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C. ENGSTRÖM2, J. M. MANGO4, G. KAKUBA4

Abstract. Perturbed Markov chains are popular models for description of information networks. In

such models, the transition matrix P0 of an information Markov chain is usually approximated by

matrix Pε = (1 − ε)P0 + εD, where D is a so-called damping stochastic matrix with identical rows
and all positive elements, while ε ∈ [0, 1] is a damping (perturbation) parameter. Using procedure of

artificial regeneration for the perturbed Markov chain ηε,n, with the matrix of transition probabilities

Pε, and coupling methods, we get ergodic theorems, in the form of asymptotic relations for pε,ij(n) =
= Pi{ηε,n = j}, as n → ∞ and ε → 0, and explicit upper bounds for the rates of convergence in

such theorems. In particular, the most difficult case of the model with singular perturbations, where

the phase space of the unperturbed Markov chain η0,n split in several closed classes of communicative
states and possibly a class of transient states, is investigated.
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1. Introduction

Perturbed Markov chains is one of the popular and important objects of studies in the
theory of Markov processes and their applications to stochastic networks, queuing and
reliability models, bio-stochastic systems, and many other stochastic models.

We refer here to some recent books and papers devoted to perturbation problems for
Markov type processes [5, 6, 11, 13, 14, 21, 24, 25, 28–30, 33–36, 38, 39, 44–46, 48–55,
57, 58]. In particular, we would like to mention works [5, 25, 48, 49], where the extended
bibliographies of works in the area and the corresponding methodological and historical
remarks can be found.

We are especially interested in models of Markov chains commonly used for description
of information networks. With recent advancement in technology, filtering information
has become a challenge in such systems. Moreover, their significance is visible as they
find their applications in Internet search engines, biological, financial, transport, queuing
networks and many others [1–10, 12, 15–19, 22, 27, 31, 56]. In such models an information
network is represented by the Markov chain associated with the corresponding node links
graph. Stationary distributions and other related characteristics of information Markov
chains usually serve as basic tools for ranking of nodes in information networks.

The ranking problem may be complicated by singularity of the corresponding infor-
mation Markov chain, where its phase space is split into several weakly or completely
non-communicating groups of states. In such models, the matrix of transition proba-
bilities P0 of information Markov chain is usually regularised and approximated by the
stochastic matrix Pε = (1−ε)P0 +εD, where D is a so-called damping stochastic matrix
with identical rows and all positive elements, while ε ∈ [0, 1] is a damping parameter.

Let π̄ε be the stationary distribution of a Markov chain Xε,n with the regularised
matrix of transition probabilities Pε. The power method is often used to approximate
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the corresponding stationary distribution π̄0 by rows of matrix Pn
ε . The damping pa-

rameter ε ∈ (0, 1] should be chosen neither too small nor too large. In the first case,
where ε takes too small values, the damping effect will not work against absorbing and
pseudo-absorbing effects, since the second eigenvalue for such matrices (determining the
rate of convergence in the above mentioned ergodic approximation) take values approach-
ing 1. In the second case, the ranking information (accumulated by matrix P0 via the
corresponding stationary distribution) may be partly lost, due to the deviation of matrix
Pε from matrix P0. This actualises the problem of studies of asymptotic behaviour of
stationary distributions π̄ε as ε → 0 and matrices Pn

ε in triangular array mode, where
ε→ 0 and n→∞, simultaneously.

The model, where matrix P0 is a matrix of transition probabilities for a Markov
chain, which phase space is one class of communicative states is usually referred as the
model with regular perturbations. The model, where matrix P0 is a matrix of transition
probabilities for a Markov chain, which phase space split in several closed classes of
communicative states plus a class (possibly empty) of transient states, is usually referred
as the model with singular perturbations.

The asymptotic analysis in the singular case is much more difficult than in the regular
case. The approach used in this paper based on the use of method of artificial regen-
eration and renewal techniques for deriving special series representation for stationary
distributions π̄ε and coupling method.

The paper includes six sections. In Section 2, we describe the algorithm for stochastic
modelling of Markov chains with damping component and the procedure of embedding
such Markov chains in the model of discrete time regenerative processes with special
damping regenerative times. Also, we derive renewal type equations for the correspond-
ing transition probabilities, present ergodic theorems for the Markov chains with damp-
ing component and derive special series representation for the corresponding stationary
distributions. In Section 3, explicit upper bounds in approximations of the stationary
distributions for Markov chain with damping component are given. In Section 4, we give
coupling explicit estimate for the rate of convergence in ergodic theorems for Markov
chains with damping component. In Section 5, we present ergodic theorems for Markov
chains with damping component in triangular array mode. In Section 6, some concluding
comments are given.

2. Markov chains with damping component (MCDC)

Let (a) X = {1, 2, . . . ,m} be a finite set, (b) p̄ = 〈p1, . . . , pm〉 and d̄ = 〈d1, . . . , dm〉,
be two discrete probability distributions, (c) P0 = ‖p0,ij‖ be a m×m stochastic matrix,
(d) D = ‖dij‖ be a m × m damping stochastic matrix with elements dij = dj > 0,
i, j = 1, . . . ,m, and (e) Pε = ‖pε,ij‖ = (1 − ε)P0 + εD is a stochastic matrix with
elements pε,ij = (1− ε)p0,ij + εdj , i, j = 1, . . . ,m, where ε ∈ [0, 1].

We refer to a Markov chain Xε,n, n = 0, 1, . . ., with the phase space X, the initial
distribution p̄, and the matrix of transition probabilities Pε as a Markov chain with
damping component (MCDC).

Denote by Lm the class of all initial distributions p̄ = 〈p1, . . . , pm〉.
Let pε,ij(n) = P{Xε,n = j/Xε,0 = i}, i, j ∈ X, n = 0, 1, . . ., be n-steps transition

probabilities for the Markov chain Xε,n. Obviously, pε,ij(0) = I(i = j), i, j ∈ X and
pε,ij(1) = pε,ij , i, j ∈ X. Let, also, pε,p̄,j(n) = Pp̄{Xε,n = j} =

∑
i∈X pipε,ij(n), p̄ ∈ Lm,

j ∈ X, n = 0, 1, . . . Obviously, pε,p̄,j(0) = pj , j ∈ X.
Here and henceforth, symbols Pp̄ and Ep̄ are used for probabilities and expectations

related to a Markov chain with an initial distribution p̄. In the case, where the initial
distribution is concentrated in a state i the above symbols take the forms Pi and Ei.
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The phase space X of the Markov chain Xε,n is one aperiodic class of communicative
states, for every ε ∈ (0, 1].

Let us describe a procedure of embedding the Markov chain Xε,n in the model of
discrete time regenerative processes with special damping regenerative times.

Let us define random variables U,W,Ui,n, Vε,n,Wε,n satisfying the following assump-
tions:

(a) U takes values in space X and P{U = j} = pj , j ∈ X;
(b) Ui,n, i ∈ X, n = 1, 2, . . ., is family of independent random variables taking values

in space X and such that P{Ui,n = j} = p0,ij , i, j ∈ X, n = 1, 2, . . .;
(c) Vn, n = 0, 1, . . ., is a sequence of independent random variables taking values in

space X and such that P{Vn = j} = dj , j ∈ X, n = 1, 2, . . .;
(d) W is a binary random variable taking values 0 and 1 with probabilities, respectively

q0 and q1;
(e) Wε,n, n = 1, 2, . . ., be, for every ε ∈ [0, 1], a sequence of independent binary

random variables taking values 0 and 1 with probabilities, respectively, 1− ε and ε, for
n = 1, 2, . . .;

(f) the random variables U,W , the family of random variables Ui,n, i ∈ X, n = 1, 2, . . .,
and the random sequences Vε,n, n = 1, 2, . . . and Wε,n, n = 1, , 2, . . ., are mutually inde-
pendent, for every ε ∈ [0, 1].

