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Abstract 

We consider a joint spatial-frequency distribution as a result of superposition of 
two known Wigner and Ville distributions. The joint distribution is 
characterized by a certain parameter t  that plays a part of measure of 
superposition: the joint frequency-spatial distribution passes into the Ville one 
at 0t =  and coincides with the Wigner distribution at 1t = . For the values 
0 1t< <  there exists a row of ‘mixed’ distributions, which represent 
superposition of the Wigner and Ville distributions. Explicit expression for the 
joint distribution of Gaussian signal is obtained by means of analytical 
calculations. We present graphic illustrations for the shape of joint distribution 
of Gaussian signal at different values of the joint parameter t . It is 
demonstrated that the Wigner distribution is formed as a rotation of Ville 
distribution on the information diagram by the angle proportional to the joint 
parameter t . 
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1. Introduction 

Nowadays different types of spatial-frequency distributions are successfully employed 
for analysis of nonstationary signals [1–2]. There is reliable information on both 
advantages and deficiencies of many of those distributions if they are applied in different 
fields of physics. Wigner and Ville 1 distributions have found wide applications in 
spatial-frequency analysis, particularly in the optical systems for information processing. 
It is well known that just these distributions reveal some properties successfully used for 

                                                           
1 In a number of works the term “Ville distribution” is referred to as “ambiguity function”. Here 
we use the former term because the corresponding distribution has been introduced in the work by 
J.Ville, Cables et transmissions 2A, 61 (1948). 
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description of various optical systems. Applications of distributions mentioned above are 
manifold and concern, in particular, theory of optical lens systems, theory of 
communications, acoustics, hydrolocation etc. [3–5]. Recent investigations have proven 
efficiency of the applications of spatial-frequency distributions in biology and medicine. 
For instance, it has been reported that the Wigner distribution could be applied for 
reconstructing 3D structures in frame of optical tomography [6–8].  

One of the promising investigation directions within the spatial-frequency 
processing of signals is studying the properties of novel spatial-frequency representations 
of the distributions, with the aim of their further applications in different areas of physics 
and medicine. Unfortunately, it often happens that some spatial-frequency distributions 
do not meet demands raised by one or another specific application. In this relation, many 
of the existing distributions need generalization or improvements when applied to a given 
problem.  

During the second half of the past century and the beginning of this one, a clear 
tendency has been observed towards generalization of different spatial-frequency 
distributions. The first attempt of such a generalization has been due to L. Cohen [9] as 
long ago as in 1966. The author has introduced a number of quasi-probability 
distributions that yield in correct quantum-mechanical marginal distributions. The 
Wigner distribution has been addressed there as an individual case. The next step has 
been done by N. De Bruijn in 1973 [10]. He has devoted his work to elaborating theory 
of generalized functions, with applications concerned with the Wigner and Ville 
distributions.  

Summarizing the results of numerous studies, Cohen [1, 4] has suggested a 
generalized distribution involving a certain kernel dependent upon two parameters: 
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Depending on the form of the kernel ( , )x ωΦ , this distribution degenerates into one 

of the known distributions (Wigner, Ville, Woodward, Kirkwood, Page, Mark, etc.). In 
general, Eq. (1) describes a class of spatial-frequency distributions, which has been later 
called as a Cohen’s class. The distributions which are already known or still unknown 
can belong to the above class. Of course, the latter ones should necessarily satisfy all of 
the relevant requirements. In his studies, Cohen has given much attention to the problems 
of physical interpretation of different distributions, together with methodology for signal 
synthesis on the basis of appropriate distributions. The well-known specialist in the 
signal theory, A. Mertins, has also touched upon the theory of generalization of spatial-
frequency distributions. In his monograph “Signal Analysis” [5] he has singled out this 
topic into a separate section “General spatial-frequency distributions”. The author has 
stated that the Wigner distribution serves as an excellent tool for spatial-frequency 
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analysis as long as a linear dependence is kept between the instantaneous coordinates and 
frequencies. Otherwise, a need in generalizing appears, whose general principles are 
described in detail in the mentioned work.  

Among numerous recent studies related to generalizing spatial-frequency 
distributions, we should mention only the most typical ones. The PhD Thesis by L. Durak 
“Novel time-frequency analysis technique for deterministic signals” [11] is one of such 
studies, where a close attention has been paid to generalizing distributions and 
introducing their additional parameters. 

