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M. M. OSYPCHUK AND M. I. PORTENKO

ON ORNSHTEIN-UHLENBECK’S MEASURE OF A HILBERT BALL

IN THE SPACE OF CONTINUOUS FUNCTIONS

An explicit formula for the characteristic function of the L2-norm of a path of the

Ornshtein-Uhlenbeck process is established and some application of the result is
given.

1. Introduction

In 1944, R. H. Cameron and W. R. Martin obtained an explicit formula for the char-
acteristic function of the L2-norm of a path of the Wiener process (see [1]). The aim
of this paper is to give an analogous formula in the case of the Ornshtein-Uhlenbeck
process. Besides, we give some application of our result.

2. Cameron-Martin’s result

Let (w(t))t≥0 be a standard Wiener process on a real line R for which w(0) = 0. The
correlation function of this process is given by

Ew(s)w(t) = s ∧ t, s ≥ 0, t ≥ 0.

Denote by L2[0, 1] the Hilbert space of all measurable square integrable functions with
real values defined on the interval [0, 1]. It is well known that the functions(√

2 sin

((
k − 1

2

)
πt

))
t∈[0,1]

, k = 1, 2, . . . ,

form an orthonormal basis in L2[0, 1], and the following relation

1∫
0

(s ∧ t) sin

((
k − 1

2

)
πt

)
dt =

4

(2k − 1)2π2
sin

((
k − 1

2

)
πs

)
is valid for all s ∈ [0, 1] and k = 1, 2, . . . . This implies that the Fourier coefficients of the
Wiener process on this basis

ηk =

1∫
0

w(t)
√

2 sin

((
k − 1

2

)
πt

)
dt, k = 1, 2, . . . ,

form a sequence of indepedent normal random variables with Eηk = 0 and Eη2k =
4/(2k − 1)2π2. Taking into account Parseval’s identity, we arrive at the relation

(1)

1∫
0

w2(t) dt =

∞∑
k=1

η2k

valid almost surely (one can easily verify that the series on the right hand side of (1) is
convergent almost surely).
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A very simple calculation shows that the following formula

E exp
{
θη2k
}

=

(
1− 8θ

(2k − 1)2π2

)− 1
2

holds true for any real number θ satisfying the inequality θ < (2k − 1)2π2/8. Therefore,
if θ < π2/8, then the relation

E exp

θ
1∫

0

w2(t) dt

 =

( ∞∏
k=1

(
1− 8θ

(2k − 1)2π2

))− 1
2

holds true. Now, making use of the formula

cos z =

∞∏
k=1

(
1− 4z2

(2k − 1)2π2

)
valid for an arbitrary complex number z other than any number of the set{(

k +
1

2

)
π : k = 0,±1,±2, . . .

}
,

we arrive at the equality

(2) E exp

θ
1∫

0

w2(s) ds

 =
1√

cos
√

2θ
, θ <

π2

8
.

This is the Cameron-Martin formula (see [1] and also [2], Chapter II, §12).

Remark 2.1. Denote by C[0, 1] the set of all real-valued continuous functions defined on
the interval [0, 1], and for r > 0 we put

Br =

x(·) ∈ C[0, 1] : x(0) = 0,

1∫
0

x2(s) ds < r

 .

This is a Hilbert ball of radius
√
r in the space of continuous functions starting from the

origin. For r > 0, denote by F (r) the value of the Wiener measure on the set Br. Then
the formula (2) can be rewritten in the following form

(3)

∞∫
0

e−θr dF (r) =
1√

cosh
√

2θ
, θ ≥ 0.

3. The Ornshtein-Uhlenbeck process

For a fixed parameter ρ > 0, we put

(4) x(t) = e−ρt
t∫

0

eρs dw(s), t ≥ 0,

where the integral on the right hand side of this equality is the Wiener integral

t∫
0

eρs dw(s) = eρtw(t)− ρ
t∫

0

eρsw(s) ds, t ≥ 0.

The stochastic process defined by (4) is called the Ornshtein-Uhlenbeck process starting
from the origin (x(0) = 0).
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Denote by (K(s, t))s≥0, t≥0 the correlation function of this process. It can be easily
calculated, namely,

K(s, t) =
1

ρ
exp {−ρ(s ∨ t)} sinh(ρ(s ∧ t)), s ≥ 0, t ≥ 0.