Let us now define, for every ε ∈ [0, 1], the random sequence Xε,n, n = 0, 1, . . ., by the
following recurrent relation,

Xε,n = UXε,n−1,nI(Wε,n = 0) + VnI(Wε,n = 1), n = 1, 2, . . . , Xε,0 = U. (1)

It is readily seen that the random sequence Xε,n, n = 0, 1, . . . is, for every ε ∈ [0, 1], a
homogeneous Markov chain with phase space X, the initial distribution p̄ and the matrix
of transition probabilities Pε.

Let us now consider the extended random sequence,

Yε,n = (Xε,n,Wε,n), n = 1, 2, . . . , Xε,0 = U, Wε,0 = W. (2)

This random sequence also is, for every ε ∈ [0, 1], a homogeneous Markov chain, with
phase space Y = X× {0, 1}, the initial distribution p◦ = 〈piqr, (i, r) ∈ Y〉 and transition
probabilities,

pε,ir,jk = P{Xε,1 = j,Wε,1 = k/Xε,0 = i,Wε,0 = r} =

=

{
(1− ε)p0,ij for (i, r) ∈ Y, j ∈ X, k = 0,
εdj for (i, r) ∈ Y, j ∈ X, k = 1.

(3)

Now, let us assume that ε ∈ (0, 1].
Let us define times of sequential hitting state 1 by the second component Wε,n,

Tε,n = min(n > Tε,n−1,Wε,n = 1), n = 1, 2, . . . , Tε,0 = 0. (4)

The random sequence Yε,n, n = 0, 1, . . ., is a discrete time regenerative process with
“damping” regeneration times Tε,n, n = 0, 1, . . ..

This follows from independence of transition probabilities pε,ir,jk, given by relation
(3), on (i, r) ∈ Y if k = 1.

This is a standard regenerative process, if the initial distribution d◦ = 〈diI(r = 1),
(i, r) ∈ Y〉.

The inter-regeneration times Sε,n = Tε,n−Tε,n−1, n = 1, 2, . . ., are i. i. d. geometrically
distributed random variables, with parameter ε, i. e., P{Sε,1 = n} = ε(1− ε)n−1, n ≥ 1.

Let us introduce sets Zj = {(j, 0), (j, 1)}, j ∈ X}. Obviously, pε,d̄,j(n) =
= Pd◦

{Yε,n ∈ Zj}, n ≥ 0. That is why, probabilities pε,d̄,j(n), n ≥ 0 are, for every
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j ∈ X, the unique bounded solution for the following discrete time renewal equation,

pε,d̄,j(n) = p0,d̄,j(n)(1− ε)n +

n∑
l=1

pε,d̄,j(n− l)ε(1− ε)l−1, n ≥ 0. (5)

If the initial distribution p◦ 6= d◦, Yε,n is a regenerative process with the transition
period [0, Tε,1).

In the case, probabilities pε,p̄,j(n) and pε,d̄,j(n) are, for every j ∈ X, connected by the
following renewal type relation,

pε,p̄,j(n) = p0,p̄,j(n)(1− ε)n +

n∑
l=1

pε,d̄,j(n− l)ε(1− ε)l−1, n ≥ 0. (6)

The following theorem give a very useful series representation for the stationary dis-
tribution of the MCDC Xε,n.

Theorem 1. The following ergodic relation takes place for any initial distribution
p̄ ∈ Lm, j ∈ X, and ε ∈ (0, 1],

pε,p̄,j(n)→ πε,j = ε

∞∑
l=0

p0,d̄,j(l)(1− ε)l as n→∞. (7)

Proof. In the standard regeneration case, the geometrical distribution of the regeneration
time Tε,1 = Sε,1 is aperiodic and has expectation ε−1.

This makes it possible to apply the discrete time renewal theorem (see, for example,
[20]) to the renewal equation (5). This yields the following ergodic relation, for j ∈ X,

pε,d,j(n)→ πε,j = ε

∞∑
l=0

p0,d̄,j(l)(1− ε)l as n→∞. (8)

Obviously p0,p̄,j(n)(1−ε)n → 0 as n→∞, for j ∈ X. Let us also define pε,d,j(n− l) = 0,

for l > n. Relation (8) implies that pε,d,j(n− l)→ πε,j as n→∞, for l ≥ 0 and j ∈ X.

Using the latter two asymptotic relations, relation (6), and the Lebesgue theorem, we
get, for p ∈ Lm, j ∈ X,

lim
n→∞

pε,p,j(n) = lim
n→∞

p0,p̄,j(n)(1− ε)n + lim
n→∞

∞∑
l=1

pε,d,j(n− l)ε(1− ε)l−1 = πε,j . (9)

The proof is complete. �

The phase space X is one aperiodic class of communicative states for the Markov chain
Xε,n, for every ε ∈ (0, 1]. In this case, its stationary distribution π̄ε = 〈πε,j , j ∈ X〉 is
the unique positive solution for the system of linear equations,∑

i∈X
πε,ipε,ij = πε,j , j ∈ X,

∑
j∈X

πε,j = 1. (10)

Also, the stationary probabilities πε,j can be represented in the form πε,j = e−1
ε,j ,

j ∈ X, via the expected return times eε,j , with the use of regeneration property of the
Markov chain Xε,n at moments of return in state j.

The series representation (7) for the stationary distribution of Markov chain Xε,n is
based on the use of alternative damping regeneration times. This representation is, by
our opinion, a more effective tool for performing asymptotic perturbation analysis for
MCDC.

Let us also describe ergodic properties of the Markov chain X0,n.
Its ergodic properties are determined by communicative properties its phase space X

and the matrix of transition probabilities P0. The simplest case is where the following
condition holds:
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A1: The phase space X is one aperiodic class of communicative states for the Markov
chain X0,n.

In this case, the following ergodic relation holds, for any p̄ ∈ Lm, j ∈ X,

p0,p̄,j(n)→ π0,j as ε→ 0, (11)

The stationary distribution π̄0 = 〈π0,j , j ∈ X〉 is the unique positive solution of the
system of linear equations,∑

i∈X
π0,ip0,ij = π0,j , j ∈ X,

∑
j∈X

π0,j = 1. (12)

A more complex is the case, where the following condition holds:

B1: The phase space X = ∪hg=0X(g), where: (a) X(g), g = 0, . . . , h, are non-inter-

secting subsets of X, (b) X(g), g = 1, . . . , h, are non-empty, closed, aperiodic
classes of communicative states for the Markov chain X0,n, (c) and X(0) is a
class (possibly empty) of transient states for the Markov chain X0,n.

If the initial distribution of there Markov chain X0,n is concentrated at the set X(g),

for some g = 1, . . . , h, then X0,n = X
(g)
0,n, n = 0, 1, . . ., can be considered as a Markov

chain with the reduced phase space X(g) and the matrix of transition probabilities
P0,g = ‖p0,rk‖k,r∈X(g) .

According condition B1, there exists, for any r, k ∈ X(g), g = 1, . . . , h,

p0,rk(n)→ π
(g)
0,k as n→∞, (13)

where π̄
(g)
0 = 〈π(g)

0,k, k ∈ X(g)〉 is, for g = 1, . . . , h, the stationary distribution of the

Markov chain X
(g)
0,n.