Generalizations of spatial-frequency distributions have been thoroughly considered 
in the collection edited by B. Boashash [2]. Among a number of studies included in it, we 
would like to emphasize the works by R. Baraniuk (p. 123), X. Xia (p. 223) and 
A. Papandreou-Suppappola (p. 643). Within the mentioned collection, the work by 
G. Matz by F. Hlawatsch (p. 400) is of particular interest in relation to the problem of 
distributions generalization, since it considers methodology for constructing generalized 
distributions on the basis of both the Wigner distribution and the ambiguity function (i.e., 
the Ville distribution). 

In the present work we try to use interlinks between the Wigner and Ville 
distributions with the aim of joining them into a single, more general distribution. Up to 
date, it has been revealed that the two distributions are related by a double Fourier 
transform. The results obtained by us allow tracing transformation of one of the 
distributions into the other, while changing the distribution parameter t . This generalized 

distribution generates a whole set of new distributions formed in the process of switching 
between the basic distributions. The latter fact may prove important from the viewpoint 
of possible practical applications. 

Hitherto, a choice between the Ville and Wigner distributions remains ambiguous. 
Each of them has its own scheme for reconstruction of signal intensity distribution. So, 
the scheme adopted for the Wigner distribution includes calculating the marginal 
distributions [1]. The Ville distribution permits much simpler reconstruction scheme, 
owing to simpler mathematical transformations [12, 16]. Traditionally, the Wigner 
distribution has been used in a large majority of studies performed within the field. 
Introduction of the joint distribution would mean a possibility for calculating ‘mixed’ 
states and determining the necessary contributions of each of the limiting distributions. 
Hence, there appears a possibility for revealing the state necessary for the system.  

As mentioned before, there have been a number of techniques for generalizing 
distributions, which are concerned with different applied problems. However, only 
S. Chountasis has suggested the approach [13] that enables transitions between the 
Wigner and Ville distributions. Such the distributions play an important part in the 
analysis of phase space and, moreover, can be immediately applied in the Wigner 
tomography [6–8]. In 1999 Chountasis and co-authors [13–15] have developed a general 

distribution based on the Wigner formalism, which involves an additional parameter θ. 
This study has been performed in frame of quantum-mechanical formalism. It allows 
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passing the Wigner and Lille distributions into each other by means of changing the latter 
parameter. 

The problem of calculation of a classical analogue of this generalized distribution 
remains urgent. It may be constructed based on the results [13] or using the formalism of 
Ville distribution, as has been done by the present author when studying the properties of 
fractal Fourier transform [17]. Similarly to the works [12, 16], the author has employed 
reconstruction of signal intensity based upon the Ville distribution. Meanwhile, it is just 
this reconstruction scheme that is realized experimentally in the real optical systems [17]. 

2. Joint spatial-frequency distribution. Basic grounds 

In this work we propose to use a novel generalized distribution. The expression for this 

spatial-frequency distribution of signals 
1
( )f x  and 

2
( )f x  may be written as follows: 
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with t  being the parameter of the joint distribution and defining the form of 

representation. The limiting cases of Eq. (2) are the Ville distribution itself [9, 16] 
achieved at the value 0t = ,  
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and the Wigner distribution [1] reached at 1t = , 
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The generalized distribution (2) may be represented in another form, which is often 
more convenient while performing mathematical calculations: 
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We call the generalized distribution introduced on the basis of Ville formalism as a 
joint spatial-frequency distribution of signals. A principled difference of the joint 
distribution (6) from the generalized Wigner function introduced by Chountasis [10] is 

that the exponent including the linear terms 0x  and 0ω  does not contain the factor two. 

As a matter of fact, this difference, which might have been treated as insignificant, proves 
to be very essential in all the further calculations and reconstruction of signal after its 
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distribution. The other difference is a presence of usual Ville distribution in the r. h. s. of 
Eq. (6). This approach allows reconstructing the intensity distribution for the input signal 
detected experimentally in the optical system. The scheme for reconstruction of the input 
signal following from the Ville distribution has been described in the works [2, 5, 9, 16]. 
Thus, as an alternative to the known Wigner and Ville distributions, we would come to a 
set of ‘mixed’ distributions determined by some of the values 0 1t< < .  

