобто L>0. Ця умова означає, що послідовність $p_n^* = \max\{p_{0n}, p_{1n}\}$ швидко збігається до 1. Тому існує таке $l \in \mathbb{N}$, що $p_n^* > \frac{1}{2}$ для всіх n > l.

Зауважимо, що точка x_0 умовою (10) може визначатися неоднозначно. Це буде тоді, коли $p_{0n} = \frac{1}{2} = p_{1n}$. В таких випадках беремо $c_n = 0$.

Із—за однозначності (яка є наслідком умови $r_n < a_n$ і леми 3.1) представлення елемента множини неповних сум ряду (2) з умовою однорідності (3) маємо

$$P\left\{\xi = \sum_{n=1}^{\infty} c_n a_n\right\} = \prod_{n=1}^{\infty} p_{c_n n} = L > 0,$$

тобто $x_0 \in D_{\xi}$.

Нехай $A_0=\{x_0\}$, а A_m — множина всіх точок x виду (11), $m=1,2,3,\ldots$ Тоді очевидно, що і для всіх $m\in Z_0$ маємо $A_m\subset A_{m+1}$.

Оскільки

$$\mathsf{P}\{\xi \in A_m\} = \left(\prod_{n=m+1}^{\infty} p_{c_n n}\right) \cdot \sum_{\varepsilon_1 = 0}^{1} \cdots \sum_{\varepsilon_m = 0}^{1} \prod_{j=1}^{m} p_{\varepsilon_j j} = \prod_{n=m+1}^{\infty} p_{c_n n} \to 1, \qquad m \to \infty,$$

TC

$$\lim_{m \to \infty} A_m = \bigcup_{m=0}^{\infty} A_m = D_{\xi},$$

що й вимагалося довести.

Зауваження 3.1. Якщо для ряду (2), що задовольняє властивість однорідності (3), умова $x_1(M_1) \neq x_2(M_2)$ при $M_1 \neq M_2$ не виконується, тобто інують $M_1 \neq M_2$ такі, що $x_1(M_1) = x_2(M_2)$, то згідно з двома попереніми лемами, існує n_0 таке, що вона виконується для підряду $\sum_{n=n_0+1}^{\infty} a_n$. Тоді точковий спектр D_{ξ} є арифметичною (векторною) сумою точкових спектрів $D_{\hat{\xi}^{(1)}}$ і $D_{\hat{\xi}^{(2)}}$ випадкових величин

$$\hat{\xi}^{(1)} = \sum_{n=1}^{n_0} \xi_n a_n$$
 i $\hat{\xi}^{(2)} = \sum_{n=n_0+1}^{\infty} \xi_n a_n$

відповідно. При цьому множина $D_{\hat{\xi}^{(2)}}$ визначається теоремою 3.1, а

$$D_{\hat{\xi}^{(1)}} = \left\{ x \colon x = \sum_{n=1}^{n_0} \varepsilon_n a_n, \text{ де } p_{\varepsilon_n n} \neq 0 \right\}.$$

Зазначимо, що попередня теорема і щойно зроблене зауваження вичерпно описують точковий спектр розподілу випадкової величини ξ .

4. Тополого-метричні властивості спектра розподілу випадкової величини $\boldsymbol{\xi}$

Нагадаємо [14], що спектром S_{ξ} розподілу випадкової величини ξ називають множину точок росту її функції розподілу $F_{\xi}(x)$ (рівносильно: мінімальний замкнений носій), тобто

$$S_{\varepsilon} = \{x \colon F_{\varepsilon}(x+\varepsilon) - F_{\varepsilon}(x-\varepsilon) = \mathsf{P}\{\xi \in (x-\varepsilon; x+\varepsilon)\} > 0, \forall \varepsilon > 0\}.$$

Лема 4.1. Якщо $p_{in} > 0$ для всіх $i \in \{0,1\}$ та всіх $n \in \mathbb{N}$, то спектром S_{ξ} розподілу випадкової величини ξ є множина $E(a_n)$ всіх підсум (неповних сум) ряду (2), тобто

$$S_{\xi} = E(a_n) \equiv \left\{ x \colon x = \sum_{n \in \mathbb{N}} a_n, \ M \in 2^{\mathbb{N}} \right\}.$$

Доведення. Дане твердження випливає безпосереднью з означень спектра розподілу і того, що кожну неповну суму ряду можна записати у вигляді

$$x(M) = \sum_{n=1}^{\infty} a_n \varepsilon_n, \quad \text{де } \varepsilon_n = \begin{cases} 1, & \text{якщо } n \in M, \\ 0, & \text{якщо } n \notin M, \end{cases}$$

а також властивостей множини всіх неповних сум ряду, яка ϵ досконалою (замкненою множиною без ізольованих точок) [4].

