Teopis #imoBipHOCTEH Teoriya Imovirnostel

Ta MaTeMAaTH4YHA CTATUCTUKA ta Matematychna Statystyka
Bum. 2(101)/2019, c. 212-231 No. 2(101)/2019, pp. 212-231
UDC 519.21

COUPLING AND ERGODIC THEOREMS FOR MARKOV CHAINS
WITH DAMPING COMPONENT

D. SILVESTROV?, S. SILVESTROV?, B. ABOLA?, P. S. BIGANDA?3,
C. ENGSTROM?Z2, J. M. MANGO*, G. KAKUBA*

ABSTRACT. Perturbed Markov chains are popular models for description of information networks. In
such models, the transition matrix Pg of an information Markov chain is usually approximated by
matrix P. = (1 — ¢)Po + ¢D, where D is a so-called damping stochastic matrix with identical rows
and all positive elements, while ¢ € [0, 1] is a damping (perturbation) parameter. Using procedure of
artificial regeneration for the perturbed Markov chain n¢ n, with the matrix of transition probabilities
P¢, and coupling methods, we get ergodic theorems, in the form of asymptotic relations for p, ;;(n) =
= Pi;{ne,;n = j}, as n — oo and ¢ — 0, and explicit upper bounds for the rates of convergence in
such theorems. In particular, the most difficult case of the model with singular perturbations, where
the phase space of the unperturbed Markov chain 1g,» split in several closed classes of communicative
states and possibly a class of transient states, is investigated.
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1. INTRODUCTION

Perturbed Markov chains is one of the popular and important objects of studies in the
theory of Markov processes and their applications to stochastic networks, queuing and
reliability models, bio-stochastic systems, and many other stochastic models.

We refer here to some recent books and papers devoted to perturbation problems for
Markov type processes [5, 6, 11, 13, 14, 21, 24, 25, 28-30, 33-36, 38, 39, 44-46, 48-55,
57, 58]. In particular, we would like to mention works [5, 25, 48, 49], where the extended
bibliographies of works in the area and the corresponding methodological and historical
remarks can be found.

We are especially interested in models of Markov chains commonly used for description
of information networks. With recent advancement in technology, filtering information
has become a challenge in such systems. Moreover, their significance is visible as they
find their applications in Internet search engines, biological, financial, transport, queuing
networks and many others [1-10, 12, 15-19, 22, 27, 31, 56]. In such models an information
network is represented by the Markov chain associated with the corresponding node links
graph. Stationary distributions and other related characteristics of information Markov
chains usually serve as basic tools for ranking of nodes in information networks.

The ranking problem may be complicated by singularity of the corresponding infor-
mation Markov chain, where its phase space is split into several weakly or completely
non-communicating groups of states. In such models, the matrix of transition proba-
bilities Py of information Markov chain is usually regularised and approximated by the
stochastic matrix P, = (1—¢)Pg+¢eD, where D is a so-called damping stochastic matrix
with identical rows and all positive elements, while ¢ € [0,1] is a damping parameter.

Let @, be the stationary distribution of a Markov chain X, , with the regularised
matrix of transition probabilities P.. The power method is often used to approximate
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the corresponding stationary distribution 7y by rows of matrix P?. The damping pa-
rameter ¢ € (0,1] should be chosen neither too small nor too large. In the first case,
where ¢ takes too small values, the damping effect will not work against absorbing and
pseudo-absorbing effects, since the second eigenvalue for such matrices (determining the
rate of convergence in the above mentioned ergodic approximation) take values approach-
ing 1. In the second case, the ranking information (accumulated by matrix Po via the
corresponding stationary distribution) may be partly lost, due to the deviation of matrix
P, from matrix Py. This actualises the problem of studies of asymptotic behaviour of
stationary distributions 7, as ¢ — 0 and matrices P} in triangular array mode, where
e — 0 and n — oo, simultaneously.

The model, where matrix Py is a matrix of transition probabilities for a Markov
chain, which phase space is one class of communicative states is usually referred as the
model with regular perturbations. The model, where matrix P is a matrix of transition
probabilities for a Markov chain, which phase space split in several closed classes of
communicative states plus a class (possibly empty) of transient states, is usually referred
as the model with singular perturbations.

The asymptotic analysis in the singular case is much more difficult than in the regular
case. The approach used in this paper based on the use of method of artificial regen-
eration and renewal techniques for deriving special series representation for stationary
distributions 7t and coupling method.

The paper includes six sections. In Section 2, we describe the algorithm for stochastic
modelling of Markov chains with damping component and the procedure of embedding
such Markov chains in the model of discrete time regenerative processes with special
damping regenerative times. Also, we derive renewal type equations for the correspond-
ing transition probabilities, present ergodic theorems for the Markov chains with damp-
ing component and derive special series representation for the corresponding stationary
distributions. In Section 3, explicit upper bounds in approximations of the stationary
distributions for Markov chain with damping component are given. In Section 4, we give
coupling explicit estimate for the rate of convergence in ergodic theorems for Markov
chains with damping component. In Section 5, we present ergodic theorems for Markov
chains with damping component in triangular array mode. In Section 6, some concluding
comments are given.

2. MARKOV CHAINS WITH DAMPING COMPONENT (MCDC)

Let (a) X = {1,2, ...,m} be a finite set, (b) p = (p1,...,pm) and d = (d1,...,d,),
be two discrete probability distributions, (c) Po = ||po,i;|| be a m x m stochastic matrix,

(d) D = ||di;|| be a m x m damping stochastic matrix with elements d;; = d; > 0,
i,j = 1,...,m, and (e) Py = |[pesj|| = (1 — €)Po + eD is a stochastic matrix with
elements p ;; = (1 — €)po,i; + €dj,i,j = 1,...,m, where € € [0, 1].

We refer to a Markov chain X, ,,n = 0,1,..., with the phase space X, the initial
distribution p, and the matrix of transition probabilities P, as a Markov chain with
damping component (MCDC).

Denote by L, the class of all initial distributions p = (p1,...,pm)-

Let peij(n) = P{Xe, = j/Xeo = i},0,5 € X, n = 0,1,..., be n-steps transition
probabilities for the Markov chain X, ,. Obviously, pe;;(0) = I(i = j),i,j7 € X and
Pe,ij(1) = peij, i, j € X. Let, also, pe ,i(n) = Pp{Xen = j} = Ziexpipe,ij(n)y DE Ly,
j€X, n=0,1,... Obviously, pe 5;(0) =p,,j € X.

