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Abstract. The present paper develops a goodness of fit statistic for the linear regression models fitted
by the shrinkage type estimators. A family of double k-class estimators is considered as a shrinkage

estimator which encompasses several estimators as its particular case. The covariance matrix of error

term is assumed to be a non-identity matrix under two situations- known and unknown. The goodness
of fit statistics based on the idea of coefficient of determination in multiple linear regression model is

proposed for the family of double k-class estimators. Its first and second order moments up to the

first order of approximation are derived and finite sample properties are studied using the Monte-Carlo
simulation.
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1. Introduction

Various estimation procedures and estimators are available in the literature to estimate
the regression parameters in a multiple linear regression model. The ordinary least
squares estimation procedure provides the best linear unbiased estimator of the regression
coefficient under the Gauss Markov setup. If the linearity and unbiasedness properties of
an estimator can be compromised, then the shrinkage estimation provides an estimator
of regression coefficients which is more efficient than the ordinary least squares estimator
under some mild conditions. For example, the family of Stein rule estimators provides
such estimators which have smaller variance than the ordinary least squares estimator
under a mild condition that the number of explanatory variables are more than two.
Motivated by the concept from shrinkage estimation, [3] proposed the family of double
k-class estimators for estimating the regression coefficients. Such an estimator has a very
general form and encompasses several prominent estimators proposed in the literature
as its particular case. Later [3] (see also, [4]) derived the exact and large non-centrality
parameters approximations of bias, mean squared error matrix and risk of double k-class
estimators. The properties of double k-class estimators have been investigated by various
authors in the literature, see [2, 6] and [17] for details on the developments for the double
k-class estimators.

The double k-class estimators are characterized by two characterizing scalars. Sub-
stituting different values of these scalars, one can obtain various other estimators. In a
more general set up, if the error distribution is non spherical and the covariance matrix
of non spherical errors is unknown, various forms of feasible versions of double k-class
estimators are proposed in the literature see [2] and [6] for a comprehensive presentation
about these estimators.

All such estimators are obtained through different procedures and have different prop-
erties. Usually an experimenter is more interested in getting a well fitted model rather
than knowing the performance of these estimators when they are actually used in fitting
a linear regression model. Suppose a linear regression model is fitted using two different
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choices of characterizing scalars. The choices of such scalars are optimal under their own
but different criterion. How it affects the model fitting or how to know which choice
of scalars gives a better fitted model remains unclear in such situations. Even in the
case the experimenters use different sets of variables, the question about which model
is better remains unanswered. Thus an important question arises: how to conduct the
goodness-of-fit in the models which are fitted using the double k-class estimators?

The goodness-of-fit in the usual multiple linear regression model is usually judged
by the coefficient of determination (COD) which is the multiple correlation coefficient
between the study variable and all the explanatory variables in the model. It is usually
denoted by R2. In the literature, several researchers have attempted to obtain the forms
of COD for linear models under nonstandard conditions, see [7] (see also [8]) for detailed
review on the development and research done on COD in various type of linear models.

The R2 statistic is based on the ordinary least squares estimates of regression coef-
ficients which is the best linear unbiased estimator. It is obtained by the analysis of
variance in linear regression model which is again based on the ordinary least squares
estimates. The R2 is a statistic and is a biased but consistent estimator of popula-
tion multiple correlation coefficient in the set up of multiple linear regression model, see
Chapter 4 in [19]. The double k-class estimators of regression coefficient are not the best
linear unbiased estimators of regression coefficient, rather they are nonlinear and biased
estimators of regression coefficient. So conducting the analysis of variance based on the
double k-class estimators in the same way as with the ordinary least squares estimator
is not possible. Hence the COD can not be obtained in the same way as with ordinary
least squares estimates in such a case and so the bigger question arises: how to judge the
goodness-of-fit in such a case. Moreover, any goodness-of-fit statistic is itself a statistic,
i.e., a function random variable which is being used to estimate any unknown parameter.
For example, R2 in case of multiple linear regression model is a statistic whose statistical
properties are determined by its moments. Such moments help in finding the confidence
interval, testing of hypothesis etc.

We have attempted in this direction. We have considered the estimation of regression
coefficients using the double k-class estimators. A goodness-of-fit statistic is proposed
to judge the quality of such fitted model. The first and second order moments of such
statistic up to the first order of approximation are derived. The finite sample proper-
ties and performance of double k-class estimators are studied through the Monte-Carlo
simulation.

The plan of the paper is as follows. Section 2 describes the linear model and the
double k-class estimators along with its feasible version. The goodness-of-fit statistics
are developed in Section 3. The moments of the goodness of fit statistics are derived in
Section 4. The results from the Monte-Carlo simulation are reported in Section 5 and
some conclusions are presented in Section 6.

An extended version of the paper with more details on earlier work and simulations
is available at http://home.iitk.ac.in/∼shalab/r2dkcsc.pdf.

2. The Model and Estimators

Consider the following linear regression model between an n × 1 vector y of n obser-
vations of the study variable and an n× p matrix X of n observations of p explanatory
variables:

y = α1n + Xβ+ ε, (1)

where α is the intercept term, 1n is an n × 1 vector with unit elements (1′s), β is
a p × 1 vector of coefficients associated with them and ε is an n × 1 vector of non-
spherical disturbances. The disturbance vector ε is assumed to follow a multivariate
normal distribution with mean vector 0 and known variance-covariance matrix σ2Ω−1.
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Define A = Ω− 1
1′
nΩ1n

Ω1n1
′
nΩ and pre-multiplying (1) by A gives the model

Ay = AXβ+ Aε . (2)

The generalized least squares estimator (GLSE) to estimate β in (2) gives the best
linear unbiased estimator of β as

β̂g = (X ′AX)−1X ′Ay. (3)

In the spirit of double k-class estimator proposed by [3] (see also [4]), the family of
generalized double k-class estimators (DKKE) characterized by two nonstochastic scalars
k1 > 0 and 0 < k2 < 1 is given as

β̂kk =

[
1−

(
k1

n− p + 2

)
(y −Xβ̂g)′A(y −Xβ̂g)

y′Ay − k2(y −Xβ̂g)′A(y −Xβ̂g)

]
β̂g =

=

[
1−

(
k1

n− p + 2

)
v

β̂′gX
′AXβ̂g + (1− k2v)

]
β̂g, (4)

where v = (y − Xβ̂g)′A(y − Xβ̂g). This is a very general class of estimator which
gives rise to various estimators considered in the literature as the special case of DKKE.
For example, k1 = 0 gives GLSE; k1 = p − 2 and k2 = 1 gives generalized Stein-rule
estimator (GSRE); k1 = 1

n−p and k2 = 1− k1 gives generalized minimum mean squared

error estimator (GMMSE); k1 = n−p+2
n−p and k2 = 1 − k1

n−p+2 gives adjusted generalized

minimum mean squared error estimator (AGMMSE); k1 = (n−p+2)p
n−p and k2 = 1− k1

n−p+2

gives generalized double k-class estimators (GKKCE) etc.
In case, the variance-covariance matrix σ2Ω−1 is unknown, we assume that the ele-

ments of Ω are functions of a q × 1 parameter vector θ that belongs to an open subset
of q dimensional Euclidean space. We also assume that a consistent estimator θ̂ of θ is
available so that Ω is consistently estimated by Ω̂ = Ω(θ̂). So Ω ≡ Ω(θ) and Ω̂ ≡ Ω(θ̂).
In such situation, β in (2) is estimated by the feasible generalized least squares estimator
(FGLSE) of β given by

β̂fg = (X ′ÂX)−1X ′Ây. (5)

In the spirit of [3] (see also [4]) and [2], the family of feasible generalized double k-class
estimators (FDKKE) is defined by

β̂fkk =

[
1−

(
k1

n− p + 2

)
(y −Xβ̂fg)′Â(y −Xβ̂fg)

y′Ây − k2(y −Xβ̂fg)′Â(y −Xβ̂fg)

