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M. M. OSYPCHUK AND M. I. PORTENKO

ON ORNSHTEIN-UHLENBECK’S MEASURE OF A HILBERT BALL
IN THE SPACE OF CONTINUOUS FUNCTIONS

An explicit formula for the characteristic function of the La-norm of a path of the
Ornshtein-Uhlenbeck process is established and some application of the result is
given.

1. INTRODUCTION

In 1944, R. H. Cameron and W. R. Martin obtained an explicit formula for the char-
acteristic function of the Lo-norm of a path of the Wiener process (see [1]). The aim
of this paper is to give an analogous formula in the case of the Ornshtein-Uhlenbeck
process. Besides, we give some application of our result.

2. CAMERON-MARTIN’S RESULT

Let (w(t))i>0 be a standard Wiener process on a real line R for which w(0) = 0. The
correlation function of this process is given by

Ew(s)w(t) =sAt, s>0,t>0.

Denote by Ls[0, 1] the Hilbert space of all measurable square integrable functions with
real values defined on the interval [0, 1]. It is well known that the functions

1
(ﬂsin((kz—)wt)) , k=1,2,...,
2 t€[0,1]

form an orthonormal basis in L2[0,1], and the following relation

O/Iwﬂsin((k_;) )= i (12 1) )

is valid for all s € [0,1] and k£ = 1,2,.... This implies that the Fourier coefficients of the
Wiener process on this basis

1
nk/w(t)\/ﬁsin(<k;> 7rt> dt, k=12,...,
0

form a sequence of indepedent normal random variables with En, = 0 and En? =
4/(2k — 1)?x%. Taking into account Parseval’s identity, we arrive at the relation

1 oo
(1) / w(t)dt =
0 k=1

valid almost surely (one can easily verify that the series on the right hand side of (1) is
convergent almost surely).

2000 Mathematics Subject Classification. Primary 60J60; Secondary 60GO07.
Key words and phrases. Wiener process, Ornshtein-Uhlenbeck process, Cameron-Martin formula.

46



ON ORNSHTEIN-UHLENBECK’S MEASURE OF A HILBERT BALL ... 47

A very simple calculation shows that the following formula

80 "3

holds true for any real number 6 satisfying the inequality 6 < (2k — 1)272/8. Therefore,
if # < m2/8, then the relation

E exp 9/1w2(t)dt = (ﬁ (1—(%891)%2));

0 k=1

holds true. Now, making use of the formula

oo

o= I )

k=1

valid for an arbitrary complex number z other than any number of the set

{<k+;>7r: k(),:l:l,:l:?,...},

1

we arrive at the equality

1 2
(2) E exp 9/w2(s)ds =—, 0< T
) cos V20 8

This is the Cameron-Martin formula (see [1] and also [2], Chapter II, §12).

Remark 2.1. Denote by C[0,1] the set of all real-valued continuous functions defined on
the interval [0, 1], and for r > 0 we put

B, =< z(-) € C[0,1] : z(0) =0, /IQ(S) ds <r
0

This is a Hilbert ball of radius 4/r in the space of continuous functions starting from the
origin. For r > 0, denote by F(r) the value of the Wiener measure on the set B,. Then
the formula (2) can be rewritten in the following form

oo

(3) /e*GT dF(r) = ;, 0 > 0.
) cosh v/20

3. THE ORNSHTEIN-UHLENBECK PROCESS

For a fixed parameter p > 0, we put
t
(4) x(t) = 67"’5/6"s dw(s), t>0,
0
where the integral on the right hand side of this equality is the Wiener integral
t t
/eps dw(s) = e w(t) — p/e”sw(s) ds, t>0.
0 0

The stochastic process defined by (4) is called the Ornshtein-Uhlenbeck process starting
from the origin (z(0) = 0).
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Denote by (K (s,t)),>¢, ;>0 the correlation function of this process. It can be easily
calculated, namely,

K(s,t) = %exp{—p(s Vit)}sinh(p(s At)), s>0,t>0.

For k =1,2,..., denote by uy the unique root of the equation tan = —pu/p on the
interval ((k — %) T, Imr) and put

1 1
A —_—, t) = —sin(uxt), te€|(0,1],
b= o) = s, 1€ 0,1]

where

1
1 2 2
a1} :/s (ut) dt = w
’ 2 PP+ pi
0

The following relations

1
[ Ko it =), sebal k=12,
0

can be established by very simple calculations. Moreover, one can verify that the func-
tions (¢x(t))se0,» ¥ = 1,2,..., form an orthonormal basis in the space L3[0,1] (the
property of thls system to be Complete is a simple consequence of the theorem proved in
Section 55, Chapter V of [4]).

Now, as in Section 2, we can assert that the Fourier coefficients

1
:/x(t)tpk(t)dt, k=1,2,...,
0

of the Ornshtein-Uhlenbeck process on this basis form a sequence of independent normally
distributed random variables for which E&, = 0, E& = \;. Again, making use of
Parseval’s identity, we get

(5) /f@@=2ﬁ7
0

k=1

where, as above, the series on the right hand side is convergent almost surely. Since the
formula

29 —1/2
MWW$=0—%MW”:@‘w+m)
k

holds true for any real number 6 < 1/(2\;) = (p* + u)/2, the equality (5) implies the

following relation
1 - 00
6 Eexp< 0 / z3(s < )
(6) kl;[l N

0

—1/2

valid for all 6 < (p? + p2)/2.

Note that py for £ > 1 is a function of p, hence, the right hand side of (6) is a function
of p>0and 6 < (p? + u?)/2; we denote it by ®(p,0). An explicit formula will be found
out for this function in the next section.