Here and henceforth, symbols P; and E; are used for probabilities and expectations
related to a Markov chain with an initial distribution p. In the case, where the initial
distribution is concentrated in a state i the above symbols take the forms P; and E;.
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The phase space X of the Markov chain X ,, is one aperiodic class of communicative
states, for every € € (0,1].

Let us describe a procedure of embedding the Markov chain X, , in the model of
discrete time regenerative processes with special damping regenerative times.

Let us define random variables U, W, U; y,, Ve n, We », satisfying the following assump-
tions:

(a) U takes values in space X and P{U = j} = p;,j € X;

(b) Uin,i € X,n =1,2,..., is family of independent random variables taking values
in space X and such that P{U, ,, = j} = posj,i,j € X,n=1,2,..
(¢) Voym = 0,1,..., is a sequence of independent random variables taking values in

space X and such that P{V,, = j} =d;,j e X,;n=1,2,..;

(d) W is a binary random variable taking values 0 and 1 with probabilities, respectively
qo and qz1;

(€) Wem,m = 1,2,..., be, for every ¢ € [0,1], a sequence of independent binary
random variables taking values 0 and 1 with probabilities, respectively, 1 — ¢ and ¢, for
n=12..;

(f) the random variables U, W, the family of random variables U; »,i € X,n =1,2,..,

and the random sequences V; ,,n =1,2,... and W¢ ,,,n =1,,2,..., are mutually inde-
pendent, for every ¢ € [0, 1].

Let us now define, for every ¢ € [0, 1], the random sequence X, ,,,n =0,1,..., by the
following recurrent relation,

Xen = UXc,n_l,nI(W&n =0)+V,IWer=1),n=12,..., X, o =U. (1)

It is readily seen that the random sequence X, ,,,n =0,1,... is, for every ¢ € [0,1], a

homogeneous Markov chain with phase space X, the initial distribution p and the matrix
of transition probabilities P,.
Let us now consider the extended random sequence,

Yen=Xen,Wen),n=12,..., Xeo=U, Weog=W. (2)

This random sequence also is, for every € € [0, 1], a homogeneous Markov chain, with
phase space Y = X x {0, 1}, the initial distribution D, = (pigr, (¢,7) € Y) and transition
probabilities,

Peirjk = P{Xe1=J,Wer1=k/Xeo=1,Weo=r}=

_ (1 — E)pO,ij for (i,T) S Y, j c X, k= 0, (3)
| ed; for (i,r) e Y, jeX k=1.

Now, let us assume that ¢ € (0, 1].
Let us define times of sequential hitting state 1 by the second component W ,,

Tep=min(n >Tep_1,Wepn=1),n=1,2,..., Te o =0. (4)

The random sequence Y, ,,n = 0,1,..., is a discrete time regenerative process with
“damping” regeneration times T, ,,n =0,1,....

This follows from independence of transition probabilities pe ik, given by relation
(3),on (i,7) e Yif bk =1.

This is a standard regenerative process, if the initial distribution d, = (d;I(r = 1),

(i,r) € Y).
The inter-regeneration times S¢ , = T o —Te n—1,7 = 1,2, ..., arei.i. d. geometrically
distributed random variables, with parameter ¢, i.e., P{S¢1 =n} =¢(1 —¢)""!1,n > 1.
Let us introduce sets Z; = {(j,0),(j,1)}, i € X}. Obviously, p, g;(n)

= P {Yen € Zj}, n > 0. That is why, probabilities p, j;(n),n > 0 are, for every
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j € X, the unique bounded solution for the following discrete time renewal equation,
Pedj(n) = pog;(m)(1— )"+ peg;(n—De(l—e)~" n>0. ()

If the initial distribution p, # do, Y, n is a regenerative process with the transition
period [0, T 1).

In the case, probabilities pe 5 ;(n) and p, 4 ;(n) are, for every j € X, connected by the
following renewal type relation,

Pepi(n) = Popg()(1—€)" + Y peg;(n—De(l —e)' ", n>0. (6)

The following theorem give a very useful series representation for the stationary dis-
tribution of the MCDC X ,,.

Theorem 1. The following ergodic relation takes place for any initial distribution
PE Ly, jeX, and e € (0,1],

Pepi(n) = e =€) poa;(1)(1—e) asn— oo. (7)
1=0
Proof. In the standard regeneration case, the geometrical distribution of the regeneration
time T, 1 = S, 1 is aperiodic and has expectation e~ L.
This makes it possible to apply the discrete time renewal theorem (see, for example,
[20]) to the renewal equation (5). This yields the following ergodic relation, for j € X,

Peas(n) = ey = €3 poa, (1 — )l asn - co. (®)
1=0
Obviously pop,;(n)(1—€)" — 0 asn — oo, for j € X. Let us also define p_ 7 ,(n—1) =0,
for I > n. Relation (8) implies that p, E,j(n —1) > M. jasn — oo, for I >0 and j € X.
Using the latter two asymptotic relations, relation (6), and the Lebesgue theorem, we
get, for p € Lp,,j €X,

Jim pep;(n) = lim pop;(n)(1—€)" + lim Zpe a;n—=De(l—e) "t =me ;. (9)
The proof is complete. |

The phase space X is one aperiodic class of communicative states for the Markov chain
Xe n, for every € € (0,1]. In this case, its stationary distribution 7t, = (. ;,j € X) is
the unique positive solution for the system of linear equations,

Zﬂs,ip£7ij = 7T5,j,j eX, Zﬂs’j =1. (10)
iex jEX
Also, the stationary probabilities 7, ; can be represented in the form 7, ; = e;;,
j € X, via the expected return times e ;, with the use of regeneration property of the
Markov chain X, ,, at moments of return in state j.

The series representation (7) for the stationary distribution of Markov chain X, ,, is
based on the use of alternative damping regeneration times. This representation is, by
our opinion, a more effective tool for performing asymptotic perturbation analysis for
MCDC.

Let us also describe ergodic properties of the Markov chain X j,.

Its ergodic properties are determined by communicative properties its phase space X
and the matrix of transition probabilities Py. The simplest case is where the following
condition holds:
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A1: The phase space X is one aperiodic class of communicative states for the Markov
chain X ,,.