The stationary distribution π̄
(g)
0 is, for every g = 1, . . . , h, the unique positive solution

for the system of linear equations,

π
(g)
0,k =

∑
r∈X(g)

π
(g)
0,rp0,rk, k ∈ X(g),

∑
k∈X(g)

π
(g)
0,k = 1. (14)

Let Zε = min(n ≥ 0 : Xε,n ∈ X(0)
) be the first hitting time of the Markov chain Xε,n

into the set X(0)
. Note that Zε = 0, if Xε,0 ∈ X(0)

, while Zε ≥ 1, if Xε,0 ∈ X(0).
Let also introduce probabilities, for i ∈ X and g = 1, . . . , h,

f
(g)
ε,i = Pi{Xε,Zε

∈ X(g)}. (15)

The following relation takes place, for p̄ ∈ Lm, k ∈ X(g), g = 1, . . . , h,

f
(g)
ε,p̄ = Pp̄{Xε,Zε

∈ X(g)} =
∑

i∈X(g)

pi +
∑

i∈X(0)

pif
(g)
ε,i =

=
∑

i∈X(g)

pi +
∑

i∈X(0)

pi

∞∑
l=1

∑
r∈X(g)

Pi{Zε = l,Xε,l = r}. (16)

Note that in the case, where the set X(0) is empty, the second sum disappears in the

above formulas for probabilities f
(g)
ε,p̄ .

Lemma 1. Let condition B1 holds. Then, the following ergodic relation takes place, for
p̄ ∈ Lm and k ∈ X,

lim
n→∞

p0,p̄,k(n) = π0,p̄,k =

{
f

(g)
0,p̄π

(g)
0,k for k ∈ X(g), g = 1, . . . , h,

0 for k ∈ X(0).
(17)
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Proof. Let us assume that X(0) is a non-empty set.
The following relation takes place, for p̄ ∈ Lm, k ∈ X(g), g = 1, . . . , h,

p0,p̄,k(n) =
∑

i∈X(g)

pip0,ik(n) +
∑

i∈X(0)

pi

n∑
l=1

∑
r∈X(g)

Pi{Z0 = l,X0,l = r}p0,rk(n− l), n ≥ 0.

(18)

Let us also define p0,rk(n−l) = 0, for l > n. Relation (13) implies that p0,rk(n−l)→ π
(g)
0,k

as n→∞, for l ≥ 0 and r, k ∈ X(g), g = 1, . . . , h.
Using the above relation, relations (16), (18) and the Lebesgue theorem, we get, for

p̄ ∈ Lm, k ∈ X(g), g = 1, . . . , h,

lim
n→∞

p0,p̄,k(n) = lim
n→∞

∑
i∈X(g)

pip0,ik(n) +

+ lim
n→∞

∑
i∈X(0)

pi

∞∑
l=1

∑
r∈X(g)

Pi{Z0 = l,X0,l = r}p0,rk(n− l) =

=
∑

i∈X(g)

piπ
(g)
0,k +

∑
i∈X(0)

pi

∞∑
l=1

∑
r∈X(g)

Pi{Z0 = l,X0,l = r}π(g)
0,k =

= f
(g)
0,p̄π

(g)
0,k. (19)

Also, the following relation holds, for p̄ ∈ Lm, k ∈ X(0),

π0,p̄,k(n) =
∑

i∈X(0)

piPi{Z0 > n,X0,n = k} ≤
∑

i∈X(0)

piPi{Z0 > n} → 0 as n→∞. (20)

The case, where X(0) = ∅, is trivial. �

Ergodic relation (17) shows that in the case, where condition B1 holds, the stationary
probabilities π0,p̄,k defined by the asymptotic relation (17) may depend on the initial
distribution.

The perturbation model, where condition A1 holds, i.e., the phase space X is one
class of communicative states for the Markov chain X0,n, can be referred as regular. The
perturbation model, where condition B1 holds, i.e., the phase space X is not one class of
communicative states for the Markov chain X0,n, can be referred as singular.

3. Rate of Convergence for Stationary Distributions
of Perturbed MCDC

In this section, we obtain explicit upper bounds for deviations of stationary distribu-
tions for Markov chains Xε,n and X0,n.

It is well known that, under condition A1, the rate of convergence in the ergodic rela-
tion (17) is exponential. This means that there exist some constants C = C(P0) ∈ [0,∞),
λ = λ(P0) ∈ [0, 1), and distribution π̄0 = 〈π0,j , j ∈ X〉, with all positive component such
that the following relation holds,

max
i,j∈X

|p0,ij(n)− π0,j | ≤ Cλn, n ≥ 1. (21)

In fact, condition A1 is equivalent to the following condition:

A2: There exist a constants C = C(P0) ∈ [0,∞), λ = λ(P0) ∈ [0, 1), and a distri-
bution π̄0 = 〈π0,j , j ∈ X〉 with all positive component such that relation (21)
holds.
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Indeed, condition A2 implies that probabilities p0,ij(n) > 0, i, j ∈ X for all large
enough n. This implies that X is one aperiodic class of communicative states. Also,
condition A2 implies that p0,ij(n) → π0,j as n → ∞, for i, j ∈ X, and, thus, π̄0 is the
stationary distribution for the Markov chain X0,n.

According the Perron–Frobenius theorem, the role of λ can play the absolute value
of the second (by absolute value), eigenvalue for matrix P0. As far as constant C is
concerned, we refer to the book [20], where one can find the algorithms which let one
compute this constant.

The following theorem present explicit upper bounds for deviations of stationary dis-
tributions of Markov chains Xε,n and X0,n, for the regular perturbation model.

Theorem 2. Let condition A2 holds. Then the following relation holds, for j ∈ X,

|πε,j − π0,j | ≤ ε
(
|dj − π0,j |+

Cλ

1− λ

)
, (22)

where the damping distribution d̄ = 〈dj , j ∈ X〉 has been defined in Section 2.

Proof. The inequalities appearing in condition A2 imply that the following relation holds,
for n ≥ 1, j ∈ X,

|p0,d̄,j(n)− π0,j | = |
∑
i∈X

(dip0,ij(n)− diπ0,j)| ≤
∑
i∈X

di|p0,ij(n)− π0,j)| ≤ Cλn. (23)

Using relations (7) and (23), we get the following estimate, for j ∈ X,

|πε,j − π0,j | ≤ |ε
∞∑
l=0

p0,d̄,j(l)(1− ε)l − π0,j | =

= |ε
∞∑
l=0

p0,d̄,j(l)(1− ε)l − ε
∞∑
l=0

π0,j(1− ε)l| ≤

≤ ε|dj − π0,j |+ ε
∞∑
l=1

Cλl(1− ε)l ≤

≤ ε
(
|dj − π0,j |+

Cλ(1− ε)
1− λ(1− ε)

)
≤ ε
(
|dj − π0,j |+

Cλ

1− λ

)
. (24)

The proof is complete. �

The quantities |dj − π0,j | appearing in inequality (22) are, in some sense, determined
by a prior information about the stationary probabilities. They takes smaller values if
one can choose initial distribution p̄ with smaller deviation of the stationary distribution
π̄0. Inequalities |dj − π0,j | ≤ dj ∨ (1 − dj) ≤ 1 let one replace the term |dj − π0,j | in
inequality (22) by quantities independent on the corresponding stationary probabilities
π0,j .

Theorem 2 remains also valid if condition A2 is weaken by omitting in it the as-
sumption of positivity for the distribution π̄0 = 〈π0,i, i ∈ X〉 appearing in this con-
dition. In this case, condition A2 implies that the phase space X = X1 ∪ X0, where
X1 = {i ∈ X : π0,i > 0} is a non-empty closed class of communicative states, while
X0 = {i ∈ X : π0,i = 0} is a the class (possibly empty) of transient states, for the Markov
chain X0,n. Note that π̄0 still is the stationary distribution for this Markov chain.

We would like also to refer to paper [33], where one can find alternative upper bounds
for the rate of convergence of stationary distributions for perturbed Markov chains and
further related references.