Наслідок 4.1. Для спектра S_{ξ} розподілу випадкової величини ξ має місце включення $S_{\xi} \subset E(a_n)$.

З метою вивчення спектральних властивостей розподілу випадкової величини ξ проведемо дослідження тополого-метричних і фрактальних властивостей множини неповних сум $E(a_n)$ ряду (2) з умовою однорідності (3).

Для ряду (2), у якого $a_n \geq a_{n+1}$ для всіх $n \in \mathbb{N}$, відомо, що коли виконується умова $r_n \geq a_n$ для всіх $n \in \mathbb{N}$, то множина його неповних сум є відрізком $[0, r_0]$ [4]. Якщо $r_n \geq a_n$ для всіх достатньо великих n, то множина є скінченним об'єднанням відрізків. Якщо $r_n < a_n$ для всіх достатньо великих n, то множина неповних сум є ніде не щільною [4, 14]. Менш дослідженим є випадок, коли нерівності $a_n \leq r_n$ і $a_n > r_n$ виконуються для нескінченної кількості n. У такому разі множина неповних сум ряду може бути як ніде не щільною, так і може містити цілі відрізки. Тополого-метричні властивості множин неповних сум суттєво залежать від швидкості збіжності ряду. На сьогодні авторам невідомі необхідні і достатні умови її нуль-мірності (у розумінні міри Лебега). Ще менш досліджено фрактальні властивості множини неповних сум, хоча для деяких класів рядів це зроблено в [7, 11, 12, 14, 16].

Нагадаємо означення α -міри Хаусдорфа і розмірності Хаусдорфа-Безиковича множини $E \subset \mathbb{R}^1$, які більш тонко характеризують "масивність" множин у випадку їх нуль-мірності (у розумінні міри Лебега).

Означення 4.1. Нехай $0 < \alpha$ — фіксоване дійсне число, α -мірною мірою (α -мірою) Хаусдорфа множини E називається значення функції множини, визначеної рівністю

$$\mathcal{H}^{\alpha}(E) = \lim_{\varepsilon \to 0} m_{\varepsilon}^{\alpha}(E) = \sup_{\varepsilon > 0} m_{\varepsilon}^{\alpha}(E), \quad \text{de } m_{\varepsilon}^{\alpha}(E) = \inf_{|E_{j}| \leq \varepsilon} \left\{ \sum_{j} |E_{j}|^{\alpha} \right\}$$

і точна нижня грань визначається за всеможливими не більш ніж зліченними покриттями множини E відрізками E_i , діаметри $|E_i|$ яких не перевищують ε .

Невід'ємне число

$$\alpha_0(E) = \sup \{\alpha \colon \mathcal{H}^{\alpha}(E) = +\infty\} = \inf \{\alpha \colon \mathcal{H}^{\alpha}(E) = 0\}$$

називається розмірністю Хаусдорфа-Безиковича множини Е.

Розмірність Хаусдорфа-Безиковича має властивості:

- 1) Якщо $E_1 \subset E_2$, то $\alpha_0(E_1) \le \alpha_0(E_2)$;
- 2) $\alpha_0(\bigcup_i E_i) = \sup_i \alpha_0(E_i)$.

Континуальну множину, яка має нульову розмірність Хаусдорфа—Безиковича називають *аномально фрактальною*, а нуль-множину Лебега, розмірність Хаусдорфа—Безиковича якої дорівнює 1, називають *суперфрактальною*.

Теорема 4.1. Множина неповних сум ряду (2), що задовольняе умову однорідності (3), є ніде не щільною множиною нульової міри Лебега і нульової розмірністі Хаусдорфа-Безиковича.