In this case, the following ergodic relation holds, for any p € L,,,j € X,
p07§7j(n) — Tp,; as € — 0, (11)

The stationary distribution 7y = (79 ;,7 € X) is the unique positive solution of the

system of linear equations,
> mopo; =00 €X, D> Mo =1. (12)
iexX jex

A more complex is the case, where the following condition holds:

B;: The phase space X = UZ:OX(Q), where: (a) X, g = 0,...,h, are non-inter-

secting subsets of X, (b) X@ g = 1,...,h, are non-empty, closed, aperiodic
classes of communicative states for the Markov chain X, (c) and X ©) is a
class (possibly empty) of transient states for the Markov chain Xg .

If the initial distribution of there Markov chain X ,, is concentrated at the set X(g),
for some g = 1,...,h, then Xy, = Xégz,n = 0,1,..., can be considered as a Markov
chain with the reduced phase space X(g) and the matrix of transition probabilities
Pog = ”pO,rka,rEX(g)-

According condition By, there exists, for any r,k € X9, g=1,... h,

po.rk(n) — 71(()9,)C as n — 0o, (13)

where ﬁ(()g) = (n(()g;,k € X)) is, for ¢ = 1,...,h, the stationary distribution of the
Markov chain Xé")l.

The stationary distribution 7
for the system of linear equations,

ﬂgg,i = Z 710 ) Do, k € XU Z n(()g; = (14)
rex() keX(9)

(9) 4 is, for every g = 1,..., h, the unique positive solution

Let Ze =min(n >0: X, € X(O)) be the first hitting time of the Markov chain X, ,

into the set X'. Note that Ze = 0, if Xco € X\, while Z¢ > 1, if X¢ 0 € X(©).
Let also introduce probabilities, for i € X and g =1,...,h,

F19 = Pi{X, 5, € XY, (15)
The following relation takes place, for 5 € L,,,k € X9 g=1,... h,
9D =Pp{Xez, €XDy = S it Y pifl) =

ieX(9) 1€X(0)
o0
Sopi+ Do mY. > Pi{Ze=1Xc =1} (16)
ieX(9) 1€X(0) =1 rex(9)

Note that in the case, where the set X(?) is empty, the second sum disappears in the
above formulas for probabilities f¢75 (),

Lemma 1. Let condition By holds. Then, the following ergodic relation takes place, for
pe Ly and k € X,

]”(JJ,7'C(()£’,)c forkeX9 g=1,... h,

0 for k € X, (17)

Jimpopr(n) = mopn = {
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Proof. Let us assume that X(® is a non-empty set.
The following relation takes place, for p € Ly, k € X9 g=1,..., h,

Posk(n) = > pipoa(n) + pzz > Pi{Zo=1,X0; = r}posk(n—1), n>0.

ieX(9) 1eX(0) =1 rex(9
(18)

Let us also define pg ,(n—1) = 0, for | > n. Relation (13) implies that p ,x(n—1) — 7'[(()9,)C

asn — oo, for | >0and r ke X9 g=1,... h.
Using the above relation, relations (16), (18) and the Lebesgue theorem, we get, for
PELmkeX® g=1,... h,

nlggopof’*k(n) = nl;rrgo Z pipo,ik(n) +
ieX(9)

+ lm > op Y Y PifZo =1 X0 =r}posnn—1) =

iex©  1=1 T@g(q)

= Z pzﬂ(g)+ Z pzz Z Pi{Zo=1,Xo; = T}ﬂé{]/)c:

iex(@) ieX©® =1 rex(9)
= £, (19)
Also, the following relation holds, for § € L,,, k € X(©),
70 5.k (7 Z piPi{Zo > n, Xon =k} < Z piPi{Zo >n} —0asn — oco. (20)
i€X(0) iex(0)
The case, where X(©) = (), is trivial. O

Ergodic relation (17) shows that in the case, where condition B; holds, the stationary
probabilities 7y 5 defined by the asymptotic relation (17) may depend on the initial
distribution.

The perturbation model, where condition A; holds, i.e., the phase space X is one
class of communicative states for the Markov chain X ,,, can be referred as regular. The
perturbation model, where condition By holds, i.e., the phase space X is not one class of
communicative states for the Markov chain X ., can be referred as singular.

3. RATE OF CONVERGENCE FOR STATIONARY DISTRIBUTIONS
OF PERTURBED MCDC

In this section, we obtain explicit upper bounds for deviations of stationary distribu-
tions for Markov chains X¢ ,, and X .

It is well known that, under condition A1, the rate of convergence in the ergodic rela-
tion (17) is exponential. This means that there exist some constants C' = C'(Py) € [0, 00),
A =A(Py) € [0,1), and distribution 7ty = (19 4, j € X), with all positive component such
that the following relation holds,

max [po,i;(n) — mo,;| < CAN", n > 1. (21)

i,j€X
In fact, condition A; is equivalent to the following condition:

Ajy: There exist a constants C = C(Py) € [0,00), A = A(Pp) € [0,1), and a distri-
bution 7y = (7,5, j € X) with all positive component such that relation (21)
holds.
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Indeed, condition A, implies that probabilities pg;;(n) > 0,4,57 € X for all large
enough n. This implies that X is one aperiodic class of communicative states. Also,
condition Ay implies that pg;;(n) — m ; as n — oo, for 4,5 € X, and, thus, 7 is the
stationary distribution for the Markov chain X ,,.

According the Perron—Frobenius theorem, the role of A can play the absolute value
of the second (by absolute value), eigenvalue for matrix Py. As far as constant C' is
concerned, we refer to the book [20], where one can find the algorithms which let one
compute this constant.

The following theorem present explicit upper bounds for deviations of stationary dis-
tributions of Markov chains X¢ ,, and Xj ., for the regular perturbation model.

Theorem 2. Let condition As holds. Then the following relation holds, for j € X,

CA
|7T5,j — 7'[0,]“ < E(|dj — 7T0,j| + 1—)\>’ (22)

where the damping distribution d = (d;,j € X) has been defined in Section 2.