Let now assume that condition B1 holds.
Let us consider matrices, for g = 0, . . . , h and n = 0, 1, . . .,
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P0,g = ‖p0,rk‖r,k∈X(g) and Pn
0,g = ‖p(g)

0,rk(n)‖r,k∈X(g) . (25)

Note that, for g = 1, . . . , h, probabilities p
(g)
0,rk(n) = p0,rk(n), r, k ∈ X(g), n ≥ 0, since

X(g), j = 1, . . . , h are closed classes of states.

The reduced Markov chain X
(g)
0,n with the phase space X(g) and the matrix of transition

probabilities P0,g is, for every g = 1, . . . , h, exponentially ergodic and the following

estimates take place, for k ∈ X(g), g = 1, . . . , h and n = 0, 1, . . .,

max
r,k∈X(g)

|p(g)
0,rk(n)− π(g)

0,k| ≤ Cgλ
n
g , (26)

with some constants Cg = Cg(P0) ∈ [0,∞), λg = λg(P0) ∈ [0, 1), g = 1, . . . , h and

distributions π̄
(g)
0 = 〈π(g)

0,k, k ∈ X(g)〉, g = 1, . . . , h, with all positive component.

Obviously, inequalities (26) imply that p
(g)
0,rk(n) → π

(g)
0,k as n → ∞, for r, k ∈ X(g),

g = 1, . . . , h. Thus, distribution π̄
(g)
0 is the stationary distribution for the Markov chain

X
(g)
0,n, for every g = 1, . . . , h.
As has been mentioned above the role of λg can play, for every g = 1, . . . , h, the

absolute value of the second (by absolute value), eigenvalue for matrix P0,g, and Cg is
the constant, which as has been mentioned above can be computed using the algorithm
described in book [20].

As well known, there exists λ0 = λ0(P0) ∈ (0, 1) such that there exist finite exponential
moments, for i ∈ X(0),

C0,i = C0,i(P0) = Eie
(lnλ−1

0 )Z0 = Eiλ
−Z0
0 <∞. (27)

Let us also denote,

C0 = max
i∈X(0)

C0,i. (28)

The upper estimates for λ0 can be found, for example, in book [25].
Let us denote,

λ̄ = max
0≤g≤h

λg, C̄ = max
1≤g≤h

(Cg + CgC0 + C0). (29)

Here, one should formally count C0, λ0 = 0, if the class X(0) is empty.
Condition B1 is, in fact, equivalent to the following condition:

B2: The phase space X = ∪hg=0X(g), where: (a) X(g), g = 0, . . . , h, are non-inter-

secting subsets of X, (b) X(g), g = 1, . . . , h, are non-empty, closed classes of
states for the Markov chain X0,n such that inequalities (26) hold, (c) X(0) is a

class of states for the Markov chain X0,n such that relation (27) holds (if X(0) is
a non-empty set).

Indeed, condition B2 implies that probabilities p
(g)
0,rk(n) > 0, r, k ∈ X(g), g = 1, . . . , h,

for all large enough n. This implies that X(g), g = 1, . . . , h are closed aperiodic classes of

communicative states. Also, inequalities (26) imply that p
(g)
0,rk(n)→ π

(g)
0,k as n→∞, for

r, k ∈ X(g), g = 1, . . . , h, and, thus, π̄
(g)
0 = 〈π(g)

0,k, k ∈ X(g)〉 is the stationary distribution

for the Markov chain X
(g)
0,n, for every g = 1, . . . , h. Also, relation (27) implies that

probabilities p
(0)
0,rk(n) → 0 as n → ∞, for r, k ∈ X(0) (if X(0) is a non-empty set). This

implies that X(0) is a class of transient states for the Markov chain X
(0)
0,n.

Lemma 2. Let condition B2 holds. Then the following relation holds, for p̄ ∈ Lm, k ∈ X
and n ≥ 1,

|p0,p̄,k(n)− π0,p̄,k| ≤ C̄λ̄n. (30)
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Proof. Let us, first, assume that X(0) = ∅.
In this case, relations (16)–(18) imply that, for p̄ ∈ Lm, k ∈ X(g), g = 1, . . . , h and

n ≥ 1,

|p0,p̄,k(n)− π0,p̄,k| = |
∑

i∈X(g)

pip
(g)
0,ik(n)−

∑
i∈X(g)

piπ
(g)
0,k| ≤ Cgλ

n
g ≤ C̄λ̄n. (31)

Let us now assume that X(0) 6= ∅.
Using relations (16)–(18) and (26)–(27), we get the following inequalities, for p̄ ∈ Lm,

k ∈ X(g), g = 1, . . . , h and n ≥ 1,

|p0,p̄,k(n)− π0,p̄,k| = |
∑

i∈X(g)

pip
(g)
0,ik(n) +

+
∑

i∈X(0)

pi

n∑
l=1

∑
r∈X(g)

Pi{Z0 = l,X0,l = r}p(g)
0,rk(n− l)− f

(g)
0,p̄π

(g)
0,k| ≤

≤
∑

i∈X(g)

pi|p(g)
0,ik(n)− π(g)

0,k|+

+
∑

i∈X(0)

pi

n−1∑
l=1

∑
r∈X(g)

Pi{Z0 = l,X0,l = r}|p(g)
0,rk(n− l)− π(g)

0,k|+

+
∑

i∈X(0)

pi
∑

r∈X(g)

Pi{Z0 = n,X0,n = r}|I(r = k)− π(g)
0,k|+

+ |
∑

i∈X(0)

pi

n∑
l=1

∑
r∈X(g)

Pi{Z0 = l,X0,l = r} − f
(g)

0,d̄
|π(g)

0,k ≤

≤ Cgλ
n
g +

∑
i∈X(0)

pi

n−1∑
l=1

Pi{Z0 = l}Cgλ
n−l
g +

+
∑

i∈X(0)

piPi{Z0 = n}+
∑

i∈X(0)

piPi{Z0 > n} ≤

≤ Cgλ̄
n +

∑
i∈X(0)

pi

n−1∑
l=1

Pi{Z0 = l}λ−l0 (
λ0

λ̄
)lCgλ̄

n + C0λ̄
n ≤

≤ (Cg + C0Cg + C0)λ̄n = C̄λ̄n. (32)

Also, in this case, the following relation holds, for n ≥ 1, k ∈ X(0),

π0,p̄,k(n) =
∑

i∈X(0)

piPi{Z0 > n,X0,n = k} ≤

≤
∑

i∈X(0)

piPi{Z0 > n} ≤ C0λ
n
0 ≤ C̄λ̄n. (33)

The proof is complete. �

Lemma 2 implies that, in the singular case, where condition B2 hold and, thus the
stationary distribution π̄0,p̄ = 〈π0,p̄,j , j ∈ X〉 depends on the initial distribution p̄, the
rate of convergence in the ergodic relation (17) is exponential, as it is in the regular case,
where condition A2 holds.

The following theorem presents explicit upper bounds for deviations of stationary
distributions of Markov chains Xε,n and X0,n, for the singular perturbation model.
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Theorem 3. Let condition B2 holds. Then the following relation holds, for k ∈ X,

|πε,k − π0,d̄,k| ≤ ε(|dk − π0,d̄,k|+
C̄λ̄

1− λ̄
). (34)

Proof. Using relation (7) and (31) – (33), we get the following estimate, for k ∈ X,

|πε,k − π0,d̄,k| ≤ |ε
∞∑
l=0

p0,d̄,k(l)(1− ε)l − π0,d̄,k| =

= |ε
∞∑
l=0

p0,d̄,k(l)(1− ε)l − ε
∞∑
l=0

π0,d̄,k(1− ε)l| ≤

≤ ε|dk − π0,d̄,k|+ ε
∞∑
l=1

C̄λ̄l(1− ε)l ≤

≤ ε
(
|dk − π0,d̄,k|+

C̄λ̄(1− ε)
1− λ̄(1− ε)

)
≤ ε
(
|dk − π0,d̄,k|+

C̄λ̄

1− λ̄

)
. (35)

The proof is complete. �

4. Coupling and ergodic theorems for perturbed MCDC

In this section, we present coupling algorithms and get the effective upper bounds
for the rate of convergence in ergodic theorems for regularly and singularly perturbed
MCDC.