For k = 1, 2, . . . , denote by µk the unique root of the equation tanµ = −µ/ρ on the
interval

((
k − 1

2

)
π, kπ

)
and put

λk =
1

ρ2 + µ2
k

, ϕk(t) =
1

κk
sin(µkt), t ∈ [0, 1],

where

κ2
k =

1∫
0

sin2(µkt) dt =
1

2

ρ2 + ρ+ µ2
k

ρ2 + µ2
k

.

The following relations

1∫
0

K(s, t)ϕk(t) dt = λkϕk(s), s ∈ [0, 1], k = 1, 2, . . . ,

can be established by very simple calculations. Moreover, one can verify that the func-
tions (ϕk(t))t∈[0,1], k = 1, 2, . . . , form an orthonormal basis in the space L2[0, 1] (the

property of this system to be complete is a simple consequence of the theorem proved in
Section 55, Chapter V of [4]).

Now, as in Section 2, we can assert that the Fourier coefficients

ξk =

1∫
0

x(t)ϕk(t) dt, k = 1, 2, . . . ,

of the Ornshtein-Uhlenbeck process on this basis form a sequence of independent normally
distributed random variables for which Eξk = 0, Eξ2k = λk. Again, making use of
Parseval’s identity, we get

(5)

1∫
0

x2(s) ds =

∞∑
k=1

ξ2k,

where, as above, the series on the right hand side is convergent almost surely. Since the
formula

E exp
{
θξ2k
}

= (1− 2θλk)−1/2 =

(
1− 2θ

ρ2 + µ2
k

)−1/2
holds true for any real number θ < 1/(2λk) = (ρ2 + µ2

k)/2, the equality (5) implies the
following relation

(6) E exp

θ
1∫

0

x2(s) ds

 =

[ ∞∏
k=1

(
1− 2θ

ρ2 + µ2
k

)]−1/2

valid for all θ < (ρ2 + µ2
1)/2.

Note that µk for k ≥ 1 is a function of ρ, hence, the right hand side of (6) is a function
of ρ > 0 and θ < (ρ2 + µ2

1)/2; we denote it by Φ(ρ, θ). An explicit formula will be found
out for this function in the next section.
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4. Calculating the function Φ

Taking the logarithmic derivative of Φ in the argument θ, we get

(7)
∂

∂θ
ln Φ(ρ, θ) =

∞∑
k=1

1

ρ2 + µ2
k − 2θ

.

In what follows, we are trying to represent the series (7) as the sum of terms being
equal to the products of the Fourier coefficients (in the basis (ϕk)k≥1) of two appropriate
functions.

We note, first of all, that an antiderivative of the function
(

sinh(t
√
ρ2 − 2θ) sinµkt

)
t∈R

can be easily calculated. This fact and the relation ρ sinµk + µk cosµk = 0 (see the defi-
nition of the number µk) allow us to write down the following equality

(8)

1∫
0

sinh(t
√
ρ2 − 2θ)

V (ρ, θ)
ϕk(t) dt =

sinµk
κk(ρ2 + µ2

k − 2θ)

valid for ρ > 0, θ < ρ2/2 and k = 1, 2, . . . , where we put

V (ρ, θ) =
√
ρ2 − 2θ cosh

√
ρ2 − 2θ + ρ sinh

√
ρ2 − 2θ.

It thus remains to find out such a function (h(ρ, t))t∈[0,1] that satisfies the relation

1∫
0

h(ρ, t)ϕk(t) dt =
κk

sinµk

for all ρ > 0 and k = 1, 2, . . . . Rewrite this relation in the form

1∫
0

h(ρ, t) sinµkt dt =
κ2
k

sinµk
=

κ2
k sinµk
µ2
k

(ρ2 + µ2
k),

where the equality sin2 µk = µ2
k/(ρ

2 + µ2
k) has just been used. Substituting into the

right hand side of this relation instead of κk its expression in terms of ρ and µk (see
above), we arrive at the conclusion that the function h must satisfy the condition (ρ > 0,
k = 1, 2, . . . )

(9)

1∫
0

h(ρ, t) sinµkt dt =
1

2
sinµk +

1

2
ρ(ρ+ 1)

sinµk
µ2
k

.

It is clear that the function h should be equal to the sum of two functions: h1 and h2
for which

1∫
0

h1(ρ, t) sinµkt dt =
1

2
sinµk,

1∫
0

h2(ρ, t) sinµkt dt =
1

2
ρ(ρ+ 1)

sinµk
µ2
k

for all ρ > 0 and k = 1, 2, . . . . The first of these relations means that h1 coincides (within
the multiplicator 1/2) with the Dirac δ-function (δ1(t))t∈[0,1] concentrated at the point
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t = 1. In order to find out the function h2, let us calculate the integral (using the relation
ρ sinµk + µk cosµk = 0)

1∫
0

t sinµktdt = − 1

µk
cosµk +

sinµk
µ2
k

= (ρ+ 1)
sinµk
µ2
k

.