]
β̂fg =

=

[
1−

(
k1

n− p + 2

)
v̂

y′Ây − k2v̂

]
β̂fg =

=

[
1−

(
k1

n− p + 2

)
v̂

β̂′fgX
′ÂXβ̂fg + (1− k2)v̂

]
β̂fg, (6)

where v̂ = (y − Xβ̂fg)′Â(y − Xβ̂fg) and Â is obtained by replacing Ω by Ω̂ in A.
Again, FDKKE gives rises to various estimators considered in the literature as its special
cases which are obtained by substituting the values of k1 and k2. For example, k1 = 0
gives feasible generalized least squares estimator (FGLSE); k1 = p− 2 and k2 = 1 gives
feasible generalized Stein-rule estimator (FGSRE); k1 = 1

n−p and k2 = 1 − k1 gives

feasible generalized minimum mean squared error estimator (FGMMSE), proposed by
[16], see also [10, 11]; k1 = n−p+2

n−p and k2 = 1− k1

n−p+2 gives adjusted feasible generalized

minimum mean squared error estimator (AFGMMSE), proposed by [11]; k1 = (n−p+2)p
n−p
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and k2 = 1 − k1

n−p+2 gives feasible generalized double k-class estimator (FGKKCE),

proposed by [15].
It is clear from the description of DKKE and FDKKE that these families encompass

several popular estimators as their particular cases. Use of these estimators gives rise to
different fitted models. Researchers have tried to obtain the optimal values of character-
izing scalars under certain criterion, e. g., mean squared error of estimators, asymptotic
variances etc. Even prominent results are based on certain approximations like asymp-
totic approximations, small error approximations etc. If we try looking at the modelling
issue from the practitioner’s point of view, then the practitioner is ultimately more inter-
ested in knowing whether the fitted model is good or not and if it can be used for other
purposes like forecasting? Moreover, the practitioner is working with finite data. The use
of an asymptotically efficient estimator may not necessarily ensure that the fitted model
obtained with finite data is also superior. Also, if two different models are fitted using
the same set of data but different transformations on either study variable, explanatory
variables or both, then it can not be determined which model provides better fit. So we
need to have a goodness-of-fit statistic which can help the practitioner to know whether
the obtained fitted model is good enough to work further or not. We attempt to develop
goodness-of-fit statistics in the next section.

3. goodness-of-fit Statistics (GoFs) for Estimators

Our objective is to define a goodness-of-fit statistic for the family of DKKE and
FDKKE. Since the COD in the classical linear regression model is a popular statistic
to judge the goodness of fit, we borrow the idea from there and use it do develop a
suitable statistic. First, we develop the goodness-of-fit statistic based on the COD based
on GLSE of regression coefficient.

3.1. Development and Consistency of GoF for GLSE. Consider the form of R2

in the regression model (2) under the assumptions V (ε) = σ2Ω−1 = Σ∗, which is a
positive definite matrix. One can find a nonsingular matrix K such that KK−1 = Σ∗.
Pre-multiplying (2) by K−1 gives

K−1Ay = K−1AXβ+ K−1Aε , (7)

where y∗ = K−1Ay, X∗ = K−1AX and ε∗ = K−1Aε. Note that now E(ε∗) = 0
and V (ε∗) = σ2I so that elements in ε∗ are identically and independently normally
distributed. The goodness of fit statistic based on the idea from COD under (7) is
proposed as

R2
g =

y∗′X∗(X∗′X∗)−1X∗′y∗

y∗′y∗
=

y′AX(X ′AX)−1X ′Ay

y′Ay
=
β̂′gX

′AXβ̂g

y′Ay
, 0 ≤ R2

g ≤ 1.

(8)
Assume that

plim
n→∞

X ′AX

n
= ΣXX (a positive definite matrix), and plim

n→∞

X ′Aε

n
= 0 (9)

where the notation plim denotes the limit in probability.
The COD is essentially the square of sample based multiple correlation coefficient

between the study variable and all the explanatory variables in the linear regression
model. The conventional population based multiple correlation coefficient is given by

ϑ =
β′ΣXXβ

β′ΣXXβ+ σ2
; 0 ≤ ϑ ≤ 1, (10)

assuming A to be known, see Chapter 4 in [19]. If the model is best fitted, then σ2 = 0
which implies ϑ = 1. If the model is worst fitted in the sense that no explanatory variable
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contributes in the modelling, then β = 0 which in turn implies ϑ = 0. Any other values
of 0 ≤ ϑ ≤ 1 indicate the degree of GoF of the model explained by ϑ. So ϑ acts as a
measure of goodness-of-fit in the sense of contribution of explanatory variables to the
explanation of the variability among the values of study variable obtained by the model.

Using (9), it can be shown that plimn→∞ β̂g = β, where plimn→∞ denotes the conver-
gence in probability and consequently, such defined R2

g in (8) turns out to be a consistent

estimator of ϑ in the sense that plimn→∞R2
g = ϑ, where R2

g is the sample counterpart of
the population multiple correlation coefficient ϑ.

Note that 0 ≤ R2
g ≤ 1. When all the explanatory variables in the model are not

contributing towards the explanation of variation of values of the study variable, then
ideally β̂g will be zero or close to zero. In turn, R2

g = 0 indicating that the model fit is

poor. Similarly, R2
g = 1 will indicate the perfect fit. Any other value of R2

g between 0
and 1 will give an idea about the degree of goodness-of-fit in the model, similar to COD
in a usual multiple linear regression model. So R2

g in (8) defines a statistic like the COD
for the linear regression model having a non-identity covariance matrix assuming A (or
equivalently Ω) is known. This statistic can be used to judge the goodness-of-fit of a
model when GLSE is used to fit the model.

3.2. Development and Consistency of GoFs for DKKE. Next, we propose using
β̂kk in place of β̂g in (8) to obtain a statistic given as

R2
kk =

β̂′kkX
′AXβ̂kk

y′Ay
, 0 ≤ R2

kk ≤ 1. (11)

Note that 0 ≤ R2
kk ≤ 1, so this also has an interpretation like the COD in a multiple linear

regression model. For example, when β̂kk is zero or close to zero, it indicates that all the
elements in its vector are zero or close to zero meaning thereby that all the explanatory
variables in the model are not capable of explaining the variation in the values of a study
variable. Hence R2

kk = 0 will indicate the poorest fit. Similarly, R2
kk = 1 will indicate the

best fit and any other value of R2
kk between 0 and 1 will give an idea about the degree

of goodness-of-fit in the model resulting by the use of any estimator from the family of
DKKE. Thus, this statistic can be used to judge the goodness-of-fit of a model based on
DKKE β̂kk.

Using (9), we can show that plimn→∞ βkk = β and consequently plimn→∞R2
kk = ϑ,

0 ≤ ϑ ≤ 1. Thus, it is established that R2
kk is a consistent estimator of the population

multiple correlation coefficient ϑ.
It may be noted that R2

g and R2
kk are biased estimators of ϑ.

3.3. Development and Consistency of GoFs for FGLSE and FDKKE. Now we
consider the case when A (or equivalently Ω) is unknown and is consistently estimated

as Â (or equivalently Ω̂) such that plimn→∞ Â = A (or equivalently plimn→∞ Ω̂ = Ω).
In such a case, the GLSE and DKKE are estimated by (5) and (6) respectively. In such
case, the goodness-of-fit statistics are proposed as

R2
fg =

β̂′fgX
′ÂXβ̂fg

y′Ây
, 0 ≤ R2

fg ≤ 1 (12)

and

R2
fkk =

β̂′kkX
′ÂXβ̂kk

y′Ây
, 0 ≤ R2

fkk ≤ 1, (13)

respectively.
Using (9), we can show that plimn→∞R2

fg = ϑ and plimn→∞R2
fkk = ϑ, 0 ≤ ϑ ≤ 1.

Thus, both R2
fg and R2

fkk are again consistent but biased estimator of the population
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multiple correlation coefficient ϑ. Both R2
fg and R2

fkk lie between 0 and 1. The in-

terpretations of R2
fg and R2

fkk can be obtained just like the interpretations of R2
g and

R2
kk, respectively. For example, R2

fg = 0 and R2
fkk = 0 indicate the poorest fit, and

R2
fg = 1 and R2

fkk = 1 indicate the best fit of the model using the estimators β̂fg and

β̂kk, respectively.