Proof. The inequalities appearing in condition Ao imply that the following relation holds,
forn>1,5€X,

Po.d;(n) — ol = | > _(dipo,ij(n) — dimo ;)| <> dilpo,ij(n) — mo ;)| < CA™.  (23)
ieX 1€X

Using relations (7) and (23), we get the following estimate, for j € X,

o0
7 = ol < le D poa (N1 — €)' = o] =
=0

=leY poa; (L —e) =&Y mo;(l—e)| <
1=0 1=0

eld; —mo | +e» CN(1—¢) <

<
1=1
CAN1—¢) CA
< | = T ) < D] — ).
_£<dj 7107]|+1_}\(1_£)> —5<|dj To,5| + 1_)\> (24)
The proof is complete. |

The quantities |d; — 7 ;| appearing in inequality (22) are, in some sense, determined
by a prior information about the stationary probabilities. They takes smaller values if
one can choose initial distribution p with smaller deviation of the stationary distribution
M. Inequalities |d; — 1o ;| < d; V (1 —d;) < 1 let one replace the term |d; — 7 ;| in
inequality (22) by quantities independent on the corresponding stationary probabilities

UORE
Theorem 2 remains also valid if condition A, is weaken by omitting in it the as-
sumption of positivity for the distribution 7ty = (mg;,¢ € X) appearing in this con-

dition. In this case, condition A, implies that the phase space X = X; U Xq, where
Xy ={i e X:m,; > 0} is a non-empty closed class of communicative states, while
Xo = {i € X:mp,; = 0} is a the class (possibly empty) of transient states, for the Markov
chain X ,. Note that 7, still is the stationary distribution for this Markov chain.

We would like also to refer to paper [33], where one can find alternative upper bounds
for the rate of convergence of stationary distributions for perturbed Markov chains and
further related references.

Let now assume that condition B holds.
Let us consider matrices, for g =0,...,hand n=0,1,...,
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Poy = [P0,k kexn and PG, = 7 (m)] pexcor (25)

Note that, for g = 1,..., h, probabilities pg?r)k(n) = pork(n),rk € X n >0, since
X@) j=1,..., h are closed classes of states.

The reduced Markov chain Xéii with the phase space X and the matrix of transition
probabilities Pg 4 is, for every ¢ = 1,...,h, exponentially ergodic and the following
estimates take place, for k € X9, g=1,...,hand n=0,1,.

(g) < CyAT, 26
 nax | 1po.rw (1) - )| (26)

with some constants Cy = Cy(Py) € [0,00),A; = Ay(Pg) € [0,1),g = 1,...,h and
distributions ﬂ(g) (7t (()g,l, ke X)) g=1,... h, with all positive component.

(9) (9)

Obviously, inequalities (26) imply that py'r,(n) — 75y as n — oo, for 1k € X(9)

g=1,...,h. Thus, distribution ft(()g ) is the stationary distribution for the Markov chain
Xé for every g=1,...,h.

As has been mentloned above the role of A, can play, for every g = 1,...,h, the
absolute value of the second (by absolute value), eigenvalue for matrix Pg 4, and Cy is
the constant, which as has been mentioned above can be computed using the algorithm
described in book [20].

As well known, there exists Ag = Ag(Pg) € (0, 1) such that there exist finite exponential
moments, for i € X(©),

COJ' = CO,i(PO) = Eie(ln AEI)ZO = Ei)\aZO < 0. (27)

Let us also denote,

C() = max CO Q- (28)
ZEX(O)

The upper estimates for Ag can be found, for example, in book [25].
Let us denote,

A= Orgga?h?\g, C = glgx (Cy 4+ CyCo + Cy). (29)

Here, one should formally count Cy,Ag = 0, if the class X(©) is empty.

Condition B is, in fact, equivalent to the following condition:

B2: The phase space X = UZ:OX(Q), where: (a) X, g = 0,...,h, are non-inter-
secting subsets of X, (b) X@ g = 1,..., h, are non-empty, closed classes of
states for the Markov chain X, such that inequalities (26) hold, (c) X is a
class of states for the Markov chain X, such that relation (27) holds (if X(® is
a non-empty set).

Indeed, condition B, implies that probabilities pé‘fﬁk(n) >0,rkeX9 g=1,...,h,

for all large enough n. This implies that X(9), g = 1,..., h are closed aperiodic classes of
communicative states. Also, inequalities (26) imply that pégzk(n) — 7'[5?]1

r ke X g=1,... h, and, thus, ﬁ(()g) = (n((f,)c, ke X(g)> is the stationary distribution

as n — oo, for

for the Markov chain Xé%z, for every g = 1,...,h. Also, relation (27) implies that

probabilities p(()ogk( ) = 0 as n — oo, for r k € X (if X©) is a non-empty set). This

implies that X is a class of transient states for the Markov chain X, (0)
Lemma 2. Let condition By holds. Then the following relation holds, for p € L,,, k € X
andn > 1,

[Po.p.k(n) = 70 p k] < CA™. (30)
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Proof. Let us, first, assume that X (©) = 0.
In this case, relations (16)-(18) imply that, for p € L.,k € X9 g = 1,..., h and
n>1,

o k(n) = Mokl = | > pipik(n) = D pimh| < CoAp < CA™. (31)
ic X (9) e X (9)

Let us now assume that X (©) = ().
Using relations (16)—(18) and (26)—(27), we get the following inequalities, for p € L,,,
keX9 g=1,...,hand n>1,

P05 () = mopil =1 > pipi(n) +
i€X(9)

+ ) pzz 3" Pi{Zo =1, X0y = r}pl)(n— 1) — [ <

3€X(0) =1 reXx(

< 3 pilpi(n) — )| +
ieX(9)

n—1
Yo Piy, > Pi{ZO:l7X0,l:T}|p(()!,]2k(n_l) 7T(()gll|‘|‘

1€X(0) =1 rex(9)

+ Z Di Z Pi{Zo =n, Xon =r}I(r=k) — (()gl)c‘ +

i€X(0) rex(e)

+|ZPZZZP{ZO—ZXOZZT} |7T0k_

1€X(0) =1 rex@

n—1
SCAP+ > pi Y Pil{Zo=13CAr T +

iex =1
+ > piPi{Zo=n}+ Y piPi{Z >n} <
i€X(0) i€X(0)
<C7\"+ZplZP{Zo—l}7\0 )'CyA"™ + CoA™ <
iex©@ =1
< (Cy+ CoCy + Co)A™ = CA™. (32)

Also, in this case, the following relation holds, for n > 1,k € X(©),

7'[0’;,J7 Z piP; {Z() >n, XOn = k} <
1€X(0)
< > piPi{Zo > n} < CoAj < CA™. (33)
1€X(0)
The proof is complete. O

Lemma 2 implies that, in the singular case, where condition Bs hold and, thus the
stationary distribution 7ty 5 = (795,,J € X) depends on the initial distribution p, the
rate of convergence in the ergodic relation (17) is exponential, as it is in the regular case,
where condition A holds.