Let p̄′ = 〈p′i, i ∈ X〉 and p̄′′ = 〈p′′1 , i ∈ X〉 be two discrete probability distribu-
tions. Let us denote by L[p̄′, p̄′′] the class of two-dimensional probability distribution
P̄ = 〈Pij , (i, j) ∈ X× X〉 which satisfy the following conditions (a) P ′i =

∑
j∈X Pij = p′i,

i ∈ X; (b) P ′′j =
∑

i∈X Pij = p′′j , j ∈ X.
Let us also denote,

QP̄ =
∑
i∈X

Pii and Q(p̄′, p̄′′) = sup
P̄∈L[p̄′,p̄′′]

QP̄ . (36)

The following lemma presents the well known “coupling” result, which variants can
be found in [23, 26, 32, 37] and [40–43, 47].

Lemma 3. There exists the two-dimensional distribution P̄ ∗ = 〈P ∗ij , i, j ∈ X〉 ∈ L[p̄′, p̄′′]
such that:

QP̄∗ = Q∗ =
∑
i∈X

min(p′i, p
′′
i ) = Q(p̄′, p̄′′). (37)

The distribution P̄ ∗ is given by the following relations:

(i) If Q∗ ∈ (0, 1), then

P ∗ij = min(p′i, p
′′
j )I(i = j) +

+
1

1−Q∗
(p′i −min(p′i, p

′′
i ))(p′′j −min(p′j , p

′′
j )), i, j ∈ X. (38)

(ii) Q∗ = 1 if and only if p′k = p′′k , k ∈ X, and

P ∗ij = min(p′i, p
′′
j )I(i = j), i, j ∈ X. (39)

(iii) Q∗ = 0 if and only if p′kp
′′
k = 0, k ∈ X, and

P ∗ij = p′ip
′′
j , i, j ∈ X. (40)
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Proof. It can be found in the above mentioned works. In order, to improve self-readability
of the present paper, we just give a short sketch of the proof. Obviously, probability
Pii ≤ p′i ∧ p′′i , i ∈ X, for any two-dimensional distribution P̄ = 〈Pij , (i, j) ∈ X × X〉 ∈
∈ L[p̄′, p̄′′]. This relation implies that QP̄ ≤ Q∗ =

∑
i∈X p′i ∧ p′′i . This is easily to check

that every relation (38), (39), or (40) defines a two-dimensional distribution P̄ ∗ from the
class L[p̄′, p̄′′]. Moreover, the corresponding quantity QP̄∗ = Q∗. This is obvious for two
cases presented in propositions (ii) and (iii). In the first case presented in proposition
(i), this follows from relation, (p′i −min(p′i, p

′′
i ))(p′′i −min(p′i, p

′′
i )) = 0, i ∈ X. �

Let ε ∈ (0, 1]. Let us us consider the random sequence X
(N)
ε,n = Xε,Nn, n = 0, 1, . . .,

for some natural N ≥ 1. It is a homogeneous Markov chain, with an initial distribution
p̄, the phase space X, and the matrix of transition probabilities PN

ε = ‖pε,ij(N)‖.
Let us define the quantities, for i, j ∈ X,

Q
(N)
ε,ij =

∑
r∈X

min(pε,ir(N), pε,jr(N)). (41)

Let now use the multi-step coupling algorithm for construction a coupling Markov

chain Z
(N)
ε,n = (X

′(N)
ε,n , X

′′(N)
ε,n ), n = 0, 1, . . ., with:

(i) the phase space Z = X× X;
(ii) the initial distribution P̄ε = 〈pε,ij , (i, j) ∈ Z〉 constructing according to relation

(38), (39), or (40) for distributions p̄′ = p̄ = 〈pi, i ∈ X〉 and p̄′′ = π̄ε = 〈πε,i, i ∈ X〉;
(iii) transition probabilities P

(N)
ε,ij,rk defined by the following relations, for (i, j), (r, k) ∈

∈ Z:

(a) If Q
(N)
ε,ij ∈ (0, 1), then,

P
(N)
ε,ij,rk = P{X ′(N)

ε,1 = k,X
′′(N)
ε,1 = r/X

′(N)
ε,0 = i,X

′′(N)
ε,0 = j} =

= min(pε,ir(N), pε,jk(N))I(r = k) +

+
1

1−Q
(N)
ε,ij

(pε,ir(N)−min(pε,ir(N), pε,jr(N)))×

× (pε,jk(N)−min(pε,ik(N), pε,jk(N))), (42)

(b) If Q
(N)
ε,ij = 1, then pε,ir(N) = pε,jr(N), r ∈ X, and

P
(N)
ε,ij,rk = min(pε,ir(N), pε,jk(N))I(r = k), r, k ∈ X. (43)

(c) If Q
(N)
ε,ij = 0, then pε,ir(N)pε,jr(N) = 0, r ∈ X, and

P
(N)
ε,ij,rk = pε,ir(N)pε,jk(N), r, k ∈ X. (44)

The above construction of coupling Markov chain and the following lemma originate
from works [23] and [37]. It plays an important role in what follows.

Lemma 4. Let Z
(N)
ε,n = (X

′(N)
ε,n , X

′′(N)
ε,n ), n = 0, 1, . . ., be a homogeneous Markov chain

with the phase space Z = X × X, the initial distribution P̄ε and transition probabilities
given by relations (42)–(44). Then:

(i) The first component, X
′(N)
ε,n , n = 0, 1, . . ., is a homogeneous Markov chain with the

phase space X, the initial distribution p̄ and the matrix of transition probabilities PN
ε .

(ii) The second component X
′′(N)
ε,n , n = 0, 1, . . . is a homogeneous Markov chain with

the phase space X, the initial distribution π̄ε and the matrix of transition probabilities
PN
ε .

(iii) The set Z0 = {(i, i), i ∈ X} is an absorbing set for the Markov chain Z
(N)
ε,n , i.e.,

probabilities P
(N)
ε,ii,rk = 0, for i, r, k ∈ X, r 6= k.
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We also refer to preprint [3], where the proof of Lemma 4 can be found.
Let A = ‖aij‖ be a m × m a matrix with real-valued elements. Let us introduce

functional,

Q(A) = min
1≤i,j≤m

m∑
k=1

aik ∧ ajk. (45)

The following simple lemma presents some basic properties of functional Q(A).

Lemma 5. Functional Q(A) possesses the following properties: (a) Q(aA) = aQ(A),
for any a ≥ 0; (b) Q(A) ≥ a1Q(A1) + · · · + anQ(An), for any m × m matrices
A1, . . . ,An with real-valued elements, numbers a1, . . . , an ≥ 0, a1 · · ·+an = 1, and matrix
A = a1A1 + · · · + anAn, for n ≥ 2; (c) Q(A) ∈ [0, 1], for any stochastic matrix A; (d)
Q(A) = 1, for any m × m stochastic damping type matrix A = ‖aij‖, with elements
aij = aj ≥ 0, i, j = 1, . . . ,m.

The following useful proposition takes place.