3.4. Earlier Studies about COD. The properties of COD have been studied in the
literature when the covariance matrix of disturbance is the identity matrix, i.e., distur-
bances are identically and independently distributed. Under such an assumption, Crämer
[9] studied the properties of COD and adjusted COD under normally distributed distur-
bances. Ohtani and Giles [12] considered the criterion of risk under an absolute error loss
function and studied the relative performance of COD and its adjusted version. Ohtani
and Hasegawa [13] analyzed the properties of COD and its adjusted version under the
multivariate t-distribution of disturbances in the misspecified model. The exact expres-
sions of the properties of COD and/or its adjusted version in all such studies turn out
to be complicated and so it is very difficult to draw any clear conclusions. Some infer-
ences are drawn based on numerical computations for some choice of parameters and so
they have very limited utility in applications. So some approximations of the statistical
properties may be more useful to shed some light on the utility of the COD. Such an
idea is used in [5] where they have utilized the small disturbance asymptotic theory to
obtain the approximate moments of COD. Such results are valid only when the fitted
model is close to perfect fit. This constraint diminishes the utility of the statistical in-
ferences in real applications. Smith [14] studied the closeness of exact moments derived
by using the small disturbance and other asymptotic approximations. Alternatively, the
asymptotic theory can also be utilized to derive the asymptotic distribution and to draw
statistical conclusions. It has an advantage that it does not require the assumption of
any specific distribution of errors like normal. When COD is derived in the usual linear
regression model, it is not based on the assumption of normality of disturbances. So use
of asymptotic theory to study the properties of COD has an advantage. Srivastava et
al. [1] derived the bias and mean squared errors of COD and its adjusted version using
the large sample asymptotic theory. We also propose to use the large sample asymptotic
theory to derive the first and second moments of the proposed goodness-of-fit statistics.
Cheng et al. [7] proposed the goodness-of-fit statistic based on the COD in measurement
error models.

4. Moments of goodness-of-fit Statistics

The statistic R2
fkk is of more general form than R2

kk and more useful in application

data. So we state and derive some asymptotic results about R2
fkk in the Theorem 1.

We assume that the elements of Ω are functions of a q × 1 parameter vector θ that
belongs to an open subset of q-dimensional Euclidean space and a consistent estima-

tor θ̂ of θ is available. Let A = Ω − 1
1′
nΩ1n

Ω1n1
′
nΩ, Ωi = ∂

∂θi
Ω, Ωij = ∂2

∂θi∂θj
Ω,

B = 1
nX
′AX, Aj = ∂

∂θj
A, Bj = 1

nX
′AjX, Bjk = 1

nX
′AjkX, φ = β′Bβ + σ2,

Pj = 1√
n

(
X ′Aj −BjB

−1X ′A
)

and ξ = β′Bβ+ (1− k2)σ2.

For the validity of large sample approximations for the moments, following [18], we
assume that

(1) θ̂ has a stochastic expansion of the form
√
n(θ̂− θ) = d + op(n−1), where d has

an asymptotic distribution N(0,Λ), with Λ = ((λij))).
(2) As n → ∞, 1

nX
′ΩX tends to a finite positive definite matrix, the elements

of 1
nX
′ΩiX, 1

nX
′ΩijX, and 1

nX
′ΩiΩ

−1ΩjX approach to finite limits for all
i, j = 1, 2, . . . , q.
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(3) The elements of 1√
n
X ′(Ω̂−Ω))ε, 1

nX
′(Ω̂−Ω)X, 1√

n
X ′(Ω̂i−Ωi)ε, 1

nX
′(Ω̂i−Ωi)X

converge to zero in probability.

Now, we state following two lemmas which are useful in finding the results stated in
Theorem 1.

Lemma 1. Let e =
√
n(θ̂ − θ), where ej is the jth element of e, η0 = 1√

n
B−1X ′Au,

and η− 1
2

= 1√
n

∑
j B
−1Pjuej. Then we obtain the following results using the distribu-

tional properties of disturbances: E(ej) = 0, E(ejek) = λjk, E(η0) = 0, E(η− 1
2
) = 0,

E(η0η
′
0) = σ2

n B−1X ′AXB−1 = σ2B−1, and E(η′− 1
2

Bη− 1
2
) = σ2

n

∑
j,k tr

(
B−1PjAP ′k

)
λjk,

where

PjAP ′k =
1

n
(XAj −BjB

−1X ′A)A(AkX
′ −AXB−1Bk) =

=
1

n
X ′AjAAkX −

1

n
X ′AjAXB−1Bk −

1

n
BkB

−1X ′AAkX +

+
1

n
BjB

−1X ′AXB−1Bk.

Lemma 2. Let

ρ− 1
2

=
2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej −
β′Bβ

φ
√
n
β′Bη0 −

1

φ
√
n
β′Bβ

∑
j

β′Bjβej , (14)

ρ−1 = β′Bβ

 4

nφ2
(β′Bη0)2 +

1

nφ2

∑
j,k

β′Bjββ
′Bkβejek +

4

nφ2
β′Bη0

∑
j

β′Bjβej −

− 2

φ
√
n
β′Bη− 1

2
− 2

φn

∑
j

β′Bjη0ej −
1

nφ

∑
j,k

β′Bjkβejek

−
−

 2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej

 2

φ
√
n
β′Bη0 +

1

φ
√
n

∑
j

β′Bjβej

+

+
2

n

∑
j

β′Bjη0ej +
1

n

∑
j,k

β′Bjkβejek. (15)

Then we obtain the following results up to the order O(n−1) using the distributional
properties of disturbances:

E(ρ− 1
2
) = 0 (as E(η0) = 0, E(ej) = 0 using Lemma 1), (16)

E(ρ−1) = β′Bβ

 4

n
β′Bβ+

1

nσ2

∑
j,k

β′Bjββ
′Bkβλjk −

1

nφ

∑
j,k

β′Bjkβλjk

−
− 4σ2

φn
β′Bβ− 1

φn

∑
j,k

β′Bjββ
′Bkβλjk +

1

n

∑
j,k

β′Bjkβλjk, (17)

E(ρ2
− 1

2
) =

4

n
σ2β′Bβ+

1

n

∑
j,k

β′Bjββ
′Bkβλjk +

1

φ2n
(β′Bβ)2

∑
j,k

β′Bjββ
′Bkβλjk −

− 4

φn
(β′Bβ)2σ2 − 2

φn
β′Bβ

∑
j,k

β′Bjββ
′Bkβλjk. (18)

Theorem 1. The R2
fkk is expressible as

R2
fkk = R̃2

fkk + Op(n−3/2), (19)
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where

R̃2
fkk =

(
1− 2k1σ

2

nξ

)
1

φ

[
β′Bβ+ ρ− 1

2
+ ρ−1

]
. (20)

The first and second moments of R̃2
fkk are given as follows:

E(R̃2
fkk) =

(
1− 2k1σ

2

nξ

)
1

φ

β′Bβ− β′Bβ
n

∑
j,k

β′Bjkβλjk +
4σ2

nφ2
(β′Bβ)2 +

+
β′Bβ

nφ2

∑
j,k

β′Bjββ
′Bkβλjk −

4σ2

nφ
β′Bβ− 1

nφ

∑
j,k

β′Bjββ
′Bkβλjk+

+
1

n

∑
j,k

β′Bjkβλjk +
σ2

n

∑
j,k

tr(B−1PjAP ′k)λjk

+ O(n−3/2), (21)

E(R̃2
fkk)2 =

(
1− 2k1σ

2

nξ

)2
1

φ2

[
8(β′Bβ)3

n
+

+ (β′Bβ)2

{
1 +

∑
j,k β

′Bjββ
′Bkβλjk

n

(
1

φ2
+

2

σ2

)
−

− 2

nφ

∑
j,k

β′Bjkβλjk + 6σ2

+

∑
j,k β

′Bjββ
′Bkβλjk

n
+

+
2(β′Bβ)

n

−2(
∑

j,k β
′Bjββ

′Bkβλjk)

φ
+
∑
j,k

β′Bjkβλjk + 2σ2

+

+ O(n−3/2). (22)

The variance of R̃2
fkk can be obtained using (21) and (22) as

Var(R̃2
fkk) = E(R̃2

fkk)2 − [E(R̃2
fkk)]2.

Proof of Theorem 1. We can write AΩ−1A = A and then

y′Ay = v + β̂′gX
′AXβ̂g.