The following theorem presents explicit upper bounds for deviations of stationary
distributions of Markov chains X, , and Xg ,, for the singular perturbation model.



COUPLING AND ERGODIC THEOREMS 221

Theorem 3. Let condition By holds. Then the following relation holds, for k € X,

SEANY (34)

ITte & — 7o g6 < €(ldr — 9 g 5| + Y

Proof. Using relation (7) and (31) — (33), we get the following estimate, for k € X,

o0
Tk — T, q] < e Zpo,é,k(l)(l — &) =y gl =
1=0

o0 o
= |£ZpO,J,k(l)(1 —e) —e Z”O,&,k(l —e)'| <
1=0 1=0

< elde — T 44| + sZC‘Xl(l —e)l <
1=1
CA(1 —¢) CA
< dr — Ty 7 —— | < di, — Ty g — . 35
£(| k— To,dk +1—?\(1—s)>£<| k 7T0,d7k|+1_}\> (35)
The proof is complete. U

4. COUPLING AND ERGODIC THEOREMS FOR PERTURBED MCDC

In this section, we present coupling algorithms and get the effective upper bounds
for the rate of convergence in ergodic theorems for regularly and singularly perturbed
MCDC.

Let o = (p},i € X) and p’ = (p{,i € X) be two discrete probability distribu-
tions. Let us denote by L[p’, "] the class of two-dimensional probability distribution
P = (P, (i,7) € X x X) which satisfy the following conditions (a) P} = > jex Pij = pi;
i€X;(b) P/'=3cx Pij =pj,jeX

Let us also denote,

Qp = Py and Q(p,p")= sup Qp. (36)
iex PeL[p’.p"]
The following lemma presents the well known “coupling” result, which variants can
be found in [23, 26, 32, 37] and [40-43, 47].
Lemma 3. There exists the two-dimensional distribution P* = (P};,i,j € X) € L[p/,p"]
such that:
Qp. = Q" = min(p},p) = Q") (37)

ieX
The distribution P* is given by the following relations:
(i) If @* € (0,1), then
P =min(p;, p)I(i = j) +
1
1-Q*
(1) Q* =1 if and only if p), =P}, k € X, and

+ (p; — min(p}, p)) (P} — min(p}, py)),i,j € X. (38)
P} = min(p, pj)I(i = j), 4,5 € X. (39)
(111) Q* =0 if and only if p.p} =0,k € X, and
* N
P =pipj,i,j € X. (40)



222 D. SILVESTROV AT AL.

Proof. Tt can be found in the above mentioned works. In order, to improve self-readability
of the present paper, we just give a short sketch of the proof. Obviously, probability
Py < piAplie X, for any two-dimensional distribution P = (P;;, (i,7) € X x X) €
€ L[p',p"]. This relation implies that Qp < Q" = >_,x p; A pj. This is easily to check
that every relation (38), (39), or (40) defines a two-dimensional distribution P* from the
class L[p’,p"]. Moreover, the corresponding quantity @ 5. = Q*. This is obvious for two
cases presented in propositions (ii) and (iii). In the first case presented in proposition
(1), this follows from relation, (p; — min(p}, p}))(p! — min(p},p/)) =0, i € X. O

Let ¢ € (0,1]. Let us us consider the random sequence Xg\,? = Xenn,n=0,1,..,
for some natural N > 1. It is a homogeneous Markov chain, with an initial distribution
p, the phase space X, and the matrix of transition probabilities PY = ||pc ;;(N)]|.

Let us define the quantities, for ¢, j € X,

QLY = > min(peir(N), pe,jr(N)). (41)
reX
Let now use the multi-step coupling algorithm for construction a coupling Markov
chain Z0) = (X/) xVIVY n=0,1,.. ., with:
(i) the phase space Z = X x X;
(ii) the initial distribution P. = (peij, (i,5) € Z) constructing according to relation
(38), (39), or (40) for distributions ' = p = (p;,7 € X) and p"" = 7t = (11 4,1 € X);

PY)  defined by the following relations, for (3, j), (r, k) €

(iii) transition probabilities P ;. .

€ Z:
(a) It Q™) € (0, 1), then,

£,17
P =P =k, X! =/ XD =i, X! = 5y =
= min(pe.ir (), Pe jr (V))I(r = k) +
1 .
+ W(?a,ir(]v) — min(pe ir (V), pe jr(N))) X
£,i]

X (pe jr(N) — min(pe ik (N), pe jx(N))), (42)
() If Q™) = 1, then pe in(N) = pejr(N), 7 € X, and

£,1]
PR = min(pe.ir (N), pe ju(N)I(r = k), k € X. (43)
(c) If Q(EAZ]]) =0, then p¢ ;7 (N)pe, jr(N) = 0,7 € X, and
PO = pein(N)pe ju(N), 1k € X. (44)
The above construction of coupling Markov chain and the following lemma originate
from works [23] and [37]. It plays an important role in what follows.

Lemma 4. Let Zg{\,? = (Xésg),Xg’(nN)),n =0,1,..., be a homogeneous Markov chain

with the phase space Z = X x X, the initial distribution P, and transition probabilities
given by relations (42)—(44). Then:

(i) The first component, Xég ,n=20,1,..., is a homogeneous Markov chain with the
phase space X, the initial distribution p and the matriz of transition probabilities PY .
(ii) The second component Xg,(,{v),n =0,1,... is a homogeneous Markov chain with

the phase space X, the initial distribution 7. and the matriz of transition probabilities
PV

(iii) The set Zo = {(3,7),t € X} is an absorbing set for the Markov chain Zg\rfl), ie.,
probabilities pY) = 0, fori,r,k € X,r £ k.

€,i1,rk



COUPLING AND ERGODIC THEOREMS 223

We also refer to preprint [3], where the proof of Lemma 4 can be found.