Lemma 6. The following inequality takes place, for N ≥ 1 and ε ∈ (0, 1],

1−Q(PN
ε ) ≤ (1−Q(PN

0 ))(1− ε)N . (46)

Proof. Relation, AB = B, holds for any m×m stochastic matrix A = ‖aij‖ and m×m
stochastic damping type matrix B = ‖bij‖, with elements bij = bj ≥ 0, i, j = 1, . . . ,m.
Also, matrix C = BA, which has elements, cij = cj =

∑m
k=1 bkakj ≥ 0, i, j = 1, . . . ,m,

is a stochastic damping type matrix, i.e., it has all rows the same.
Using these remarks, we get the following relation, for N ≥ 1,

PN
ε = ((1− ε)P0 + εD)N = PN−1

ε (1− ε)P0 + PN−1
ε εD = PN−1

ε (1− ε)P0 + εD =

= PN−2
ε (1− ε)2P2

0 + PN−2
ε ε(1− ε)DP0 + εD =

= · · · = (1− ε)NPN
0 + ε(1− ε)N−1DPN−1

0 + · · ·+ εD. (47)

Using relation (47) and Lemma 5, we get the following relation,

Q(PN
ε ) ≥ (1− ε)NQ(PN

0 ) + ε(1− ε)N−1Q(DPN−1
0 ) + · · ·+ εQ(D) =

= (1− ε)NQ(PN
0 ) + ε(1− ε)N−1 + · · ·+ ε =

= (1− ε)NQ(PN
0 ) + 1− (1− ε)N . (48)

This relation is equivalent to inequality (46). �

Let us introduce, for N ≥ 1, the coefficient of ergodicity,

∆N (P0) = (1−Q(PN
0 ))1/N . (49)

The given below Theorems 4 and 5 present effective coupling type upper bounds for
the rate of convergence in the individual ergodic theorem for MCDC. These theorems
are based on corresponding general coupling results for Markov chains given in [23,
32, 37] and specify and detail the corresponding coupling upper bounds for the rate of
convergence in ergodic theorems for MCDC.

Note that neither condition A1 nor condition B1 is required in Theorem 4 formulated
below.

Also, we count ∆N (P0)0 = 1, if ∆N (P0) = 0.

Theorem 4. The following relation takes place, for every p̄ ∈ Lm, j ∈ X, n ≥ 0, and
ε ∈ (0, 1],

|pε,p̄,j(n)− πε,j | ≤ (1−Q(p̄, π̄ε))∆N (P0)[n/N ]N (1− ε)[n/N ]N . (50)
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Proof. Since, the initial distribution of Markov chain X
′′(N)
ε,n coincides with its stationary

distribution, this Markov chain is a stationary random sequence and, thus, for j ∈ X,
n ≥ 0,

P{X ′′(N)
ε,n = j} = πε,j . (51)

Let us now define the hitting (coupling) time,

T (N)
ε = min(n ≥ 0 : X ′(N)

ε,n = X ′′(N)
ε,n ) = min(n ≥ 0 : Z(N)

ε,n ∈ Z0). (52)

Since Z0 is an absorbing set for the Markov chain Z
(N)
ε,n , the following relation holds,

P{Z(N)
ε,n ∈ Z0, n ≥ T (N)

ε } = 1. (53)

Using the above remarks, we get the following relation, for j ∈ X, n ≥ 0,

|pε,p̄,j(Nn)− πε,j | = |P{X ′(N)
ε,n = j} − P{X ′′(N)

ε,n = j}| =

= |P{X ′(N)
ε,n = j,X ′′(N)

ε,n 6= j} − P{X ′(N)
ε,n 6= j,X ′′(N)

ε,n = j}| ≤

≤ P{X ′(N)
ε,n = j,X ′′(N)

ε,n 6= j}+ P{X ′(N)
ε,n 6= j,X ′′(N)

ε,n = j} ≤

≤ P{T (N)
ε > n}. (54)

Using Lemma 6, we get, for p̄ ∈ Lm, j ∈ X,

|pε,p̄,j(0)− πε,j | ≤ P{X ′(N)
ε,0 = j,X

′′(N)
ε,0 6= j}+ P{X ′(N)

ε,0 6= j,X
′′(N)
ε,0 = j} ≤

≤ P{T (N)
ε > 0} = 1−Q(p̄, π̄ε). (55)

Also, by continuing inequality (54), we get, for p̄ ∈ Lm, j ∈ X, n ≥ 0,

|pε,p̄,j(Nn)− πε,j | ≤ P{T (N)
ε > n} =

=
∑
i,j∈X

P{X ′(N)
ε,n 6= X ′′(N)

ε,n /X
′(N)
ε,n−1 = i,X

′′(N)
ε,n−1 = j} ×

× P{T (N)
ε > n− 1, X

′(N)
ε,n−1 = i,X

′′(N)
ε,n−1 = j} =

=
∑
i,j∈X

P{T (N)
ε > n− 1, X

′(N)
ε,n−1 = i,X

′′(N)
ε,n−1 = j}(1−Q

(N)
ε,ij) ≤

≤ P{T (N)
ε > n− 1}(1−Q(PN

ε )) ≤
≤ · · · ≤ P{Tε > 0}(1−Q(PN

ε ))n ≤
≤ (1−Q(p̄, π̄ε))(1−Q(PN

0 ))n(1− ε)Nn =

= (1−Q(p̄, π̄ε))∆N (P0))Nn(1− ε)Nn. (56)

Also, for p̄ ∈ Lm, j ∈ X, n ≥ 0 and l = 0, . . . , N − 1,

|pε,p̄,j(Nn + l)− πε,j | = |
∑
k∈X

pε,p̄,k(nN)pε,kj(l)−
∑
k∈X

πε,kpε,kj(l)| ≤

≤
∑
k∈X
|pε,p̄,k(Nn)− πε,k|pε,kj(l) ≤

≤ max
k∈X
|pε,p̄,k(Nn)− πε,k| ≤

≤ (1−Q(p̄, π̄ε))∆N (P0)Nn(1− ε)Nn. (57)

Inequalities (56) and (57) imply inequalities given in relation (50). The proof is com-
plete. �

The upper bounds given in relation (50) become better if quantities 1 − Q(p̄, π̄ε),
∆N (P0) and 1− ε take smaller values. The factor 1−Q(p̄, π̄ε), is determined by a prior
information about the stationary probabilities. It takes smaller values if one can choose
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initial distribution p̄ with smaller deviation from the stationary distribution π̄ε. Relation
(50) gives an effective upper bounds for the rate of convergence in the corresponding
individual ergodic theorem for the Markov chain Xε,n even in the case, where factor
∆N (P0) = 1.

It also worth noting that the weaker upper bound (1 − ε)n on the right hand side of
inequality (50) have been given for Markov chains with a general phase and damping
component, in the recent paper [6].

In the case, where condition A1 holds (i.e., the phase space X is one aperiodic class
of communicative states for the Markov chain X0,n), 1 − Q(PN

0 ) → 0 as N → ∞, and,
thus, the following condition holds for N large enough:

CN : ∆N (P0) < 1.

Also, condition CN is, for every N ≥ 1, sufficient for holding the mentioned above
weaken variant of condition A2.