It follows from this that h2(ρ, t) = ρt/2 for t ∈ [0, 1] and ρ > 0. We have thus found out
the function h satisfying the equality (9) for all ρ > 0 and k = 1, 2, . . . , namely

h(ρ, t) =
1

2
δ1(t) +

1

2
ρt, t ∈ [0, 1].

Note that the function δ1 does not belong to L2[0, 1]. Nevertheless, it is possible to
write down the Parseval identity for it and the function(

sinh(t
√
ρ2 − 2θ)

V (ρ, θ)

)
t∈[0,1]

because the Fourier coefficients of the latter function form an absolutely convergent series
as the formula (8) shows (we remind that µk ∈

((
k − 1

2

)
π, kπ

)
). So we get

(10)

∞∑
k=1

1

ρ2 + µ2
k − 2θ

=

1∫
0

sinh(t
√
ρ2 − 2θ)

V (ρ, θ)

[
1

2
δ1(t) +

1

2
ρt

]
dt.

Calculating the integral here, we arrive at the formula

∂

∂θ
ln Φ(ρ, θ) =

1

2V (ρ, θ)

[
ρ2 − ρ− 2θ

ρ2 − 2θ
sinh

√
ρ2 − 2θ +

ρ√
ρ2 − 2θ

cosh
√
ρ2 − 2θ

]
.

Note that the expression on the right hand side of this formula coincides with the partial
derivative in the argument θ of the function

ln

eρ/2(cosh
√
ρ2 − 2θ +

ρ√
ρ2 − 2θ

sinh
√
ρ2 − 2θ

)−1/2 ,
and since the value of this function at the point θ = 0 is equal to zero, we can write down
the final formula

(11) Φ(ρ, θ) = eρ/2

(
cosh

√
ρ2 − 2θ +

ρ√
ρ2 − 2θ

sinh
√
ρ2 − 2θ

)−1/2
that holds true for all ρ > 0 and θ < ρ2/2.

The arguments that led us to (11) remain applicable also in the case θ ≥ ρ2/2, but
θ < (ρ2 + µ2

1)/2; the corresponding formula can be written as follows

(12) Φ(ρ, θ) = eρ/2

(
cos
√

2θ − ρ2 +
ρ√

2θ − ρ2
sin
√

2θ − ρ2
)−1/2

.

The Ornshtein-Uhlenbeck process generates on the space C[0, 1] a probabilistic measure
that is called the Ornshtein-Uhlenbeck measure. If we denote by Fρ(r) the value of
this measure on the Hilbert ball Br for r > 0 (see above), then we can write down the
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following formula

E exp

−θ
1∫

0

x2(s) ds

 =

∞∫
0

e−θr dFρ(r) =(13)

= eρ/2

(
cosh

√
ρ2 + 2θ +

ρ√
ρ2 + 2θ

sinh
√
ρ2 + 2θ

)−1/2
valid for all θ ≥ 0.

Note that the Wiener measure is a limitting one for the Ornshtein-Uhlenbeck measures,
as ρ→ 0+. It is easily seen that when passing to the limit, as ρ→ 0+, in formulae (12)
and (13), we get the formulae (2) and (3) respectively.

5. An application

The Ornshtein-Uhlenbeck process defined above by (4) is such a solution to the sto-
chastic differential equation

dx(t) = −ρx(t) dt+ dw(t)

that satisfies the initial condition x(0) = 0. We put

E(ρ) = exp

−ρ
∫ 1

0

w(s) dw(s)− ρ2

2

1∫
0

w2(s) ds

 ,

where the first integral on the right hand side is the Itô stochastic integral.
There are problems (see, for example, [3]), where the necessity to have a formula for

EE2(ρ) arises. We will show that the formula (11) can be very useful in such a situation.
Note that

E2(ρ) = E(2ρ) exp

ρ2
1∫

0

w2(s) ds

 , ρ > 0.

Girsanov’s theorem now implies the equality

EE2(ρ) = Φ(2ρ, ρ2).

Taking into account (11), we arrive at the formula

EE2(ρ) = eρ
(

cosh ρ
√

2 +
√

2 sinh ρ
√

2
)−1/2

.
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