УДК 617.53-007.24-089.843

Карпинский М.Ю., Нехлопочин А.С., Нехлопочин С.Н., Карпинская Е.Д., Яресько А.В. ГУ «Институт патологии позвоночника и суставов им. проф. М.И. Ситенко НАМН Украины», г. Харьков, Украина

ОСОБЕННОСТИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ШЕЙНОГО ОТДЕЛА ПОЗВОНОЧНИКА ПРИ ЗАМЕЩЕНИИ ТЕЛ ПОЗВОНКОВ ИСКУССТВЕННЫМИ ИМПЛАНТАТАМИ РАЗНЫХ КОНСТРУКЦИЙ

Цель: определить особенности нагружения позвонков шейного отдела позвоночника при замещении тела позвонка искусственным имплантатом.

Материалы и методы. В лаборатории биомеханики ДУ «ИППС им. проф. М.И. Ситенко НАМН Украины» было выполнено математическое моделирование с использованием метода конечных элементов. Были построены три конечно-элементные модели шейного отдела позвоночника. Модели имитировали шейный отдел позвоночника человека на участке от позвонка СЗ до позвонка С7, включая межпозвонковые диски и дугоотростчатые суставы с межсуставным хрящом. Позвонок С5 был замещен тремя конструкциями: сетчатый кейдж, сетчатый кейдж с дополнительной фиксацией смежных позвонков пластиной и кейдж с фиксирующими элементами нашей конструкции. Напряженно-деформированное состояние моделей изучали при четырех вариантах нагружения: на сжатие, при изгибе при наклоне вперед, изгибе при наклоне назад и ротационном воздействии. Величина нагрузки на модели составляла 100 H, нагружение на сжатие — 36 H по верхней поверхности тела позвонка С3 и по 32 Н на верхнюю плоскость его дугоотростчатых суставов. Наклон вперед имитировали нагрузкой 100 Н на передний край тела позвонка СЗ, а наклон назад — нагрузкой по 50 Н на его дуги. Ротационная нагрузка — 100 Н по верхней поверхности тела позвонка СЗ. Критерием оценки напряженно-деформированного состояния моделей выбрано напряжение по Мизесу. Построение модели выполняли с помощью программного комплекса SolidWorks, расчеты методом конечных элементов проводили с помощью пакета COSMOSWorks, входящего в состав комплекса.

Результаты исследования. Во всех моделях основную нагрузку принимают на себя металлические конструкции, однако в костной ткани наблюдаются некоторые особенности.

При сжимающей нагрузке наибольшие показатели величины напряжений наблюдаются в модели с кейджем без дополнительного крепления. На верхней поверхности тел позвонков С4 и С6 максимальные величины напряжений составляют 3,0 и 10,0 МПа соответственно. В моделях с дополнительным креплением по верхней поверхности позвонка С4 напряжения в моделях с пластиной и нашей конструкции практи-

чески одинаковы — 2,6 и 2,7 МПа соответственно, в позвонке С6 различие составляет 7,2 и 5,8 МПа. По нижней поверхности позвонков С4 и С6 картина распределения напряжений практически идентичная. Наибольшие различия наблюдаются на поверхности позвонка, контактирующего с кейджем, на нижней поверхности позвонка C4 — 7,9; 6,1 и 5,5 МПа соответственно для моделей с одним кейджем, с накостной пластиной и кейджем нашей конструкции. Наиболее нагруженной частью позвонков выявились корни дуг позвонка С6 — 18,2; 17,2 и 16,5 МПа для соответствующих моделей. В дугоотростчатых суставах наибольшие различия в величинах напряжений наблюдаются в позвонках C4 и C5 — 2,9 и 1,9 МПа соответственно для модели с кейджем без дополнительного крепления; 2,6 и 1,5 МПа — для кейджа нашей конструкции; 2,8 и 1,6 МПа — в соответствующих зонах для накостной пластины.