Indeed, probabilities pε,p̄,j(n) → p0,p̄,j(n) as ε → 0, for any j ∈ X, n ≥ 0. Since
stationary probabilities πε,j ∈ [0, 1], j ∈ X, any sequence 0 < εn → 0 as n → ∞
contains a subsequence 0 < εnl

→ 0 as l → ∞ such that πεnl
,j → π0,j as l → ∞, for

j ∈ X. By passing ε→ 0 in the inequality (50), we get the following relation holding for
p̄ ∈ Lm, j ∈ X, n ≥ 0,

|p0,p̄,j(n)− π0,j | ≤ (1−Q(p̄, π̄0))∆N (P0)[n/N ]N

≤ ∆N (P0)−N∆N (P0)n = (1−QN (PN
0 ))−1∆N (P0)n, (58)

where one should count ∆N (P0)0 = 1, if ∆N (P0) = 0.
Relation (58) obviously implies that p0,p̄,j(n) → π0,j as n → ∞, for j ∈ X. Thus,

limits π0,j , j ∈ X are the same for any subsequences εn and εnl
and, thus, stationary

probabilities πε,j → π0,j as ε → 0, for j ∈ X. By derecting ε → 0 in the equations
given in relation (10), we get that limits π0,j , j ∈ X satisfy the system of linear equations
(10) and, thus, π̄0 = 〈π0,j , j ∈ X〉 is the stationary distribution for the Markov chain
X0,n. Some components of this stationary distribution can be equal 0. In this case, set
X1 = {j ∈ X : π0,j > 0} is a closed, aperiodic class of communicative states, while set
X0 = {j ∈ X : π0,j = 0} is the class of transient states, for the Markov chain X0,n.

If the stationary distribution π̄0 = 〈π0,j , j ∈ X〉 is positive, then X0 = ∅. In this case,
condition CN is sufficient for holding of condition A1.

Further, relation (58) implies that the Markov chain X0,n is ergodic with an exponen-
tial rate of convergence in the corresponding ergodic theorem, if condition CN holds, for
some N ≥ 1.

In the case, where A1 and some minor technical conditions hold, ∆N

(
P0)→ |ρ1,2| as

N →∞, where ρ1,2 is the second eigenvalue for matrix P0. The corresponding comments
can be found in [3]. The above asymptotic relation show that the coupling upper bounds
for rate of convergence in individual ergodic relations given in Theorem 4 usually are
asymptotically equivalent with analogous upper bounds, which can be obtained with
the use of eigenvalue decomposition representation for transition probabilities. At the
same time, computing of coefficients of ergodicity ∆N (P0) does not require solving of
the polynomial equation, det(ρI−P0) = 0, that is required for finding eigenvalues.

Let us assume that the following condition holds for some N ≥ 1 and h > 1:

DN : The phase space X = ∪hg=0X(g), where: (a) X(g), g = 1, . . . , h, are non-inter-

secting subsets of X, (b) X(g), g = 1, . . . , h, are non-empty, closed classes of
states for the Markov chain X0,n, (c) ∆N (P0,g) < 1, for g = 1, . . . , h, (d)

X(0) is a class of states for the Markov chain X0,n such that relation (27) holds

(if X(0) is a non-empty set).
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Remark 1. Condition DN implies that condition B2 holds, with constants C0 = C0,N

and λ0 = λ0,N appearing in relation (27) and constants Cg = Cg,N = ∆N (P0,g)−N ,
λg = λg,N = ∆N (P0,g), g = 1, . . . , h given by inequalities (58). Thus, Lemma 2 takes
place, with constants C̄ = C̄N and λ̄ = λ̄N given by relation (28) and (29), in which
constants Cg = Cg,N , λg = λg,N , g = 0, . . . , h.

It is useful also to note that condition B2 implies that condition DN holds for N large
enough.

Let us denote, for p̄′, p̄′′ ∈ Lm, k ∈ X,

δ0,p̄′,p̄′′,k = |π0,p̄′,k − π0,p̄′′,k| =

=

{
|f (g)

0,p̄′ − f
(g)
0,p̄′′ |π

(g)
0,k for k ∈ X(g), g = 1, . . . , h,

0 for k ∈ X(0).
(59)

Theorem 5. Let condition DN holds. Then, the following relation takes place, for
p̄ ∈ Lm, k ∈ X(g), g = 0, . . . , h, n ≥ 0, and ε ∈ (0, 1],

|pε,p̄,k(n)− πε,k| ≤
(
2C̄N λ̄

n
N + δ0,p̄,π̄ε,k

)
(1− ε)n ≤

≤
(
2C̄N λ̄

n
N + 1

)
(1− ε)n. (60)

Proof. By using the renewal type relation (6), condition DN , and taking into account sta-
tionarity of the Markov chain Xε,n, with the initial distribution π̄ε, we get the following

relation, for k ∈ X(g), g = 1, . . . , h, and n ≥ 0,

|pε,p̄,k(n)− πε,k| = |pε,p̄,k(n)− pε,π̄ε,k(n)| =
= |p0,p̄,k(n)− p0,π̄ε,k(n)|(1− ε)n. (61)

Lemmas 1 and 2, let us continue relation (61),

|p0,p̄,k(n)− p0,π̄ε,k(n)|(1− ε)n ≤
(
|p0,p̄,k(n)− π0,p̄,k|+ |p0,π̄ε,k(n)− π0,π̄ε,k|+

+ |π0,p̄,k − π0,π̄ε,k|
)
(1− ε)n ≤

≤
(
2C̄N λ̄

n
N + δ0,p̄,π̄ε,k

)
(1− ε)n. (62)

Relations (61) and (62) imply relation (60) to hold. �

5. Ergodic theorems for perturbed MCDC

In his section we present ergodic theorems for regularly and singularly perturbed
MCDC.

First, let us consider the case of regularly perturbed MCDC. The following theorem
takes place.

Theorem 6. Let condition CN holds for some N ≥ 1. Then, for p̄ ∈ Lm, k ∈ X and
any nε →∞ as ε→ 0,

pε,p̄,k(nε)→ π0,k = π0,d̄,k as ε→ 0. (63)

Proof. Using the renewal type relation (6) and inequality (58), we get that the following
relation holds, for k ∈ X and any nε →∞ as ε→ 0,

|pε,p̄,k(nε)− π0,k| = |pε,p̄,k(nε)− π0,k(1− ε)nε − π0,k(1− (1− ε)nε)| =

= |(p0,p̄,k(nε)− π0,k)(1− ε)nε +

nε∑
l=1

(p0,d̄,k(nε − l)− π0,k)ε(1− ε)l−1| ≤

≤ (1−Q(p̄, π̄0))∆N (P0)[nε/N ]N + (1−Q(d̄, π̄0))ε

nε∑
l=1

∆N (P0)[(nε−l)/N ]N ≤
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≤ (1−Q(p̄, π̄0))∆N (P0)[nε/N ]N + (1−Q(d̄, π̄0))N(1−∆N (P0)N )−1ε→ 0 as ε→ 0.
(64)

The proof is complete. �

Remark 2. Relation (64) gives, in fact, explicit upper bounds for the rate of convergence
in the ergodic relation given in Theorem 7.

Ergodic theorems for singularly perturbed MCDC take much more complex forms.