We recall that ϑ = β′ΣXXβ
β′ΣXXβ+σ2 ; 0 ≤ ϑ ≤ 1, ΣXX = plimn→∞

X′AX
n and R2

fkk =

=
β̂′

kkX
′ÂXβ̂kk

y′Ây
, 0 ≤ R2

fkk ≤ 1. We write A ≡ Aθ, Â ≡ A(θ̂), where θ is a q × 1 vector,

and thus we can express

β̂fg = β+
1√
n

(η0 + η− 1
2
) + Op(n−3/2) , (23)

where PjX = 0. Further, let

δ̂kk =

(
k1

n− p + 2

)
v̂

β̂′fgX
′ÂXβ̂fg + (1− k2)v̂

. (24)

Consider the denominator of (24), we can write using (23)

1

n

[
β̂′fgX

′ÂXβ̂fg + (1− k2)v̂
]

=

=

(
β+

1√
n
η0 +

1

n
η− 1

2

)′B +
1√
n

∑
j

Bjej

(β+
1√
n
η0 +

1

n
η− 1

2

)
+ (1− k2)

v̂

n
=



GOODNESS OF FIT FOR GENERALIZED SHRINKAGE ESTIMATION 185

= β′Bβ+
2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej + (1− k2)σ2 + Op(n−1) , (25)

where η0 and η− 1
2

are defined in Lemma 1.

Substituting (25) in (24), we get

δ̂kk =
k1

n

σ2

β′Bβ+ 2√
n
β′Bη0 + 1√

n

∑
j β
′Bjβej + (1− k2)σ2

=

=
k1

n

σ2

β′Bβ+ (1− k2)σ2

1 +
2

ξ
√
n
β′Bη0 +

1

ξ
√
n

∑
j

β′Bjβej

−1

=

=
k1

n

σ2

ξ

1− 2

ξ
√
n
β′Bη0 −

1

ξ
√
n

∑
j

β′Bjβej

.
Next, we find

1− δ̂kk = 1− k1σ
2

nξ
+

k1σ
2

n
√
nξ2

2β′Bη0 +
∑
j

β′Bjβej

,

(1− δ̂kk)2 = 1− 2k1σ
2

nξ
+

2k1σ
2

n
√
nξ2

2β′Bη0 +
∑
j

β′Bjβej

,

1− (1− δ̂kk)2 =
2k1σ

2

nξ
− 2k1σ

2

n
√
nξ2

2β′Bη0 +
∑
j

β′Bjβej

.

Let B̂ = 1
nX
′ÂX, Bj = 1

nX
′AjX, Bjk = 1

nX
′AjkX. We can express now

R2
fkk =

(1− δ̂kk)2β̂′fg

(
1
nX
′ÂX

)
β̂fg

β̂′fg

(
1
nX
′ÂX

)
β̂fg + 1

n v̂
=

(1− δ̂kk)2β̂′fgB̂β̂fg

β̂′fgB̂β̂fg + 1
n v̂

. (26)

Consider the numerator of (26)

β̂′fgB̂fgβ̂fg =

(
β+

1√
n
η0 +

1√
n
η− 1

2

)B +
1√
n

∑
j

Bjej +
1

n

∑
j,k

Bjkejek

×
×
(
β+

1√
n
η0 +

1√
n
η− 1

2

)
=

= β′Bβ+
2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej +
2√
n
β′Bη− 1

2
+

+
2

n

∑
j

β′Bjβη0ej +
1

n

∑
j,k

β′Bjkβejek +
1

n
η′− 1

2
Bη− 1

2
+ Op(n−3/2).

(27)

Also 1
n v̂ = σ2 + Op(n−3/2) and (1− δ̂kk)2 = 1− 2k1σ

2

nξ .

Consider the denominator of (26)

1

β̂′fgB̂β̂fg + 1
n v̂

=

β′Bβ+ σ2 +
2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej +
2√
n
β′Bη− 1

2
+
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+
2

n

∑
j

β′Bjβη0ej +
1

n

∑
j,k

β′Bjkβejek +
1

n
η′− 1

2
Bη− 1

2

−1

=

=
1

φ

1 +
2

φ
√
n
β′Bη0 +

1

φ
√
n

∑
j

β′Bjβej +
2

φ
√
n
β′Bη− 1

2
+

+
2

φn

∑
j

β′Bjβη0ej +
1

φn

∑
j,k

β′Bjkβejek

−1

=

=
1

φ

1− 2

φ
√
n
β′Bη0 −

1

φ
√
n

∑
j

β′Bjβej +
4

φ2n
(β′Bη0)2 +

+
1

φ2n

∑
j,k

β′Bjββ
′Bkβejek +

4

φ2n
β′Bη0

∑
j

β′Bjβej −

− 2

φ
√
n
β′Bη− 1

2
− 2

φn

∑
j

β′Bjη0ej −
1

φn

∑
j,k

β′Bjkβejek

.
(28)

Hence using (27) and (28) in (26), we expand R2
fkk and obtain its expression as

R2
fkk =

(
1− 2k1σ

2

nξ

)
1

φ

β′Bβ+
2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej +
2√
n
β′Bη− 1

2
+

+
2

n

∑
j

β′Bjβη0ej +
1

n

∑
j,k

β′Bjkβejek +
1

n
η′− 1

2
Bη− 1

2

× [1− 2

φ
√
n
β′Bη0 −

− 1

φ
√
n

∑
j

β′Bjβej +
4

φ2n
(β′Bη0)2 +

1

φ2n

∑
j,k

β′Bjββ
′Bkβejek +

+
4

φ2n
β′Bη0

∑
j

β′Bjβej −
2

φ
√
n
β′Bη− 1

2
− 2

φn

∑
j

β′Bjη0ej −

− 1

φn

∑
j,k

β′Bjkβejek

+ Op(n−3/2) =

=

(
1− 2k1σ

2

nξ

)
1

φ

β′Bβ+

 2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej −
β′Bβ

φ
√
n
β′Bη0 −

− 1

φ
√
n
β′Bβ

∑
j

β′Bjβej

+

β′Bβ
 4

nφ2
(β′Bη0)2 +

+
1

nφ2

∑
j,k

β′Bjββ
′Bkβejek +

4

nφ2
β′Bη0

∑
j

β′Bjβej −

− 2

φ
√
n
β′Bη− 1

2
− 2

φn

∑
j

β′Bjη0ej −
1

nφ

∑
j,k

β′Bjkβejek

−
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−

 2√
n
β′Bη0 +

1√
n

∑
j

β′Bjβej

 2

φ
√
n
β′Bη0 +

1

φ
√
n

∑
j

β′Bjβej

+

+
2

n

∑
j

β′Bjη0ej +
1

n

∑
j,k

β′Bjkβejek

+ Op(n−3/2) =

=

(
1− 2k1σ

2

nξ

)
1

φ

[
β′Bβ+ ρ− 1

2
+ ρ−1

]
+ Op(n−3/2) =

= R̃2
fkk + Op(n−3/2) , (29)

where R̃2
fkk is defined in (20); ρ− 1

2
and ρ−1 are defined in Lemma 2. This is the result

(19) reported in Theorem 1.
Thus, using the results in Lemma 1, we obtain the expectation of R2

fkk as

E(R̃2
fkk) =

(
1− 2k1σ

2

nξ

)
1

φ

β′Bβ− β′Bβ
n

∑
j,k

β′Bjkβλjk +
4σ2

nφ2
(β′Bβ)2 +

+
β′Bβ

nφ2

∑
j,k

β′Bjββ
′Bkβλjk −

4σ2

nφ
β′Bβ−

− 1

nφ

∑
j,k

β′Bjββ
′Bkβλjk +

1

n

∑
j,k

β′Bjkβλjk +

+
σ2

n

∑
j,k

tr(B−1PjAP ′k)λjk

+ O(n−3/2),

which is the result (21) reported in Theorem 1.
The second moment of R2

fkk up to the order O(n−1) is obtained as

E(R̃2
fkk)2 =

(
1− 2k1σ

2

nξ

)2
1

φ2
E
[
β′Bβ+ ρ− 1

2
+ ρ−1

]2
+ O(n−3/2) =

=

(
1− 2k1σ

2

nξ

)2
1

φ2

[
(β′Bβ)2 + 2β′BβE(ρ− 1

2
) + E(ρ2

− 1
2
) + 2β′BβE(ρ−1)

]
+

+ O(n−3/2). (30)

Substituting the expressions of E(ρ− 1
2
), E(ρ−1) and E(ρ2

− 1
2

) using Lemma 2 in (30),

we obtain

E(R̃2
fkk)2 =

(
1− 2k1σ

2

nξ

)2
1

φ2

[
8(β′Bβ)3

n
+

+ (β′Bβ)2

1 +

∑
j,k β

′Bjββ
′Bkβλjk

n

(
1

φ2
+

2

σ2

)
−

− 2

nφ

∑
j,k

β′Bjkβλjk + 6σ2

+

∑
j,k β

′Bjββ
′Bkβλjk

n
+

+
2(β′Bβ)

n

−2(
∑

j,k β
′Bjββ

′Bkβλjk)

φ
+
∑
j,k

β′Bjkβλjk + 2σ2

+

+ O(n−3/2),
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which is the result (22) reported in Theorem 1.