Let A = ||a;;|| be a m x m a matrix with real-valued elements. Let us introduce
functional,

= A 45

Q(A) 1<I}ljlgmzazk ajk- (45)

The following simple lemma presents some basic properties of functional Q(A).

Lemma 5. Functional Q(A) possesses the following properties: (a) Q(aA) = aQ(A),
for any a > 0; (b) Q(A) > a1Q(A1) + -+ + an,Q(A,), for any m x m matrices

A4, ..., A, with real-valued elements, numbers ay,...,a, > 0,a1---+a, = 1, and matric
A=A+ FanA,, forn>2; (c) Q(A) € [0,1], for any stochastic matriz A; (d)
Q(A) = 1, for any m x m stochastic damping type matric A = ||a;;||, with elements
Qi = aj Zo,i,j: 1,...,m.

The following useful proposition takes place.

Lemma 6. The following inequality takes place, for N > 1 and ¢ € (0,1],

1-QPY) <(1-QEPy))(1—¢)Y. (46)
Proof. Relation, AB = B, holds for any m x m stochastic matrix A = ||a;;| and m x m
stochastic damping type matrix B = ||b;;||, with elements b;; = b; > 0,4,5 = 1,...,m.
Also, matrix C = BA, which has elements, ¢;; = ¢; = Z?;l brar; > 0,4, =1,...,m,

is a stochastic damping type matrix, i.e., it has all rows the same.
Using these remarks, we get the following relation, for N > 1,

PY = (1 -¢)Po+eD)Y =PV 11— )Py + PV 1eD =PV (1 —¢)Py +eD =
=PV 21 -¢)?’P2 + PY2¢(1 — ¢)DPy + ¢D =
= =(1-e)"PY +e(1-e)V'DPY 1 +... £ ¢D. (47)
(47) and Lemma 5, we get the following relation,
)= (1= )NQ(PY) +e(1— )" 'QDPF ) + -+ +£Q(D) =
=1-NQP))+el—e)V T+ te=
=1-e"QP{) +1—-(1—-e)". (48)
This relation is equivalent to inequality (46). |

Using relation

Let us introduce, for N > 1, the coeflicient of ergodicity,
An(Py) = (1-Q(P)/N. (49)

The given below Theorems 4 and 5 present effective coupling type upper bounds for
the rate of convergence in the individual ergodic theorem for MCDC. These theorems
are based on corresponding general coupling results for Markov chains given in [23,
32, 37] and specify and detail the corresponding coupling upper bounds for the rate of
convergence in ergodic theorems for MCDC.

Note that neither condition A nor condition B is required in Theorem 4 formulated
below.

Also, we count Ay (Pg)? =1, if Ay (Pg) = 0.

Theorem 4. The following relation takes place, for every p € Ly, j € X, n > 0, and
€ (0,1],

[ep(n) = e gl < (1= Q(B,7te)) A (Po) /NN (1 — ) /NN, (50)
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Proof. Since, the initial distribution of Markov chain X 2’,&{") coincides with its stationary
distribution, this Markov chain is a stationary random sequence and, thus, for j € X,
n >0,

PIXIOY) =} = me . (51)

Let us now define the hitting (coupling) time,
TW) = min(n >0 X;_S]TY) = X;_C(nN)) =min(n >0: ng\fl) € Zo). (52)
Since Zg is an absorbing set for the Markov chain Zﬁf}?, the following relation holds,
P{Z) € Zo,n > TN} = 1. (53)

Using the above remarks, we get the following relation, for j € X,n > 0,
[e.p.i(Nn) —e | = [P{XG) = j} — P{XIOY) = j}| =
= IP{XE) =5, XU # 5} = PLXED #5,XU0 =} <
< P{XE) =5, XEW # 5} + PIXED # 5. X050 =) <
< P{T™) > n}. (54)
Using Lemma 6, we get, for p € L,,, 5 € X,
[Peg(0) = e | < PLXG) =3, X007 # 5 + PAXLSY #5. X057 = ) <
<P{T™) >0} = - Q(p, 7). (55)
Also, by continuing inequality (54), we get, for p € L,,j € X,n > 0,
[epg (N1) = e 3| < P{TEY) > m} =
= D P A XUV XS =i XU = ) <
i,j€X
x P{TMN) > — 1, X! =i, x!W = j} =
STPITM s> -1, x00, =i xIY =531 - QM) <

i,jEX et et H] -
<P > - 13(1- QPY)) <
< <P(T > 0)(1- QPY))" <
< (1- Q) — QY"1 — )"

= (1 - Q(p, 7)) An (Po)) V(1 — )V (56)
Also, forpe Ly,,jeX,;n>0and(=0,...,N —1,

|p€7P7](Nn+ l) - T[E,j| - | Zpi,p, TLN ps k] Zﬂs kPe k] >

kex kex
< Z [pe.p.k(NN) — 7te g |pe ks (1) <
kexX
< max |pepr (V1) = Te | <
< (1 - Q(p, 7)) An (Po) ™™ (1 — &)™ (57)
Inequalities (56) and (57) imply inequalities given in relation (50). The proof is com-
plete. (|

The upper bounds given in relation (50) become better if quantities 1 — Q(p, 7. ),
An(Pg) and 1 — ¢ take smaller values. The factor 1 — Q(p, 7te ), is determined by a prior
information about the stationary probabilities. It takes smaller values if one can choose
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initial distribution p with smaller deviation from the stationary distribution 7t.. Relation
(50) gives an effective upper bounds for the rate of convergence in the corresponding
individual ergodic theorem for the Markov chain X, , even in the case, where factor
An(Pg) = 1.

It also worth noting that the weaker upper bound (1 — &)™ on the right hand side of
inequality (50) have been given for Markov chains with a general phase and damping
component, in the recent paper [6].

In the case, where condition A; holds (i.e., the phase space X is one aperiodic class
of communicative states for the Markov chain Xo,,), 1 — Q(PY) — 0 as N — oo, and,
thus, the following condition holds for N large enough:

Cn: AN(P()) < 1.

Also, condition Cy is, for every N > 1, sufficient for holding the mentioned above
weaken variant of condition As.