При наклоне головы вперед основную нагрузку принимают на себя металлические конструкции. В телах позвонков наибольшие напряжения возникают в местах контакта с кейджами — нижняя поверхность позвонка С4 (9,0; 8,1 МПа) и верхняя поверхность тела позвонка Сб (5,0 МПа). Во втором случае уровень напряжений составляет 10,3; 6,5 и 4,1 МПа для соответствующих моделей. При наклоне вперед корни дуг позвонков разгружаются, и напряжения здесь не превышают значения 1,5 МПа в дугах позвонка С6 в модели без дополнительной фиксации. В двух других моделях напряжения в этой зоне находятся на уровне 1,1 МПа. Основные изменения в распределении напряжений наблюдаются на крепежных элементах конструкции. На верхние крепежные, расположенные на теле позвонка C4, — 15,8 МПа для модели с накостной пластиной и 12,3 МПа для кейджа нашей конструкции. Величина максимальных напряжений на винтах в теле позвонка С6 составляет 11,8 и 6,1 МПа для моделей с накостной пластиной и нашей конструкции соответственно. Наибольшие напряжения возникают на зубцах кейджа без дополнительной фиксации — 20,9 МПа со стороны позвонка С4 и 27,0 МПа на стороне позвонка Сб, при использовании кейджа нашей конструкции — 13,0 и 10,2 МПа соответственно. Конструкция с накостной пластиной показала наименьшие значения напряжений в этих зонах — 9,9 и 7,2 МПа.

При наклоне головы назад пиковые напряжения приходятся на зоны контакта позвонков с кейджем. По верхней поверхности позвонка C6 величины максимальных напряжений составляют 3,8 МПа для модели без дополнительной фиксации, 2,6 МПа — модели с накостной пластиной, 2,9 МПа — кейджа нашей конструкции. На нижней поверхности тела позвонка C4 уровень максимальных напряжений достигает значений 11,6; 7,6 и 7,5 МПа для соответствующих моделей. Основная нагрузка смещается на задний опорный комплекс, максимальные значения напряжений наблюдаются в корнях дуг позвонка C6 — 20,7 МПа для модели без дополнительной фиксации, 20,2 МПа — модели с накостной пластиной, 22,4 МПа — кейджа нашей конструкции. В дугах позвонка С4 в модели с кейджем без дополнительной фиксации уровень напряжений наименьший — 7,5 МПа, дополнительная фиксация приводит к увеличению напряжний в дугах позвонка С4 при наклоне назад — 10,0 МПа при фиксации пластиной, 9,6 МПа — кейдж нашей конструкции. Наиболее нагруженными, как и при наклоне вперед, остаются винты в теле позвонка С4 — 10,2 МПа для модели с пластиной и 7,6 МПа для кейджа нашей конструкции. Кейдж нашей конструкции более шадяще нагружает винты в теле позвонка С6 — 4,4 МПа в сравнении с накостной пластиной — 7,6 МПа. Что касается зубцов, то здесь преимущество на стороне конструкции с пластиной — 9,8 МПа на позвонке С4 и 11,1 на позвонке С6.

При ротации максимальные напряжения возникают в элементах позвонка СЗ, первого подвижного элемента в системе «позвоночник — имплантат», и достигают уровня 4,9 МПа для модели без дополнительной фиксации и 4,8 МПа в моделях с дополнительной фиксацией имплантата. Высокий уровень напряжений наблюдается и телах позвонков С4 и С6. При ротации в пластинах дуг позвонков напряжение достигает максимальных значений на позвонке С6 — 6,5 МПа для модели без дополнительной фиксации и 5,8 и 5,7 МПа в моделях с дополнительной фиксацией имплантата пластиной и кейджем нашей конструкции соответственно. В дугоотростчатых суставах интенсивность напряжений несколько спадает — до уровня 2,0-2,2 МПа в позвонках СЗ и С6. При ротационных нагрузках дополнительная фиксация приводит к перераспределению интенсивности напряжений с зубцов кейджа на элементы дополнительного крепления.