ON ORNSHTEIN-UHLENBECK’S MEASURE OF A HILBERT BALL ... 49

4. CALCULATING THE FUNCTION @

Taking the logarithmic derivative of ® in the argument 6, we get

o0

d 1
(7) %m@( 9)_;7[)”#%_29.

In what follows, we are trying to represent the series (7) as the sum of terms being
equal to the products of the Fourier coefficients (in the basis (¢x)r>1) of two appropriate
functions.

We note, first of all, that an antiderivative of the function (sinh(t p? — 20) sin pkt)tGR

can be easily calculated. This fact and the relation psin iy, + pg cos pg, = 0 (see the defi-
nition of the number py) allow us to write down the following equality

1
(8) /Smht p%— 20) ou(t) dt = sin pug
0

s (p? + i — 20)

valid for p > 0, 0 < p?/2 and k = 1,2,..., where we put

Vip,0) = /p? — 20 cosh v/ p? — 20 + psinh /p? — 26.

It thus remains to find out such a function (h(p,t)):e[o,1] that satisfies the relation

1
P
h(p,t t)dt =
[ 1ottt =
0

for all p > 0 and k =1,2,.... Rewrite this relation in the form
; 2 2
) > wpsinpg , o o
h(p,t)sin ppt dt = —*— = =& + ;
0/ (p,t) sin pu Snir 2 (P" + 1)

where the equality sin® ;= p?/(p? + p2) has just been used. Substituting into the
right hand side of this relation instead of s, its expression in terms of p and py (see
above), we arrive at the conclusion that the function A must satisfy the condition (p > 0,
k=1,2,...)

1
1 1
(9) h(p,t) sin pyt dt = = sin pg + —p(p + 1) sin Mk
2 2 Mk
0

It is clear that the function A should be equal to the sum of two functions: h; and ho
for which

1

1
hi(p,t)sin ppt dt = — sin puy,

2
0
1
. 1 sin
/hg(p, t)sinugptdt = —p(p+ 1) Mk
2" T3
0
forall p > 0and k =1,2,.... The first of these relations means that h; coincides (within

the multiplicator 1/2) with the Dirac J-function (d1(t))se[o,1] concentrated at the point
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t = 1. In order to find out the function hs, let us calculate the integral (using the relation
psin px, + pu, cos py, = 0)

1

1 i i
/tsin,uktdt = ——cos g + Smfk =(p+ 1)Sm5k'
J M M, H,

It follows from this that ha(p,t) = pt/2 for t € [0, 1] and p > 0. We have thus found out
the function h satisfying the equality (9) for all p > 0 and k = 1,2,..., namely

1 1
hip,t) = 501(8) + 5ot t€[0,1].

Note that the function §; does not belong to L,[0,1]. Nevertheless, it is possible to
write down the Parseval identity for it and the function

<sinh(t p?— 29))
Vi(p,0) selo.]

because the Fourier coefficients of the latter function form an absolutely convergent series
as the formula (8) shows (we remind that py, € ((k— ) 7, k7) ). So we get

1
> 1 sinh(ty/p? —20) [1 1
10 = | YT | 5 (8) 4 opt| dt.
(10) > / S | Sa 0+ 50
- 0

Calculating the integral here, we arrive at the formula

0 Pt —p—20 . P
I md(p,0) = WP — 20+ —L cosh/p% —20].
ag 20 zv(p,e)l 220 VP MY/ R

Note that the expression on the right hand side of this formula coincides with the partial
derivative in the argument 6 of the function

—1/2
In |eP/? (cosh p? —20+ \/%29 sinh m) J
02 —

and since the value of this function at the point 8 = 0 is equal to zero, we can write down
the final formula

~1/2
(11) ®(p,0) = e/? (cosh p? —20+ \/%20 sinh y/p? — 29)
02 —

that holds true for all p > 0 and 6 < p?/2.
The arguments that led us to (11) remain applicable also in the case § > p?/2, but
0 < (p + p?)/2; the corresponding formula can be written as follows

\/20 — p?

The Ornshtein-Uhlenbeck process generates on the space C[0, 1] a probabilistic measure
that is called the Ornshtein-Uhlenbeck measure. If we denote by F,(r) the value of
this measure on the Hilbert ball B, for » > 0 (see above), then we can write down the

—1/2
(12) ®(p,0) = e?/? <cos 2 — p2 + ——L2 sin\/20 - p2> :
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following formula

(13) E exp —9/:102(5) /Ooe_‘gr dF,(
0

0
—1/2

smh v/ p? + 260

= e/ [ cosh \/p? + 20 + —————

v/ p?+
valid for all 6 > 0.

Note that the Wiener measure is a limitting one for the Ornshtein-Uhlenbeck measures,
as p — 0+. It is easily seen that when passing to the limit, as p — 0+, in formulae (12)
and (13), we get the formulae (2) and (3) respectively.

5. AN APPLICATION

The Ornshtein-Uhlenbeck process defined above by (4) is such a solution to the sto-
chastic differential equation

dx(t) = —px(t) dt + dw(t)
that satisfies the initial condition x(0) = 0. We put

£(p) = exp p/01w<> ’;/w
0

where the first integral on the right hand side is the Ito6 stochastic integral.
There are problems (see, for example, [3]), where the necessity to have a formula for
EE2(p) arises. We will show that the formula (11) can be very useful in such a situation.
Note that )

&)= Epep{ o [we)ds (. p>0.
0
Girsanov’s theorem now implies the equality

EE*(p) = ®(2p, p?).

Taking into account (11), we arrive at the formula
EE2(p) = e’ (cosh pV2 + V/2sinh p\/§)
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