Indeed, probabilities pe 5;(n) — popj(n) as € — 0, for any j € X,n > 0. Since
stationary probabilities 7. ; € [0,1],7 € X, any sequence 0 < €, — 0 as n — o0
contains a subsequence 0 < &,, — 0 as | — oo such that 7., ; — m,; as | — oo, for
j € X. By passing ¢ — 0 in the inequality (50), we get the following relation holding for
DE Lpy,j€X,n>0,

Po.s.i(n) — o] < (1 — Q(p, o)) A (Pg) /NN
< An(Po) MAN(Po)" = (1-Qn(P) ' Ax(Po)", (58

where one should count Ay (Pg)? = 1, if Ay (Pg) = 0.

Relation (58) obviously implies that pg 5 ;(n) — 7 ; as n — oo, for j € X. Thus,
limits 7 4,7 € X are the same for any subsequences ¢, and ¢,, and, thus, stationary
probabilities 7, ; — 7o ; as € — 0, for 7 € X. By derecting ¢ — 0 in the equations
given in relation (10), we get that limits 71 ;, j € X satisfy the system of linear equations
(10) and, thus, y = (79,5, j € X) is the stationary distribution for the Markov chain
Xo,n- Some components of this stationary distribution can be equal 0. In this case, set
Xy ={j e X:m,; >0} is a closed, aperiodic class of communicative states, while set
Xo ={j € X:my; = 0} is the class of transient states, for the Markov chain X ,,.

If the stationary distribution 7ty = (79 ;,j € X) is positive, then X, = (. In this case,
condition Cy is sufficient for holding of condition A;.

Further, relation (58) implies that the Markov chain X, is ergodic with an exponen-
tial rate of convergence in the corresponding ergodic theorem, if condition Cy holds, for
some N > 1.

In the case, where A; and some minor technical conditions hold, Ay (PO) — |p12] as
N — oo, where pj 2 is the second eigenvalue for matrix Py. The corresponding comments
can be found in [3]. The above asymptotic relation show that the coupling upper bounds
for rate of convergence in individual ergodic relations given in Theorem 4 usually are
asymptotically equivalent with analogous upper bounds, which can be obtained with
the use of eigenvalue decomposition representation for transition probabilities. At the
same time, computing of coefficients of ergodicity Ay (Pg) does not require solving of
the polynomial equation, det(pI — Py) = 0, that is required for finding eigenvalues.

Let us assume that the following condition holds for some N > 1 and h > 1:

Dy: The phase space X = UZZOX(Q), where: (a) X9, g = 1,...,h, are non-inter-
secting subsets of X, (b) X@) g = 1,..., h, are non-empty, closed classes of
states for the Markov chain Xo,, (c) Ax(Pog) <1,forg=1,...,h, (d)
X is a class of states for the Markov chain X, such that relation (27) holds
(if X© is a non-empty set).
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Remark 1. Condition Dy implies that condition By holds, with constants Cy = Cy v
and Ag = Ag,n appearing in relation (27) and constants C, = Cyn = An(Po,)7 Y,
Ag = Agn = An(Poyg),9 = 1,...,h given by inequalities (58). Thus, Lemma 2 takes
place, with constants C = Cy and A = Ay given by relation (28) and (29), in which
constants Cy = Cy n,Ag =Ag.n,g=0,...,h.

It is useful also to note that condition Bs implies that condition Dy holds for IV large
enough.

Let us denote, for p’,p” € L, k € X,
80,5 5"k = |T0.5,k — T, k| =

0,p 0"

U 5 for ke X0 g =1,
- , . (59)
0 for k € X(©,

Theorem 5. Let condition Dy holds. Then, the following relation takes place, for
PE Ly, keX g=0,...,h, n>0, and ¢ € (0,1],
[Pepr(n) — e k| < (2CNAR + 80,57, 1) (1 — €)" <
< (2CNAY +1)(1— o)™ (60)
Proof. By using the renewal type relation (6), condition Dy, and taking into account sta-

tionarity of the Markov chain X ,, with the initial distribution 7, we get the following
relation, for k € X9 g =1,...,h, and n > 0,

[Pe,pk (1) — Te k| = [Pe,pk(R) — Pe,re i(R)] =
= [po,p.i(1) = Po,m. k(0| (1 — €)™ (61)
Lemmas 1 and 2, let us continue relation (61),
1p0.5,k(n) — po,z. k(n)|(1 — €)™ < (Ipo,pk(n) — 7o 5k| + P07,k (n) — T2, k] +
+ 70,50 — Mo k]) (1 — €)" <
< (20NN + 80,57, 1) (1 — €)™ (62)
Relations (61) and (62) imply relation (60) to hold. O

5. ERGODIC THEOREMS FOR PERTURBED MCDC

In his section we present ergodic theorems for regularly and singularly perturbed
MCDC.

First, let us consider the case of regularly perturbed MCDC. The following theorem
takes place.

Theorem 6. Let condition Cy holds for some N > 1. Then, for p € L,k € X and
any ne — 00 as € — 0,

Pepk(Ne) = Mok = T g5 as € — 0. (63)

Proof. Using the renewal type relation (6) and inequality (58), we get that the following
relation holds, for k£ € X and any n, — co as ¢ — 0,

[Pepk(ne) — Mok = |pepr(ne) — mor(l — €)™ —mop(l—(1—¢)" )| =

= [(po,p,k(ne) — o) (1 — €)™ + Z(po,i,k(ns —1) —mor)e(l—e)' 7t <
=1

< (1= Q(5,70) A (Po)" /NN 4 (1 — Q(d, 70) )& Z A (Po)ltne=D/NIN <
=1
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< (1= Q(p,70))An(Po)/NN 4 (1 — Q(d, 7o) )N(1 — Ax(Po)N)te = 0 as e — 0.
(64)

The proof is complete. |

Remark 2. Relation (64) gives, in fact, explicit upper bounds for the rate of convergence
in the ergodic relation given in Theorem 7.

Ergodic theorems for singularly perturbed MCDC take much more complex forms.