Изучение влияния размера зубцов кейджа на характер распределения напряжений в системе «шейный отдел позвоночника — имплантат» показало, что в зонах, где нет прямого контакта имплантата с костной тканью, уровень напряжений в обеих моделях практически одинаковый. В зонах контакта уровень напряжений в модели с крупными зубцами несколько ниже.

Выводы. Наличие дополнительного крепления позволяет снизить уровень максимальных напряжений в костной ткани позвонков, контактирующих с имплантатом. Кейдж нашей конструкции показал наиболее низкий уровень напряжений в элементах модели при нагрузках на сжатие и наклоне головы вперед. При наклоне назад и ротации показатели напряжений в обеих моделях имеют незначительные отличия в ту или иную сторону на разных участках. Использование четырех крупных зубцов, перфорирующих кортикальный слой тела позвонка, приводит к снижению напряжений в костных структурах позвонков, с которыми контактирует, в сравнении с конструкцией, имеющей большее количество зубцов, но меньшей длины. Наличие второго крепежного винта приводит к повышению напряжений именно на винтах, а также на зубцах кейджа.

УДК 616.718.5/.6-007.24:519.876.5

Корж М.О., Романенко К.К., Карпінський М.Ю., Прозоровський Д.В., Яресько О.В. ДУ «Інститут патології хребта та суглобів ім. проф. М.І. Ситенка НАМН України», м. Харків, Україна

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ВПЛИВУ ДЕФОРМАЦІЇ КІСТОК ГОМІЛКИ НА НАВАНТАЖЕННЯ СУГЛОБІВ НИЖНЬОЇ КІНЦІВКИ

Мета: визначити вплив варусної деформації кісток гомілки на розподіл напружень у суглобах нижньої кінцівки.

Матеріали та методи дослідження. У лабораторії біомеханіки ДУ «ІПХС ім. проф. М.І. Ситенка НАМН України» було проведено математичне моделювання впливу деформації великогомілкової кістки на розподіл напружень у колінному, гомілково-стопному та підтаранному суглобах. Для вирішення даного завдання нами були розроблені комп'ютерні кінцево-елементні моделі нижньої кінцівки в нормі та з наявністю варусної деформації великогомілкової та малогомілкової кісток у середній третині величиною 45°. Моделі містять такі елементи: стегнова кістка, великогомілкова та малогомілкова кістки, таранна та п'яткова кістки, а також хрящові елементи в колінному, надп'ятково-гомілковому та піднадп'ятковому суглобах. Моделі мали жорстке закріплення в нижній частині, що обмежувало рухи в горизонтальному та вертикальному напрямках. На головку стегнової кістки прикладали розподілене навантаження під кутом 70° до горизонталі величиною 1100 H, що відповідає стоянню з опорою на одну кінцівку. До великого вертлюга прикладали концентровану силу величиною 515 Н, що імітує дію м'язів, що відводять кінцівку. Дослідження напружено-деформованого стану моделей виконували за допомогою методу кінцевих елементів. Як критерій оцінки напруженого стану моделей використовували напруження за Мізесом [2]. Моделювання системи виконували за допомогою системи автоматизованого проектування SolidWorks. Розрахунки напружено-деформованого стану моделей виконували за допомогою програмного комплексу CosmosM [3].

Результати дослідження. У результаті проведеного математичного моделювання методом кінцевих елементів ми отримали картину пружно-деформованого стану моделей нижньої кінцівки в нормі та за наявності варусної деформації кісток гомілки в середній третині.

Як показали наші розрахунки, наявність деформації кісток гомілки в середній третині величиною 45° призводить до незначного підвищення напружень по медіальній та латеральній поверхням стегнової кістки. Найбільш велике збільшення напружень спостерігається на медіальній поверхні стегнової кістки — від 17,5 МПа в нормі до 24,2 МПа при деформації. На латеральній поверхні збільшення величини напружень декілька менше — від 15,0 МПа в нормі до 20,6 МПа за наявності деформації.

Найбільш значні зростання напружень спостерігаються у великогомілковій кістці. На її медіальній