The variance of R̃2
fkk can be obtained using (21) and (22) as Var(R̃2

fkk) = E(R̃2
fkk)2−

− [E(R̃2
fkk)]2. This completes the proof of Theorem 1. �

The results stated in Theorem 1 are useful from several perspectives. It may be noted
that all the statistics which are proposed to measure the goodness of fit are essentially a
function of random variables, i.e., a statistic and they are aiming to consistently estimate
the population correlation coefficient between the study variable and explanatory vari-
ables. The objective of any statistician is not only to estimate the parameters but also
to use it for other statistical procedures like test of hypothesis and confidence intervals
of the parameter etc. Obviously, any statistician would like to use the exact moments
for such purposes but since the exact moments are difficult to derive, the approximate
moments derived in this paper will help. So the moments of GoFs derived will help in
deriving the statistical inference about the population correlation coefficient between the
study variable and explanatory variables.

5. Simulation study

The approximate moments of the DKKE and FDKKE up to the first order of approx-
imation essentially describe the behaviour of the estimators when sample size is large.
To get an idea about the performance of the proposed goodness-of-fit statistics as well as
their feasible versions in finite samples, we conducted a detailed Monte-Carlo simulation
study. To save the space, we are presenting here few results only. The detailed results
are available at http://home.iitk.ac.in/∼shalab/r2dkcsc.pdf.

To understand the effect of non-identity structure of covariance matrix, we consider
the random errors ε in (7) to follow an autoregressive process AR(1) as εi = ρεi−1 + vi
where |ρ| < 1 is the autocorrelation coefficient between εi and εi−1, (i = 1, 2, . . . , n);
and vi’s are identically and independently distributed N(0,σ2

v). We assume σ2 = 1 and
so the covariance matrix of ε is given by

V (ε) = Ω−1 =
1

1− ρ2


1 ρ . . . ρn−1

ρ 1 . . . ρn−2

...
...

. . .
...

ρn−1 ρn−2 . . . 1


and consequently

Ω =



1 −ρ 0 . . . 0 0
−ρ 1 + ρ2 −ρ . . . 0 0
0 −ρ 1 + ρ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 + ρ2 −ρ
0 0 0 . . . −ρ 1


.

The autocorrelation coefficient ρ can be estimated by ρ̂ =
∑n−1

i=2 ε̂iε̂i−1/
∑n

i=2 ε̂
2
i−1,

where ε̂i = yi − x′iβ̂kk(i = 1, 2, . . . , n) are the residuals based on β̂kk. When using

FDKKE, the ε̂i’s are obtained by using β̂fkk in place of β̂kk.
We consider the following versions of DKKE and FDKKE that are obtained by sub-

stituting the values of k1 and k2. When k1 = 0, we get GLSE and FGLSE. When
k1 = p − 2 and k2 = 1, we get generalized Stein-rule estimator (GSRE) and feasible
generalized Stein-rule estimator (FGSRE). When k1 = 1

n−p and k2 = 1 − k1, we get

generalized minimum mean squared error estimator (GMMSE) and feasible generalized
minimum mean squared error estimator (FGMMSE), proposed by [16], see also [10, 11].
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When k1 = n−p+2
n−p and k2 = 1 − k1

n−p+2 , we get adjusted generalized minimum mean

squared error estimator (AGMMSE) and adjusted feasible generalized minimum mean

squared error estimator (AFGMMSE), proposed by [11]. When k1 = (n−p+2)p
n−p and

k2 = 1 − k1

n−p+2 , we get generalized double k-class estimators (GKKCE) and feasible

generalized double k-class estimators (FGKKCE), proposed by [15].
We considered the cases when n = 20, n = 35 and n = 100 that indicate the small,

moderately large and large sample sizes respectively. The results beyond n = 100 gener-
ally stabilize and change very little as n increases further. The traditional R2 (coefficient
of determination based on OLSE) increases as the number of explanatory variables in-
creases and we also want to check if such behavior continues to hold in our proposed
goodness-of-fit statistics. We have chosen p = 4 and p = 8 to see the effect of increased
number of explanatory variables on various goodness-of-fit statistics. To understand the
effect of σ2

v, we consider σ2
v = 1, σ2

v = 5 and σ2
v = 10 that are considered to repre-

sent the lower, moderately large and higher variances respectively in the data. Based
on these choices, we have considered various combinations of these values. The data is
generated on ε’s using AR(1) process with ρ = −0.9,−0.8, . . . ,−0.1, 0, 0.1, . . . , 0.8, 0.9.
Then the values of study variable are generated for each ρ. The values of explanatory
variables are held fixed for all the values of given autocorrelation coefficients so that the
values of the estimated regression coefficients and in turn, all proposed R2

kk and R2
fkk

statistics are computed for the same set of data on X and y. This will enable us to
compare the versions of R2

kk statistics as they will be affected by the same sources and
magnitude of variability. First, we estimate β by assuming Ω−1 to be known and obtain
the simulated values of goodness-of-fit statistic R2

kk. Based on these values, we find the
empirical absolute relative bias (RB) and empirical relative mean squared error (RM)
of all the goodness-of-fit statistics under consideration. We execute this process for a
given value of ρ. In the next step, we estimate the same ρ as ρ̂ on the basis of the the
data set generated on X and y in the earlier step. Using thus obtained ρ̂, we obtain Ω̂
and then further obtain the simulated values of goodness-of-fit statistic R2

fkk. So the X

and y values used in computing R2
kk and R2

fkk are the same and this helps in studying
the changes occurring between the estimators and their feasible versions. Again, based
on these values, we find the RB and RM of R2

fkk. The RB and RM of all the R2
kk and

R2
fkk statistics are computed based on 5000 replications for various combinations of n, p

and σ2
v. Some representative selected values of RB and RM of proposed statistics are

presented in Tables 1–2. We also have constructed the three dimensional surface plots
of RBs and RMs with respect to ρ and ϑ to further investigate their joint effect on the
behavior of proposed statistics, see e. g., Figures 1–2. We have presented only repre-
sentative and selected number of tables and figures. More description about tables and
figures is available at http://home.iitk.ac.in/∼shalab/r2dkcsc.pdf.

The empirical values of relative absolute bias (RB) and relative mean squared errors

(RM) of an estimator δ̂ of a parameter δ based on G replications are calculated as

RB(δ̂) = 1
g

∑G
g=1

∣∣∣ (δ̂g−δ)δ

∣∣∣ and RM(δ̂) = 1
g

∑G
g=1

(δ̂g−δ)
2

δ2
+ [RB(δ̂)]2 respectively, where

δ̂g is based on a sample of size n. Here, the notations R2
gls, R

2
fgls, R

2
gsre, R

2
fgsre, R

2
gmmse,

R2
fgmmse, R2

agmmse, R2
fagmmse, R2

gkkc and R2
fgkkce denote the goodness-of-fit statistic

based on GLSE, FGLSE, GSRE, FGSRE, GMMSE, FGMMSE, AGMMSE, FAGMMSE,

GKCCE and GKCCFE respectively. For example, R2
gls =

β̂′
glsX

′AXβ̂gls

y′Ay and R2
fgls =

=
β̂′

fglsX
′AXβ̂fgls

y′Ay , where β̂gls = (X ′AX)−1X ′Ay and β̂fgls = (X ′ÂX)−1X ′Ây.