Доведення. Оскільки даний ряд є збіжним, то $a_n \to 0$ і $\delta_n \equiv \frac{a_n}{r_n} = \frac{1}{a_{n-1}} \to +\infty$ при $n \to \infty$. Згідно леми 3.2, існує номер n_0 такий, що нерівність $a_n > r_n$ буде виконуватися для всіх $n \ge n_0$, а тому, згідно результату теореми 2.8.3 монографії [14], множина неповних сум E_1 ряду $\sum_{n=n_0}^{\infty} a_n$ є аномально фрактальною.

Оскільки множина $E(a_n)$ є арифметичною сумою множин E_1 та E_2 , а множина

$$E_2 = \left\{ x \colon x = \sum_{n=1}^{n_0 - 1} \varepsilon_n a_n, \, \varepsilon_n \in \{0, 1\} \right\}$$

складається не більше ніж 2^{n_0-1} точок. А тому фрактальні властивості множин E_1 і $E(a_n)$ співпадають. Отже, $E(a_n)$ — аномально фрактальна множина.

Наслідок 4.2. Спектр S_{ξ} розподілу випадкової величини ξ е аномально фрактальною множиною.

Теорема 4.2. У випадку неперервності (L=0) розподіл випадкової величини ξ є сингулярним розподілом канторівського типу з аномально фрактальним спектром.

Доведення. При L=0 випадкова величина ξ має неперервний розподіл. ЇЇ спектр є підмножиною множини неповних сум. З проведених досліджень по геометричній структурі множини неповних сум ряду (2), спектр розподілу випадкової величини ξ є нуль—множиною Лебега і є аномально фрактальною множиною.

5. Автозгортки розподілу випадкової величини ξ

Нагадаємо, що автозгорткою розподілу випадкової величини ξ називають розподіл випадкової величини $\psi_2 = \xi^{(1)} + \xi^{(2)}$, а s-кратною згорткою розподілу випадкової величини ξ — розподіл випадкової величини

$$\psi_s = \xi^{(1)} + \xi^{(2)} + \dots + \xi^{(s)},$$

де $\xi^{(j)}$ — незалежні й однаково розподілені випадкові величини, розподіл кожної з яких співпадає з розподілом ξ .

Добре відомо, якщо ξ дискретно розподілена, то ψ_s матиме дискретний розподіл. Нас цікавить випадок, коли розподіл ξ є сингулярним, оскільки згортка двох сингулярних розподілів може бути як сингулярною чи абсолютно неперервною, так і їх сумішшю.

Зауваження 5.1. Автозгортка двох (скінченного числа) нескінченних згорток Бернуллі не може бути сумішшю, оскільки сума двох (скінченного числа) незалежних випадкових величин типу Джессена—Вінтнера є випадковою величино Джессена—Вінтнера, а тому має чистий тип розподілу.

Лема 5.1. Спектр S_{ψ_s} розподілу випадкової величини ψ_s є підмножиною відрізка $[0, sr_0]$ і належить об'єднанню $(s+1)^n$ ізометричних відрізків довжини sr_n , $n=1,2,3,\ldots$

 \mathcal{A} ове denhs . Випадкову величину ψ_s можна подати у вигляді

$$\psi_s = \eta_1 a_1 + \eta_2 a_2 + \dots + \eta_n a_n + \dots = \sum_{n=1}^{\infty} \eta_n a_n,$$

де

$$\eta_n = \xi_n^{(1)} + \xi_n^{(2)} + \dots + \xi_n^{(s)}$$

незалежні випадкові величини, які мають розподіли

$$P\{\eta_n = i\} = C_s^i p_{1n}^i p_{0n}^{s-i}, \qquad i \in \{0, 1, 2, \dots, s\} = A_{s+1}.$$

Оскільки $p_{in}>0$, то спектр випадкової величини ψ_s співпадає з множиною

$$S_{\psi_s} = S_{\xi^{(1)}} \oplus S_{\xi^{(2)}} \oplus \cdots \oplus S_{\xi^{(s)}} = \left\{ x \colon x = \sum_{n=1}^{\infty} \zeta_n a_n, \, (\zeta_n) \in A_{s+1}^{\infty} \right\}.$$

Нехай (d_1,d_2,\ldots,d_m) — фіксований впорядкований набір чисел з множини $A_{s+1},$ $\Delta'_{d_1\ldots d_m}$ — множина всіх чисел виду

$$\sum_{n=1}^m d_n a_n + \sum_{n=m+1}^\infty \zeta_n a_n, \quad \text{де } \zeta_n \in A_{s+1}.$$