Theorem 7. Let condition Dy holds for some N > 1. Then the following ergodic
relations take place, for p € Ly, k€ X9 g=1,... h:
(i) If ne = o0 and en. — 0o as € — 0, then,

Pe pk(Ne) = Mo 5.1(00) = To,a.r as € — 0. (65)
(ii) If ne = o0 and en. — t € (0,00) as € — 0, then,

Pepik(ne) = o pk(t) = Mo pre " + 1y g4(1 — e ") as e = 0. (66)
(iii) If ne — oo and ene — 0 as € — 0, then,

Pepk(Me) = T05.56(0) =70 5.1 as € — 0. (67)

Proof. The renewal type relation (6) written for n = n, takes the following form, for
pE Ly, keX,

Pepi(ne) = popu(ne) (1= )"+ pogp(ne —e(l —e)' . (68)
=1

By applying inequality (34) given in Lemma 2, with constants Cy,Ay pointed in
Remark 1, to the transition probabilities appearing in the above renewal type relation,
we get the following inequality, p € Ly, k € X g =1,...,h,

[pepk(ne) = mopr(l —¢€)" —m g, (1 —(1—¢€)")

Ne

= [(Popk(ne) = Mopa) (L= €)™ + D (po,an(ne —1) = moap)e(l — ) <
=1

< OuRy + e 30 OuAlp DN
1=1
< ONAY + N1 — M) e (69)
Let us introduce function R, (t) = |(1 — €)™ — e~ |, € [0, q].
If ne — oo and en, —t € [0,00] as € — 0, then,
R.(t) >0ase—0. (70)
The following inequality takes place,

mopme ™" + o ap(l =€) = Mopr(l— €)™ =M x(1— (1 =)™ <

< |mop.k — T ax | Be(t) = 8¢ 5 arRe(t). (71)

Relations (69)—(71) obviously imply that the following relation holds, for k € X(9),
k=0,...,h,if ng = oo and en, — ¢ € [0,00] as € — 0,

Ipe k() — Topx(t)] < ONAY 4+ N(1—AN)te + 8o p.arRe(t) > 0ase—0. (72)

This relation proves the theorem. O

Remark 3. Inequality (72) gives, in fact, explicit upper bounds for the rate of convergence
in ergodic relation given in Theorem 8. Of course, it is possible to get some simple explicit
upper bounds for R, (¢) in terms of quantities en, and t.
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6. CONCLUSION

One of the main reasons for approximation of the Markov chain X ,, (with the matrix
of transition probabilities Py), by perturbed (regularised) MCDC X, ,, (with the matrix

of transition probabilities P, = (1 — ¢)Py + eD), is to use it for approximation of
the stationary distribution 7y = (79,7 € X) of the Markov chain Xy ,. Since the
corresponding phase space X = {1,...,m} can be large, the power method can be used

for approximative computing of stationary distribution 7ty. In this case, its components
T,; are approximated by probabilities pe 5 j(n) = >, cx PiPe,ij(n), where pe i;(n) are
elements of the matrix P? and p = (p;, 7 € X) is some initial distribution.

The results given in Theorems 7 and 8 show that the situation significantly differ for
two models: (a) regular, where the phase space X is one class of communicative states
for the Markov chain X, (condition A; holds) and, (b) singular, where the phase space
X splits in several closed classes of communicative states for the Markov chain Xg
(condition By holds, for some h > 1).

In the regular case, Theorem 7 shows that one can approximate the stationary prob-
abilities 7y ; by probabilities pe 5 ;(ne), using arbitrary positive integers n, — oo as
¢ — 0. Moreover, the explicit upper bounds for |p. 5 ;(ne) — 7 ;| pointed out in Remark
2 let one balance the choice of ¢ and n..

In the singular case, the situation is more complex. If p # d, one should be more care-
ful, since in this case it may be that the stationary probability 7, 7, # 7o p%. In this
case, Theorem 8 answers the question about applicability probabilities pe 5 ;(n:) as ap-
proximations for stationary probabilities for the Markov chain X ,. In fact, these prob-
abilities converge to some mixture of stationary probabilities 7o 5 x and 7, ;;, namely,
o5,k (1) = Topre " + 7y g, (1 —€e™"), as ne — oo in such way that en, — ¢ € [0, 00]
as ¢ — 0. Moreover, the explicit upper bounds for |pe zx(ne) — 70.5,5(¢)| pointed out
in Remark 3 let one also balance the choice of ¢ and n, and, in some sense, predict the
value of limit 71y 5 x(¢) depending on the value of quantity ene.

We would like also to note that some experimental numerical results supporting the
theoretical results presented in the present paper can be found in preprint [3], where one
can also find a detailed survey of works related to applications of Markov chains with
damping components.
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KAILJIIHT I EPTOANYHI TEOPEMU AJIfd JIAHIIDIOTIB MAPKOBA
3 JEMII®YIOY0K KOMIIOHEHTOIO

JI. CL/IBBECTPOB, C. CL/ILBECTPOB, B. ABOJIA, II. C. BITAHJIA, K. EH[CTPLOM,
JI. M. MAHT'O, T. KAKYBA

AnoTalys. 30ypeni manmorn MapkoBa € HOMyJISAPHUME MOLEIAMHE [JIst ONUCY iH(MOPMAIIHHAX MepexK.
V Takux Mojenax MaTpuig nepexonay Po indopmaniiiroro ganmmora MapkoBa 3BU4aifHO allPOKCUMYETHCS
marpune Pe = (1 — ¢)Pg + ¢D, ne D — rak 3Bana gemndyo9a CTOXaCTHYHA MATPULL 3 OSHAKOBAMHE
pAKAMH 1 JOJATHUMHE ejeMeHTaMH, a € € [0, 1] —mapaverp geMmndysanns (36ypenns). Bukopuctosyio-
9H IPOLeAypPy ITYy4YHOI perenepanii s 36ypenoro saHmrora MapkoBa Ne,n 3 MaTPUIEI0 HMOBipHOCTEH
nepexoniB P i KamutiHr MeTOMM, MU OTPUMYEMO €ProJINdHi TeOpEMHU y BUIVISAAI aCUMITOTAYHHUX CIIiBBifI-
HOIeHb st Pe ij(n) = Pi{nen = j} mpu n — oo i ¢ = 0, a Takox sBHI BepxHi OLiHKM IIBEAKOCTI
361>KHOCTI B TaKuX TeopeMax. 30KpeMa, JOCTiIKYEThCA HAUOIIBIN CKIAJHUI BUIAIOK MOjesiel i3 CuH-
rynapauMu 30ypeHHaMHU, Komu (aszosuil npocTip He30ypenoro saHmora Mapkosa 1o,, PO3IIEILIIOETECA
Ha KiJIbKa 3aMKHYTHUX KJIaciB KOMYHIKAaTHBHUX CTAHIB i, MOXKJIUBO, KJIaC MEPEXiTHUX CTaHIiB.