One may note that Var(ε) = σ2
v/(1 − ρ2), so whenever ρ is close to ±1, the variance

is expected to be very high and it is not advisable to have such a high variance σ2
v,
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otherwise the data will contain enormous variation. This fact is reflected in all the tables
showing that the values of σ2

ε decrease as the values of |ρ| decrease.
First, we consider the effect of increasing sample size on the behavior of different

estimators when p = 4 (small) and σ2
v = 1 (low) remains the same and only n increases

from n = 20, 35 to n = 100. A common feature is that the RB of all R2
kk and R2

fkk

statistics decrease as n increases. The same conclusion continues to hold true when the
values of |ρ| decrease for fixed n, p and σ2

v. The behavior of RBs is nearly symmetric
for positive and negative values of ρ and only slight variation is present which is due
to the variation in the values of random errors v’s. The behavior of RBs of R2

kk and
R2

fkk statistics when |ρ| is high, say 0.8 and 0.9 remains stable provided σ2
v is smaller

(here σ2
v = 1). The effect of |ρ| on R2

kk and R2
fkk statistics becomes more prominent

when σ2
v increases (say σ2

v = 10) but this effect diminishes if the sample size becomes
higher. An important observation emerging from simulated values is that only R2

fagmmse,

R2
fgsre, R

2
gkkc and R2

fgkkc show abrupt behaviors for |ρ| = 0.9 when n and p are not very

large (say n = 20, p = 4) and σ2
v is large (σ2

v = 10). As soon as either n or p becomes
larger, then the behaviours of R2

fagmmse, R
2
fgsre, R

2
gkkc and R2

fgkkc improve. This is not a
surprising outcome because the data in such a case also has large variation which is being
controlled by the total number of observations. All other R2

kk and R2
fkk statistics behave

well in all the situations even when |ρ| = 0.9. So the proposed R2
kk and R2

fkk statistics

can also be used in case the data has near unit root problem. In general, R2
gsre, R

2
fgsre,

R2
gkkc and R2

fgkkc are not strongly recommended for near unit root situations. When the

number of explanatory variables becomes higher, R2
kk and R2

fkk statistics perform well

even for small sample size and large σ2
v values. In a nutshell, under the criterion of RBs,

the R2
kk and R2

fkk statistics works well when σ2
v is small (irrespective of n), σ2

v and n

both are large or σ2
v is large, n is small but p is large.

As a rule of thumb, it is indicated that the effect of σ2
v is controlled by the size of X

matrix which contains np observations. If np is large, it can subside the effect of large
error variation.

Another important strength of the proposed R2
kk and R2

fkk statistics is that they are

not much dependent on the values of ϑ. The RBs of all the R2
kk and R2

fkk statistics are
usually small irrespective of the values of ϑ. We have simulated the data in which ϑ is
as low as 0.3 and as high as 0.95. The RBs of all the R2

kk and R2
fkk statistics for all the

estimates are not usually high in most of the situations.
A good feature of the proposed goodness-of-fit statistics is that there is not much

difference between the values of R2
kk and R2

fkk statistics. It has an important implication
that in most of the cases in real data situations, the values of parameters are unknown.
Usually, they are estimated on the basis of given a sample of data and plugged in the
estimator. The use of proposed goodness-of-fit statistics and such analysis gives an idea
about the magnitude of change in the fitting of model.

When σ2
v is low, then the general ordering (may not necessarily always hold true) of

R2
kk and R2

fkk statistics emerging from the empirical results are

RB(R2
gmmse) < RB(R2

gls) < RB(R2
agmmse) < RB(R2

gsre) < RB(R2
gkkc) and

RB(R2
fgmmse) < RB(R2

fgls) < RB(R2
fagmmse) < RB(R2

fgsre) < RB(R2
fgkkc).

Now, we consider the relative mean squared errors (RMs) of various R2
kk and R2

fkk

statistics under different estimators. The RMs of all the R2
kk and R2

fkk statistics decreases

as n increases, particularly when p and σ2
v stay fixed. The RMs of R2

gls, R
2
fgls, R

2
gmmse

and R2
fgmmse are not significantly affected when |ρ| is very high, say |ρ| ≥ 0.8 but

all other R2
kk and R2

fkk values based on AGMMSE, GSRE and GKCCE are seriously
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affected even when n and p are large enough. When both n and p increase but σ2
v

decreases, the performances of these statistics remain unsatisfactory when |ρ| ≥ 0.8. So
GLSE and GMMSE along with their feasible versions provide a good fitted model even
in the presence of a near unit root problem in the data. The RMs of all R2

kk and R2
fkk

statistics usually decrease when p increases and/or σ2
v decreases. The performance is

better for lower values of σ2
v. The larger values of n and p are controlling the bad effects

arising due to large values of σ2
v on the RMs of R2

kk and R2
fkk. A general rule of thumb

emerging from the empirical values is that the performance of R2
kk and R2

fkk is better

when np is large provided σ2
v is not too high. The values of RMs of all R2

kk and R2
fkk

statistics decrease as |ρ| decreases for a given n, p and σ2
v. A general pattern of ordering

of RMs of R2
kk and R2

fkk values emerging from the simulated results are

RM(R2
gls) < RM(R2

gmmse) < RM(R2
agmmse) < RM(R2

gsre) < RM(R2
gkkc) and

RM(R2
fgls) < RM(R2

fgmmse) < RM(R2
fagmmse) < RM(R2

fgsre) < RM(R2
fgkkc).

The lowest and highest values of ϑ for which the data is simulated are close to 0.3
and 0.95 respectively. So the proposed goodness-of-fit statistics perform well in terms of
RMs even for lower values of ϑ.

Under the criterion of RM, the proposed R2
kk and R2

fkk statistics can be used and will

provide good results when both n and σ2
v are small, n is large and σ2

v is not too large or
n and/or p are large such that np is large and σ2

v is not too large.
A notable observation from the results is that the dominance of an estimator does not

guarantee a good fitted model based on the same estimator in terms of RM. For example,
the Stein rule estimator is well known to provide more efficient estimator of regression
coefficients than the least squares estimators like OLSE (or equivalently GLSE) when
p > 2. The simulation results are indicating that even when p > 2, the use of Stein rule
estimator does not guarantee a good fitted model in terms of COD. So the efficiency
property of estimators does not necessarily guarantee the best fitted model too. This
exemplifies the importance of the proposed goodness-of-fit statistics in this paper.

Another notable feature emerging from the simulated results is that there is not much
difference between the R2

kk and R2
fkk statistics based on an estimator and its feasible

version. In practice, the values of parameters are unknown and usually they are replaced
by their estimated counterparts. Such a result ensures that the proposed goodness-of-fit
statistics based on feasible various are nearly as good as the estimators themselves and
there is not much change in the model performance in terms of RMs of the statistics.

The role and effect of positive and negative values of ρ is almost the same on RMs
of all the R2

kk and R2
fkk statistics. The difference between the RMs at +ρ and at −ρ is

minor provided |ρ| < 0.8.
The usual COD based on OLSE statistic in the classical linear regression model in-

creases when p increases. We also compared the values of proposed R2
kk and R2

fkk by

changing p = 4 to p = 8 and keeping all other parameters fixed as n = 100, σ2
v = 5. The

results about RB and RM of R2
kk and R2

fkk based on all the estimators are presented in
Tables 1-2.

It is clearly evident that the RB and RM for the case when p = 8 are smaller than in
the case when p = 4. Hence R2

kk and R2
fkk increase as p increases.

To get more insight into the behaviors of R2
kk and R2

fkk, we have plotted the three-

dimensional surface plots of RBs and RMs of R2
kk and R2

fkk versus various values of
autocorrelation coefficient ρ and multiple correlation coefficient ϑ. This will give us an
idea about the simultaneous effect of ρ and ϑ over R2

kk and R2
fkk. The plots in figures are

arranged in the order of decreasing RBs and RMs from up to down. The graphs of RBs
are arranged in the order as RB(R2

gmmse), RB(R2
gls), RB(R2

agmmse), RB(R2
gsre) and
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RB(R2
gkkc) from up to down. Similarly, the plots of RMs are arranged in the decreasing

order as RM(R2
gls), RM(R2

gmmse), RM(R2
agmmse), RM(R2

gsre) and RM(R2
gkkc) from up

to down.
The surface plots for some selected values of n, p and σ2

v are presented in Figures
1–2 with the following notations: ρ and ϑ are denoted by ‘rho’ and ‘theta’ respec-
tively; R2

gls, R
2
gmmse, R2

agmmse, R2
gsre and R2

gkkc are denoted as ‘R2gls’, ‘R2gmmse’,

‘R2agmmse’, ‘R2gsre’ and ‘R2gkkc’ respectively. Similarly R2
fgls, R

2
fgmmse, R2

fagmmse,

R2
fgsre and R2

fgkkc are denoted as ‘R2fgls’, ‘R2fgmmse’, ‘R2fagmmse’, ‘R2fgsre’ and

‘R2gkkc’ respectively. The left and right panels of all the figures contain the RBs (or
RMs) of the estimators and their corresponding feasible versions, respectively. So the
side by side comparison of two figures gives a clear comparison of R2

kk and R2
fkk i.e., the

estimator and its corresponding feasible versions. In some cases, the values of ρ are close
to ±0.9, then RBs the RMs are very high and they are recomputed after deleting the
extreme values.