Theorem 7. Let condition DN holds for some N ≥ 1. Then the following ergodic
relations take place, for p̄ ∈ Lm, k ∈ X(g), g = 1, . . . , h:

(i) If nε →∞ and εnε →∞ as ε→ 0, then,

pε,p̄,k(nε)→ π0,p̄,k(∞) = π0,d̄,k as ε→ 0. (65)

(ii) If nε →∞ and εnε → t ∈ (0,∞) as ε→ 0, then,

pε,p̄,k(nε)→ π0,p̄,k(t) = π0,p̄,ke
−t + π0,d̄,k(1− e−t) as ε→ 0. (66)

(iii) If nε →∞ and εnε → 0 as ε→ 0, then,

pε,p̄,k(nε)→ π0,p̄,k(0) = π0,p̄,k as ε→ 0. (67)

Proof. The renewal type relation (6) written for n = nε takes the following form, for
p̄ ∈ Lm, k ∈ X,

pε,p̄,k(nε) = p0,p̄,k(nε)(1− ε)nε +

nε∑
l=1

p0,d̄,k(nε − l)ε(1− ε)l−1. (68)

By applying inequality (34) given in Lemma 2, with constants C̄N , λ̄N pointed in
Remark 1, to the transition probabilities appearing in the above renewal type relation,
we get the following inequality, p̄ ∈ Lm, k ∈ X(g), g = 1, . . . , h,

|pε,p̄,k(nε)− π0,p̄,k(1− ε)nε − π0,d̄,k(1− (1− ε)nε)| =

= |(p0,p̄,k(nε)− π0,p̄,k)(1− ε)nε +

nε∑
l=1

(p0,d̄,k(nε − l)− π0,d̄,k)ε(1− ε)l−1| ≤

≤ C̄N λ̄
nε

N + ε

nε∑
l=1

C̄N λ̄
[(nε−l)/N ]N
N ≤

≤ C̄N λ̄
nε

N + N(1− λ̄NN )−1ε. (69)

Let us introduce function Rε(t) = |(1− ε)nε − e−t|, t ∈ [0,∞].
If nε →∞ and εnε → t ∈ [0,∞] as ε→ 0, then,

Rε(t)→ 0 as ε→ 0. (70)

The following inequality takes place,

|π0,p̄,ke
−t + π0,d̄,k(1− e−t)− π0,p̄,k(1− ε)nε − π0,d̄,k(1− (1− ε)nε)| ≤
≤ |π0,p̄,k − π0,d̄,k|Rε(t) = δ0,p̄,d̄,kRε(t). (71)

Relations (69)–(71) obviously imply that the following relation holds, for k ∈ X(g),
k = 0, . . . , h, if nε →∞ and εnε → t ∈ [0,∞] as ε→ 0,

|pε,p̄,k(nε)− π0,p̄,k(t)| ≤ C̄N λ̄
nε

N + N(1− λ̄NN )−1ε+ δ0,p̄,d̄,kRε(t)→ 0 as ε→ 0. (72)

This relation proves the theorem. �

Remark 3. Inequality (72) gives, in fact, explicit upper bounds for the rate of convergence
in ergodic relation given in Theorem 8. Of course, it is possible to get some simple explicit
upper bounds for Rε(t) in terms of quantities εnε and t.
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6. Conclusion

One of the main reasons for approximation of the Markov chain X0,n (with the matrix
of transition probabilities P0), by perturbed (regularised) MCDC Xε,n (with the matrix
of transition probabilities Pε = (1 − ε)P0 + εD), is to use it for approximation of
the stationary distribution π̄0 = 〈π0,j , j ∈ X〉 of the Markov chain X0,n. Since the
corresponding phase space X = {1, . . . ,m} can be large, the power method can be used
for approximative computing of stationary distribution π̄0. In this case, its components
π0,j are approximated by probabilities pε,p̄,j(n) =

∑
i∈X pipε,ij(n), where pε,ij(n) are

elements of the matrix Pn
ε and p̄ = 〈pj , j ∈ X〉 is some initial distribution.

The results given in Theorems 7 and 8 show that the situation significantly differ for
two models: (a) regular, where the phase space X is one class of communicative states
for the Markov chain X0,n (condition A1 holds) and, (b) singular, where the phase space
X splits in several closed classes of communicative states for the Markov chain X0,n

(condition B1 holds, for some h > 1).
In the regular case, Theorem 7 shows that one can approximate the stationary prob-

abilities π0,j by probabilities pε,p̄,j(nε), using arbitrary positive integers nε → ∞ as
ε→ 0. Moreover, the explicit upper bounds for |pε,p̄,j(nε)−π0,j | pointed out in Remark
2 let one balance the choice of ε and nε.

In the singular case, the situation is more complex. If p̄ 6= d̄, one should be more care-
ful, since in this case it may be that the stationary probability π0,d̄,k 6= π0,p̄,k. In this
case, Theorem 8 answers the question about applicability probabilities pε,p̄,j(nε) as ap-
proximations for stationary probabilities for the Markov chain X0,n. In fact, these prob-
abilities converge to some mixture of stationary probabilities π0,p̄,k and π0,d̄,k, namely,

π0,p̄,k(t) = π0,p̄,ke
−t + π0,d̄,k(1 − e−t), as nε → ∞ in such way that εnε → t ∈ [0,∞]

as ε → 0. Moreover, the explicit upper bounds for |pε,p̄,k(nε) − π0,p̄,k(t)| pointed out
in Remark 3 let one also balance the choice of ε and nε and, in some sense, predict the
value of limit π0,p̄,k(t) depending on the value of quantity εnε.

We would like also to note that some experimental numerical results supporting the
theoretical results presented in the present paper can be found in preprint [3], where one
can also find a detailed survey of works related to applications of Markov chains with
damping components.
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ÊÀÏËIÍÃ I ÅÐÃÎÄÈ×ÍI ÒÅÎÐÅÌÈ ÄËß ËÀÍÖÞÃIÂ ÌÀÐÊÎÂÀ

Ç ÄÅÌÏÔÓÞ×ÎÞ ÊÎÌÏÎÍÅÍÒÎÞ

Ä. ÑIËÜÂÅÑÒÐÎÂ, Ñ. ÑIËÜÂÅÑÒÐÎÂ, Á. ÀÁÎËÀ, Ï. Ñ. ÁIÃÀÍÄÀ, Ê. ÅÍÃÑÒÐÜÎÌ,
Ä. Ì. ÌÀÍÃÎ, Ã. ÊÀÊÓÁÀ

Àíîòàöiÿ. Çáóðåíi ëàíöþãè Ìàðêîâà ¹ ïîïóëÿðíèìè ìîäåëÿìè äëÿ îïèñó iíôîðìàöiéíèõ ìåðåæ.
Ó òàêèõ ìîäåëÿõ ìàòðèöÿ ïåðåõîäó P0 iíôîðìàöiéíîãî ëàíöþãà Ìàðêîâà çâè÷àéíî àïðîêñèìó¹òüñÿ
ìàòðèöåþ Pε = (1 − ε)P0 + εD, äå D� òàê çâàíà äåìïôóþ÷à ñòîõàñòè÷íà ìàòðèöÿ ç îäíàêîâèìè
ðÿäêàìè i äîäàòíèìè åëåìåíòàìè, à ε ∈ [0, 1]�ïàðàìåòð äåìïôóâàííÿ (çáóðåííÿ). Âèêîðèñòîâóþ-
÷è ïðîöåäóðó øòó÷íî¨ ðåãåíåðàöi¨ äëÿ çáóðåíîãî ëàíöþãà Ìàðêîâà ηε,n ç ìàòðèöåþ éìîâiðíîñòåé
ïåðåõîäiâ Pε i êàïëiíã ìåòîäè, ìè îòðèìó¹ìî åðãîäè÷íi òåîðåìè ó âèãëÿäi àñèìïòîòè÷íèõ ñïiââiä-
íîøåíü äëÿ pε,ij(n) = Pi{ηε,n = j} ïðè n → ∞ i ε → 0, à òàêîæ ÿâíi âåðõíi îöiíêè øâèäêîñòi
çáiæíîñòi â òàêèõ òåîðåìàõ. Çîêðåìà, äîñëiäæó¹òüñÿ íàéáiëüø ñêëàäíèé âèïàäîê ìîäåëåé iç ñèí-
ãóëÿðíèìè çáóðåííÿìè, êîëè ôàçîâèé ïðîñòið íåçáóðåíîãî ëàíöþãà Ìàðêîâà η0,n ðîçùåïëþ¹òüñÿ
íà êiëüêà çàìêíóòèõ êëàñiâ êîìóíiêàòèâíèõ ñòàíiâ i, ìîæëèâî, êëàñ ïåðåõiäíèõ ñòàíiâ.