While working with the joint distribution, we deal in fact with a certain mixed state 
of our system, which should be described with the Wigner or Ville distributions in the 
limiting cases. It is known [2] that there are some problems whose solution makes one of 
those distributions more convenient, though the other problems do not enforce this choice 
and so the latter remains ambiguous. In the first place, this refers to the problems dealing 
with reconstruction of the input light intensity following from the known distribution. 
They are usually solved using the Wigner distribution [1, 2, 4, 5]. 

However, the studies [12, 16] have proven that the Ville distribution has some 
advantages in this respect. This is an example of problems of the type where the choice 
between the Wigner and Ville distributions is still ambiguous [2]. When employing the 
joint distribution and changing the joint parameter t , we can find the optimal state for the 

given system. This state can be described by the Wigner or Ville distribution or the joint 
distribution with some other parameter t . Considering universality of the problem 

mentioned, in this work we study the main properties of the suggested approach on the 
example of Gaussian signal. 

3. Joint spatial-frequency distribution of Gaussian signal 

Now let us pass to studying the main properties of the joint distribution and use, as an 
example, the Gaussian signal specified as  

2
2

1 1
( ) exp

22
g x x

σπ σ

 
 
 
 
 

= − .      (7) 

The Ville and Wigner distributions for the Gaussian signal are well known from the 
literature [5]. The corresponding Ville distribution has the form 
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while the Wigner distribution for the signal given by Eq. (7) is written as 
2
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The distributions (8) and (9) differ both functionally and by the amplitude. Our task 
is to reveal mechanism for their mutual redistribution. For this aim we will calculate the 
joint distribution of the Gaussian signal. Inserting the Gaussian function (7) into 
definition of the joint distribution (2) and taking Eqs. (6) and (8) into consideration, we 
get  
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After not too complicated mathematical transformations and substituting the 
expressions (11) and (12) into Eq. (13) one can obtain the following explicit analytical 
form of the joint distribution for the Gaussian signal: 
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The appearance of the joint distribution for the Gaussian signal for different 
parameter values 0 1t< <  may be found by taking a necessary value of the joint 

parameter t  in Eq. (14). 

4. Limiting cases for the joint distribution of Gaussian signal 

Let us study the limiting cases of Eq. (14), when the parameter T  belongs to the domains 
of small and large values. 

Case 1 ( )t T= →∞  

Consider the region of angles close to π , i.e. the values θ π ϕ= − , where 1ϕ << . 

Then we have cos cos , sin sinθ ϕ θ ϕ= − =  and the constants dependent on the θ  

parameter become as follows: 
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Therefore the joint distribution for the Gaussian signal for the limiting case 1t =  

may be rewritten as 
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Up to the factor two, Eq. (17) coincides with the Wigner distribution for the 
Gaussian signal (see Eq. (9)). The functional dependence of the joint distribution for the 
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Gaussian signal on the coordinates x  and p , taken for the parameter value 1 ( )t θ π= = , 

coincides with the same dependence typical for the Wigner distribution. 
Case 0 ( 0)t T= →  

This case corresponds to the region of small θ  angles. Let us mark that the 

coefficients 1a  and 2a  for this case become purely imaginary ( 1 2 /a a i T∼ ∼ ). It is easily 

seen that the following equality holds true for the quantity 1/ 2
1 2( )A a a −= : 
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The constant value tC  in the limit of 1θ �  may be represented as 
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As a result, one can arrive at the expression  
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for the product of Eqs. (18) and (19), which is equal to 1π −  in the limit 0T → . After that 

one has to eliminate the uncertainties available in the exponent of the joint Gaussian 
distribution (14). One can prove that mathematical transformations of Eq. (14) yield in 
the following result: 
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It is seen that Eq. (21) acquires the form  
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in the limiting case of 0T → . Hence, the joint distribution for the Gaussian signal at the 

parameter 0 ( 0)t θ= =  is equivalent to the Ville distribution. 

5. Calculation results for the joint distribution of Gaussian signal 

The analytical results obtained by us for the joint Gaussian distribution (see Eqs. (14), 
(17) and (22)) allow to illustrate visually the process of redistribution between the planes 
of Wigner and Ville distributions. Let us start our analysis with the Ville distribution and 
its transformation into the Wigner one, which is governed by changing the t  parameter 

from 0t =  to 1t = . The relevant results are depicted in Fig. 1 (for the real part) and Fig. 2 
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(for the imaginary part). The case (а) corresponds to the joint parameter value of 

0.001t =  (i.e., the rotation angle of 00.18θ = ). 