Now, we consider the three-dimensional surface plots from the figures about RBs.
First, we consider the effect of n over the RBs of different statistics from Figures 1
and 2, where n increases from 20 to 100 keeping σ2

v = 1 and p = 4 fixed. The structure,
curvature and pattern of all the figures based on the estimators and their feasible versions
are nearly the same with an exception of R2

fgls and R2
fgsr. The RBs of R2

fgls and

R2
fgsr gets stabilized only when n is large. The perturbations on surface decrease and

smoothness increases as sample size increases. An increase in the value of σ2
v increases

the perturbations on the surfaces. The values of σ2
v have stronger impact on the values

of RB than n and p. Once the structure of surfaces stabilizes, the slope of the surfaces is
decreasing as ϑ increases and/or |ρ| decreases which indicates that the RBs are getting
lower. The RBs seems to be more sensitive to the values of σ2

v than the values of n and
p. Higher the np, more smooth is the surface provided σ2

v is not very large. The slopes
of all the surfaces of RBs in all the figures are decreasing as ρ and ϑ decrease which
indicates that the RBs decrease.

Now, we study the behaviour of RMs of the R2
kk and R2

fkk statistics for various com-

bination of n, p and σ2
v from Figures. It is clear from these figures that when n increases,

keeping p and σ2
v fixed but letting σ2

v be lower (σ2
v = 1), the structure, smoothness, pat-

tern and perturbations on the surface of the plots gets stabilized. The increasing values
of σ2

v tends to change the structure of the surfaces more dominantly than the values of
n and p. If σ2

v increases, the side effects are controlled by np up to certain extent only.
The surface plots of R2

gsre and R2
gkkc are more affected with σ2

v than other plots in most
of the cases.

The slopes of surface and involved perturbations indicates the utility of proposed R2
kk

and R2
fkk statistics with respect to ϑ. It is clear that when ϑ is low, the RMs are higher.

As ϑ increases, the slope of the surfaces also decreases indicating that the RMs are
getting lower. Again, this is expected because the lower values of ϑ indicate that either
the data has very high variability beyond the ability of R2

kk and R2
fkk to handle or the

underlying model that is being followed by the data is nonlinear. Such situations are
correctly captured by the proposed R2

kk and R2
fkk statistics.

By comparing the surface plots on the left and right panels of the figures, one can
conclude about how the performance of an estimator change when it is converted into a
feasible form. We observe that all the figures on the left and right panels of the figures
are not always similar. The degree of similarity of figures is generally high when np is
large and σ2

v is low. This clearly indicates that the proposed R2
kk and R2

fkk statistics can
be used well even when the unknown parameters are estimated and replaced by their
estimated values depending upon the values of np and σ2

v.
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Table 1. Relative bias (RB) of R2’s when σ2
v = 1, n = 100 and p = 4

ρ ϑ σ2ε RB(R2
gls) RB(R2

fgls) RB(R2
gsre) RB(R2

fgsre) RB(R2
gmmse)

-0.9 0.854 5.263 0.0847 0.0914 0.8053 0.8344 0.09
-0.8 0.91 2.777 0.0422 0.0455 0.5202 0.5372 0.0451
-0.7 0.928 1.960 0.025 0.0273 0.3883 0.3995 0.0271
-0.6 0.937 1.562 0.0153 0.0169 0.3163 0.3237 0.017
-0.5 0.941 1.333 0.0092 0.0101 0.274 0.2779 0.0107
-0.4 0.943 1.190 0.0044 0.0048 0.2448 0.2466 0.0057
-0.3 0.944 1.098 0.0012 0.0011 0.2272 0.2264 0.0024
-0.2 0.944 1.041 0.0012 0.0016 0.2156 0.2131 0.0018
-0.1 0.944 1.010 0.0024 0.0032 0.2102 0.2058 0.0013
0 0.944 1 0.0029 0.004 0.2084 0.2026 0.0018
0.1 0.944 1.010 0.0022 0.0035 0.2123 0.2054 0.001
0.2 0.943 1.041 0.001 0.0024 0.2187 0.2114 0.0002
0.3 0.943 1.098 0.0018 0.0003 0.2331 0.2256 0.0031
0.4 0.942 1.190 0.0056 0.004 0.2543 0.2466 0.007
0.5 0.940 1.333 0.0105 0.009 0.2846 0.2773 0.0121
0.6 0.935 1.562 0.0171 0.0156 0.3296 0.3232 0.0189
0.7 0.926 1.960 0.0276 0.0258 0.4052 0.3991 0.0298
0.8 0.907 2.777 0.0457 0.0437 0.5403 0.5371 0.0487
0.9 0.851 5.263 0.0911 0.0882 0.8273 0.8331 0.0967

ρ ϑ σ2ε RB(R2
fgmmse) RB(R2

agmmse) RB(R2
fagmmse) RB(R2

gkkc) RB(R2
fgkkc)

-0.9 0.854 5.263 0.0967 0.5258 0.5454 0.929 0.9225
-0.8 0.91 2.777 0.0485 0.3074 0.3161 0.8313 0.8572
-0.7 0.928 1.960 0.0294 0.2213 0.2267 0.6708 0.6931
-0.6 0.937 1.562 0.0186 0.1759 0.1793 0.5677 0.5852
-0.5 0.941 1.333 0.0116 0.1496 0.1509 0.5032 0.5151
-0.4 0.943 1.190 0.0062 0.1313 0.1315 0.4577 0.4659
-0.3 0.944 1.098 0.0024 0.1202 0.1189 0.4299 0.4337
-0.2 0.944 1.041 0.0004 0.1128 0.1104 0.4116 0.4124
-0.1 0.944 1.010 0.0021 0.1093 0.1057 0.4032 0.4008
0 0.944 1 0.0029 0.1081 0.1037 0.4004 0.3957
0.1 0.944 1.010 0.0024 0.1105 0.1053 0.4067 0.4003
0.2 0.943 1.041 0.0012 0.1146 0.1091 0.417 0.4099
0.3 0.943 1.098 0.0015 0.1237 0.118 0.4397 0.4327
0.4 0.942 1.190 0.0053 0.1371 0.131 0.473 0.4663
0.5 0.940 1.333 0.0104 0.156 0.1501 0.5198 0.5148
0.6 0.935 1.562 0.0173 0.1842 0.1785 0.5875 0.5845
0.7 0.926 1.960 0.0279 0.2322 0.2258 0.6935 0.6928
0.8 0.907 2.777 0.0466 0.3213 0.3153 0.8519 0.8573
0.9 0.851 5.263 0.0936 0.5474 0.544 0.9078 0.9217

Table 2. Relative mean squared error (RM) of R2’s when σ2
v = 1,

n = 100 and p = 4
ρ ϑ σ2ε RM(R2

gls) RM(R2
fgls) RM(R2

gsre) RM(R2
fgsre) RM(R2

gmmse)

-0.9 0.8548 5.2632 0.002 0.0098 0.6595 0.7034 0.0102
-0.8 0.91 2.7778 0.0006 0.0025 0.2789 0.2947 0.0027
-0.7 0.9286 1.9608 0.0003 0.001 0.156 0.1636 0.0011
-0.6 0.9371 1.5625 0.0002 0.0004 0.1036 0.1075 0.0005
-0.5 0.9413 1.3333 0.0001 0.0002 0.0779 0.0795 0.0003
-0.4 0.9434 1.1905 0.0001 0.0001 0.0621 0.0627 0.0001
-0.3 0.9442 1.0989 0.0001 0.0001 0.0534 0.0529 0.0001
-0.2 0.9445 1.0417 0.0001 0.0001 0.048 0.0469 0.0001
-0.1 0.9444 1.0101 0.0001 0.0001 0.0456 0.0438 0.0001
0 0.9443 1 0.0001 0.0001 0.0448 0.0425 0.0001
0.1 0.9441 1.0101 0.0001 0.0001 0.0465 0.0436 0.0001
0.2 0.9439 1.0417 0.0001 0.0001 0.0494 0.0462 0.0001
0.3 0.9434 1.0989 0.0001 0.0001 0.0562 0.0525 0.0001
0.4 0.9423 1.1905 0.0001 0.0001 0.067 0.0627 0.0002
0.5 0.9401 1.3333 0.0001 0.0002 0.0838 0.079 0.0003
0.6 0.9357 1.5625 0.0002 0.0004 0.1124 0.1072 0.0006
0.7 0.9269 1.9608 0.0003 0.0009 0.1696 0.1633 0.0012
0.8 0.9078 2.7778 0.0006 0.0023 0.3002 0.2945 0.003
0.9 0.8514 5.2632 0.0021 0.0092 0.6947 0.7016 0.0115