Within the accuracy limits, the joint distribution formed at this t  value can be 

regarded as the Ville one. The real part of this distribution shown in Fig. 1a, d coincides 
with the Ville distribution calculated with the formula (8), whereas the magnitude of its 

imaginary part (see Fig. 2a, d) is vanishingly small (of the order of 410− ). Obviously, the 

 

Fig. 1. Rotation of the joint distribution for the Gaussian signal (real part) on 
the information diagram at different values of the joint parameter and 

0,5σ = : 0.001t =  (a, d), 0.5t =  (b, e) and 1t =  (c, f). 
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imaginary part would decrease with decreasing θ  angle. Hence, the joint distribution for 

the Gaussian signal is in fact real and positively defined for the parameter values 

0.001t ≤  (or 00.18θ ≤ ). The alternative limit occurs at the joint parameter 1t = , which 

corresponds to the rotation angle 0180θ = . Unlike the previous case, this limiting 

transition may be exactly calculated. However, we should note the following. Since the 
expression (14) for the joint Gaussian distribution includes explicitly only the quantity 

Fig. 2. Rotation of the joint distribution for the Gaussian signal (imaginary 
part) on the information diagram at different values of the joint parameter 
and 0,5σ = : 0.001t =  (a, d), 0.5t =  (b, e) and 1t =  (c, f).  
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/ 2θ , the practical rotation angle on the information diagram is equal to 090θ = . In this 

specific limiting case the real part of the joint distribution (see Fig. 1c, f) coincides 
exactly with the Wigner distribution calculated according to Eq. (9), whereas the imagi-

nary part (see Fig. 2c, f) has the value of the order of 710− , i.e. tends to zero, like in the 

previous limiting case. Thus, the joint distribution of the Gaussian signal is real and 
positive in the limiting case under interest. 

Let us study the intermediate region between the above limiting cases, when we ha-

ve the joint parameter 00.5 ( 90 )t θ= = . This case is specific since it describes a mixed 

state equidistant from the Wigner and Ville distributions. If 0.5t =  we obtain the unit va-

lue of the other parameter, 1T = . That is why the distribution formed in these conditions 

is rotated by the angle 0/ 2 45θ =  with respect to both the Ville and Wigner distributions. 

The results calculated for the joint Gaussian distribution are shown in Fig. 1b, e (the real 
part) and Fig. 2b, e (the imaginary part). It is seen that the joint distribution is rotated by 

0/ 2 45θ =  and suffers a deformation. It is worth noticing that the rotations and 

deformations occur for the both real and imaginary parts of the joint distribution. 
In other words, we arrive at the conclusion that the Wigner distribution of the 

Gaussian signal is formed as a result of rotation on the information diagram of the Ville 

distribution by the angle 0/ 2 90θ = . Furthermore, availability of the t  parameter in the 

joint distribution allows investigating a continuous process of redistribution between the 
limiting distributions. While changing the t  parameter, we may study different mixed 

states of our system, in which the Wigner and Ville distributions are present in some 
definite proportions. 

Now that we have already studied the region where the joint distribution is 
equidistant from the planes of Wigner and Ville distributions, let us pass to the regions of 
the joint distribution located close to one of those planes. On the initial stage of this 

analysis we should study the real and imaginary parts of the complex constant ( )ttC θ  

(see Eq. (15)), which governs the distribution amplitude. 

The results of calculations of the complex parameter ( )ttC θ  for different σ  values 

are depicted in Fig. 3. The plane 00θ =  corresponds to the Ville distribution, the plane 
0180θ =  to the Wigner one and the planes located in between describe the common 

region. Here we consider two characteristic cases appearing with the values 1σ =  and 

0.5σ = . As seen from Fig. 3a, the value of this constant corresponds to the known 

results in the limiting cases. Its real part differs by the factor four for the Wigner and 
Ville planes, while the imaginary part is zero on those planes. Of a particular interest is 

redistribution of the ( )ttC θ  constant for intermediate θ  values. Here we observe  

a principled difference from the Wigner and Ville regions. We refer to the region close  
to the Ville plane ( 0 0.3t = − ) as the region of Ville distribution. Likewise, the  

region located close to the Wigner plane ( 0.9 1t = − ) may be called as the region of 
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Wigner distribution. In order to analyze the mentioned regions in a vivid manner, we  
will present the results calculated for the joint Gaussian distribution that correspond  
to those regions. 

The Ville (Fig. 4) and Wigner (Fig. 5) distribution regions allow studying the 
formation of the joint distribution in a vicinity of the known limiting cases (i.e., the Ville 
and Wigner distributions). This would enable elucidating small deviations and changes in 
those distributions. 

Region of Ville distribution 

From Fig. 3 one can deduce the width of that region, i.e. the interval of t  values, for 

which the distribution under study would be visually similar to the Ville one. The 

 

Fig. 3. Real and imaginary parts of the complex constant ( )ttC θ  at different 
values of the σ  parameter. 

  

  

Fig. 4. Joint distribution of the Gaussian signal in the Ville domain (real part) at 
different values of the joint parameter. 
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corresponding width may be found when analyzing the curves depicted in Fig. 3. The 

characteristic region is located in the limits 0 0.3t = − . The results of formation of the 

joint distribution in that region are shown in Fig. 4. As demonstrated above, the Ville 

distribution is formed for the values 0.001t ≤  (Fig. 4a). When the joint parameter 

changes ( 0.1 0.2t = −  – see Fig. 4b, c), the joint distribution begins to rotate clockwise 

and simultaneously becomes deformed. It is worthwhile that the joint distribution for 

those cases still bears resemblance to the Ville distribution and its imaginary part remains 

comparatively small. 

Further changes in the joint parameter ( 0.3t =  – see Fig. 4d) give rise to rotation by 

a larger angle ( 054θ = ) and essential deformation. The joint distribution in this case has 

visually nothing in common with the Ville distribution. 

  

  

 

Fig. 5. Joint distribution of the Gaussian 
signal in the Wigner domain (real part) at 
different values of the joint parameter. 

Region of Wigner distribution 

According to Fig. 3, this region has much narrower limits in terms of the joint 
parameter ( 0.9 1t = − ). This is caused by sharp changes in the real and imaginary parts of 

the ( )ttC θ  constant within the region. Similar to the previous case, the region of the Wig-

ner distribution is formed close to the limit 1t =  (see Fig. 5a). With small changes of the 
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joint parameter ( 0.975 0.95t = −  – see Fig. 5b, c) the joint distribution rotates 

anticlockwise and simultaneously changes its form. Here the resulting distribution 
resembles the Wigner one. At further rotation, transformation of the distribution makes 
its visual identification with the Wigner distribution impossible (see Fig. 5d, e).

 
 

There is a possibility for studying the properties of the Wigner and Ville distri-
butions appearing at small deviations of the joint parameter, with the aim of analyzing 
redistribution mechanism and the appropriate applications for description of optical 
systems. The Wigner and Ville distributions move towards each other on the information 
diagram and ‘intersect’ at the point 0.5t =  (see Fig. 1b, e and Fig. 2b, e). With further 

rotation, the Ville distribution degenerates into the Wigner one, and vice versa. 

6. Conclusions 

In this work we propose a joint spatial-frequency distribution as generalization of the two 
known distributions suggested by Wigner and Ville. The main characteristic feature of 
our study is that, contrary to the other earlier generalizations, our distribution permits 
tracing not only the limiting cases but a continuous transition among different 
intermediate distributions. This is due to introduction of the joint parameter t , of which 

changes lead to different distributions. Thus, beside of the Wigner ( 1t = ) and the Ville 

( 0t = ) distributions, there exist a whole set of other distributions ( 0 1t< < ), which 

describe some ‘mixed’ states located between the limiting cases. A similar distribution 
has been introduced by S. Chountasis [13] basing on the Wigner formalism. We 
introduce the joint distribution on the basis of Ville formalism, thus suggesting a number 
of advantages associated with reconstructing signal intensity following from the 
distribution [12, 16]. As mentioned in [13], distributions of such a type may be 
considered in a general context of Wigner tomography. 

Analytical formulae are derived for the joint distribution concerned with the 
Gaussian signal and their graphic representations are discussed. Formation of the 
Gaussian signal is investigated in detail for the common region and different values of 
the t  parameter. It is revealed that rotation of the Ville distribution on the information 

diagram occurs with changing t  parameter, with the rotation angle equal to tθ π= . It is 

also demonstrated that transition between the Wigner and Ville distributions takes place 
through the complex plane. 

The joint distribution suggested by us represents a valuable addition to the Wigner 
and Ville distributions. It is shown that the joint distribution can be treated as quasi-Ville 
one in the parameter region [0, 0.3]t∈  or quasi-Wigner distribution for the values of 

[0.9, 1]t∈ . 
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