ρ ϑ σ2ε RM(R2
fgmmse) RM(R2

agmmse) RM(R2
fagmmse) RM(R2

gkkc) RM(R2
fgkkc)

-0.9 0.8548 5.2632 0.0108 0.2873 0.3052 0.8762 0.8633
-0.8 0.91 2.7778 0.0028 0.0989 0.1032 0.6996 0.7405
-0.7 0.9286 1.9608 0.0011 0.0514 0.0533 0.459 0.487
-0.6 0.9371 1.5625 0.0005 0.0325 0.0334 0.3297 0.348
-0.5 0.9413 1.3333 0.0003 0.0236 0.0237 0.2595 0.2704
-0.4 0.9434 1.1905 0.0001 0.0182 0.0181 0.2146 0.2216
-0.3 0.9442 1.0989 0.0001 0.0152 0.0148 0.1891 0.1921
-0.2 0.9445 1.0417 0.0001 0.0134 0.0128 0.1733 0.1738
-0.1 0.9444 1.0101 0.0001 0.0125 0.0118 0.1661 0.1643
0 0.9443 1 0.0001 0.0123 0.0113 0.1639 0.1602
0.1 0.9441 1.0101 0.0001 0.0128 0.0117 0.169 0.1639
0.2 0.9439 1.0417 0.0001 0.0138 0.0125 0.1778 0.1718
0.3 0.9434 1.0989 0.0001 0.0161 0.0146 0.1977 0.1911
0.4 0.9423 1.1905 0.0001 0.0198 0.018 0.2291 0.2219
0.5 0.9401 1.3333 0.0002 0.0256 0.0234 0.2764 0.2698
0.6 0.9357 1.5625 0.0005 0.0356 0.0331 0.3527 0.3473
0.7 0.9269 1.9608 0.001 0.0565 0.0529 0.4899 0.4867
0.8 0.9078 2.7778 0.0026 0.1078 0.1027 0.7335 0.7405
0.9 0.8514 5.2632 0.0103 0.3108 0.304 0.8456 0.8627
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Figure 1. Surface plots of relative bias (RB) of R2
kk and R2

fkkwhen

σ2
v = 10, n = 100 and p = 8
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Figure 2. Surface plots of relative mean squared error (RM) of R2
kk

and R2
fkk when σ2

v = 10, n = 100 and p = 8
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6. Conclusion

Considering the setup of multiple linear regression model with random errors not nec-
essarily having an identity covariance matrix, the regression estimates are obtained using
DKKE and FDKKE. The goodness-of-fit statistics for DKKE and FDKKE estimators
are proposed when the covariance matrix of random errors is known as well as unknown.
These statistics can be used in several situations like heteroscedasticity, autocorrelation
etc. The first and second order moments up to first order of approximation of such pro-
posed statistics are derived. The empirical findings about the absolute relative bias and
relative mean squares errors of these statistics are based on a Monte-Carlo simulation
under a first order autoregressive model. The empirical findings from various statistics
based on different estimators suggest that the performance depends on the total number
of observations of explanatory variables. As this number increases, the performance of
statistics improve in the sense of smaller absolute bias and relative mean squared errors.
The goodness-of-fit statistics based on GMMSE and GLSE have the smallest absolute
bias and the smallest relative mean squared errors, respectively. The same is true for
their feasible versions viz., FGMMSE and FGLSE. If the structure of covariance matrix
is changed and is not based on a first order autoregressive model, then such ordering
may change. The main reporting in this paper is a very general form of a goodness-
of-fit statistics. Another interesting finding is that the superiority of an estimator in
terms of variance (or mean squared error) may not necessarily carry further over the
goodness-of-fit. The proposed statistics capture the model fitting very well even when ϑ
is low.
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ÑÒÀÒÈÑÒÈÊÀ ÓÇÃÎÄÆÅÍÎÑÒI ÄËß ÓÇÀÃÀËÜÍÅÍÎÃÎ

ÑÒÈÑÊÀËÜÍÎÃÎ ÎÖIÍÞÂÀÍÍß

×.-Ë. ×ÅÍÃ, ØÀËÀÁ, À. ×ÀÒÓÐÂÅÄI

Àíîòàöiÿ. Ðîçðîáëåíî ñòàòèñòèêó óçãîäæåíîñòi äëÿ ìîäåëåé ëiíiéíî¨ ðåãðåñi¨, ïiäiãíàíèõ çà äî-
ïîìîãîþ îöiíîê ñòèñêàëüíîãî òèïó. Ñiì'ÿ ïîäâiéíèõ îöiíîê k-êëàñó ðîçãëÿäà¹òüñÿ ÿê ñòèñêàëüíà
îöiíêà, ùî ìiñòèòü äeêiëüêà îöiíîê ÿê îêðåìi âèïàäêè. Ðîçãëÿíóòî âèïàäêè âiäîìî¨ òà íåâiäîìî¨
êîâàðiàöiéíî¨ ìàòðèöi ïîõèáîê, ÿêà çà ïðèïóùåííÿì ¹ âiäìiííîþ âiä îäèíè÷íî¨ ìàòðèöi. Äëÿ ñiì'¨
ïîäâiéíèõ îöiíîê k-êëàñó çàïðîïîíîâàíî ñòàòèñòèêó óçãîäæåíîñòi, ùî  ðóíòó¹òüñÿ íà iäå¨ êîåôi-
öi¹íòà äåòåðìiíàöi¨ ó ìîäåëi ìíîæèííî¨ ëiíiéíî¨ ðåãðåñi¨. Âèâåäåíî ¨¨ ìîìåíòè ïåðøîãî òà äðóãîãî
ïîðÿäêó ç òî÷íiñòþ äî ïåðøîãî ïîðÿäêó àïðîêñèìàöi¨ òà âèâ÷åíî ¨¨ âëàñòèâîñòi äëÿ ñêií÷åííî¨
âèáiðêè çà äîïîìîãîþ ìåòîäó Ìîíòå-Êàðëî.

ÑÒÀÒÈÑÒÈÊÀ ÑÎÃËÀÑÈß ÄËß ÎÁÎÁÙÅÍÍÎÃÎ ÑÆÈÌÀÞÙÅÃÎ

ÎÖÅÍÈÂÀÍÈß

×.-Ë. ×ÝÍÃ, ØÀËÀÁ, À. ×ÀÒÓÐÂÅÄÈ

Àííîòàöèÿ. Ðàçðàáîòàíà ñòàòèñòèêà ñîãëàñèÿ äëÿ ìîäåëåé ëèíåéíîé ðåãðåññèè, ïîäîãíàííûõ ïðè
ïîìîùè îöåíîê ñæèìàþùåãî òèïà. Ñåìåéñòâî äâîéíûõ îöåíîê k-êëàññà ðàññìàòðèâàåòñÿ êàê ñæè-
ìàþùàÿ îöåíêà, êîòîðàÿ îõâàòûâàåò íåñêîëüêî îöåíîê êàê ÷àñòíûå ñëó÷àè. Ðàññìîòðåíû ñëó÷àè
èçâåñòíîé è íåèçâåñòíîé êîâàðèàöèîííîé ìàòðèöû îøèáîê, êîòîðàÿ ïðåäïîëàãàåòñÿ îòëè÷àþùåéñÿ
îò åäèíè÷íîé ìàòðèöû. Äëÿ ñåìåéñòâà äâîéíûõ îöåíîê k-êëàññà ïðåäëîæåíà ñòàòèñòèêà ñîãëàñèÿ,
îñíîâàííàÿ íà èäåå êîýôôèöèåíòà äåòåðìèíàöèè â ìîäåëè ìíîæåñòâåííîé ëèíåéíîé ðåãðåññèè.
Âûâåäåíû åå ìîìåíòû ïåðâîãî è âòîðîãî ïîðÿäêà ñ òî÷íîñòüþ äî ïåðâîãî ïîðÿäêà àïïðîêñèìàöèè
è èçó÷åíû å¼ ñâîéñòâà äëÿ êîíå÷íîé âûáîðêè ñ ïîìîùüþ ìåòîäà Ìîíòå-Êàðëî.


