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Abstract. A new technique is suggested for determination of piezooptic coefficients, 
which represents a combination of digital imaging laser interferometry and a 
canonical four-point bending method. The design of interferometer, measurement 
procedures, and data processing are described in detail. Potentials of the present 
technique are tested on the example of widely used optical glass BK7. High enough 
precision, together with unambiguity in determination of the sign of both piezooptic 
(qm) and photoelastic (pqm) coefficients, allow us to claim it to be one of the most 
accurate and reliable techniques for the measurements of qm and pqm parameters. 
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1. Introduction 
Photoelastic effect consists in changes of refractive indices of optical media in the presence of 
mechanical stresses. First studied by David Brewster in the early 19th century [1], it is widely 
applied for determination of mechanical stresses (photoelasticity), in optical remote stress sensors, 
accelerometers, stress tensor field tomography, light polarisation modulators, etc. (see, e.g., [2–7]). 
One of the most important applications of the photoelasic effect is concerned with widely explored 
acoustooptic devices [8–11]. Thereby the knowledge of accurate values of piezooptic parameters 
for different practical materials is of great importance. 

Historically, the first description of the photoelastic effect given by D. Brewster (see Ref. [1]) 
was given for isotropic solids and cubic crystals. According to this formulation, an optical 
birefringence n induced by a mechanical stress  is expressed as: 

n K  .       (1) 
A coefficient K is termed as a Brewster’s constant, relative piezooptic coefficient, or a stress 

optical coefficient. The latter term comprises a standard specification used by manufacturers of 
optical glasses [12]. As a matter of fact, Eq. (1) is applicable only for isotropic optical media. For a 
more general case of anisotropic materials, a tensor relation suggested by F. Pockels [13] has to be 
used: 

3 3

1 1
ij ijkl kl

k l
B  

 
  (i, j, k, l = 1, 2, 3),   (2) 

where ijB  are the increments of optical impermeability tensor components Bij (a constitutive 

second-rank tensor), kl the components of stress tensor (a polar second-rank tensor), and ijkl the 
components of fourth-rank tensor of piezooptic coefficients. Internal symmetry of the tensors 
involved here (Bij = Bji and kl = lk) allows one to write out Eq. (2) in the matrix form: 
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q qm mB    (q, m = 1…6),     (3) 

where 1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13, and 6 = 12, while B1 = B11 B2 = B22, 
B3 = B33, B4 = B23, B5 = B13, and B6 = B12. We have qm ijkl   if m =1, 2, 3 and 

2qm ijkl   if m = 4, 5, 6. Notice that the Einstein summation convention is used hereafter. 

Eqs. (2) and (3) are mathematical formulations of the piezooptic effect. When the increment 
of optical impermeability tensor is expressed in terms of mechanical strains, a term “elastooptic 
effect” or “strain-optical effect” is conventionally used. In the matrix form, this effect may be 
written as follows: 

q qm mB p   (q, m = 1…6),     (4) 

where pqm and m are the components of fourth-rank tensor of elastoooptic coefficients and second-
rank strain tensor, respectively. Here the strain and stress tensors are related via the Hook’s law, 
i.e.: 

, ,q qm m q qm mS C          (5) 

where Sqm coefficients represent the fourth-rank compliance tensor, and Cqm the fourth-rank 
stiffness tensor (or the elasticity tensor). Thus, the piezooptic and elastooptic coefficients are 
related through the compliance or stiffness tensors: 

, .qm ql lm qm ql lmp S p C       (6) 

Unfortunately, the piezooptic coefficients qm are usually measured with significant errors, 
which often exceed tens of per cent (among many works demonstrating this fact, see, e.g., [14–
16]). As shown in Ref. [17], the main cause of high measurement errors for the piezooptic 
coefficients is due to inhomogeneous 3D distribution of stress components taking place, instead of 
a homogeneous stress state usually assumed by an idealised model for uniaxially pressed 
parallelepiped-shape samples. In its turn, the stress inhomogeneity originates from friction forces 
appearing at contacting sample surfaces, and misalignments in mechanical loading. This friction 
force hinders free transverse deformation of sample faces, thus leading to barrel-shaped distortion 
of this sample and inevitable appearance of all the stress tensor components, in spite of the fact 
that a uniaxial pressure has been initially applied. Besides, the actual mean stress magnitude along 
light ray travelling through a sample centre differs considerably (by  10%) from its value 
estimated in the assumption of homogeneous stress state. As a result, the values obtained 
experimentally for the piezooptic coefficients differ from their true values. It is evident that a real 
3D stress distribution in samples depends strongly on the loading conditions and, moreover, the 
worst still is that these conditions differ from one experiment to another or from laboratory to 
laboratory. This means that application of laborious theoretical calculations of exact 3D stress 
fields, combined with rigorously uniaxial sample loading, seem to represent unrealistic way when 
improving determination of the piezooptic coefficients. 

A possible alternative to the approach described above is suggested by the loading methods 
that induce inhomogeneous though a priori known stress distributions in samples. A well-known 
four-point bending of a bar and diametrically-stressed disk methods [18] are among them. Another 
promising modern technique is associated with torsion of crystal rods [19, 20]. In this work we 
describe a four-point bending method combined with digital imaging laser interferometry for 
determination of the piezooptic coefficients. 
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2. Four-point bending method 
A canonical four-point bending method induces pure bending [21]. A schematic draw that clarifies 
application of force in frame of this method is shown in Fig. 1. The stress components in the 
central part of sample (within the upper loading span) are expressed as follows: 

1 2 33
6 , 0, 0x y z

Pa y
bh

           ,   (7) 

where P is the loading force, h and b the sample height and depth, respectively, a the distance 
between the planes where the forces act. It follows from Eq. (1) that only one stress tensor 

component, 1, is nonzero in the central part of sample. Its magnitude varies from 1 2

3Pa
bh

    at 

the upper face (y = –h/2), through 1 = 0 at the neutral line (y = 0), to 1 2

3Pa
bh

    on the bottom 

face (y = h/2). Such geometry implies that the upper sample face is compressed whereas the 
bottom one expanded, with equal strength modules. It is worth noticing that, according to Eq. (7), 
the stress component 1 depends linearly upon the coordinate y. The slope of this dependence is 
determined by geometrical parameters and the loading force. 

3. Interferometer setup and measuring procedures 
In this work we use a Mach–Zehnder type interferometer equipped with a CCD camera for 
recording an interference pattern (see Fig. 2). A He-Ne laser (1) emits a polarised light (the 
wavelength of  = 632.8 nm), which passes through a circular polariser (2). Rotations of this 
polariser allow smooth attenuation of light intensity. A beam expander (4) provides a wide 
collimated beam. A polariser (5) is used to switch between the horizontal and vertical polarisations 
and a prism (6) splits the beam into two channels. A probing beam propagates through a sample 
(7). Being reflected by mirrors (8), both the probing and reference beams are superposed by a 
second prism (6). An objective lens (9) builds a sample image on a CCD camera matrix. As a 
result, sharp sample images with clear interference patterns can be obtained. The CCD image is 
digitised and stored with a computer (11). Finally, switching of light polarisation is performed by a 
motorised rotary stage governed by a controller (12). 

The optical phase difference between the arms of interferometer is as follows: 

 2
mb n n


   ,      (8) 

where b is the sample thickness along Z axis, and n and nm are the refractive indices of sample and 

P/2 P/2

b

h

a

X

YZ
a  

Fig. 1. Schematic view of sample-loading geometry according to four-point bending technique. A Cartesian 
coordinate system is depicted, too. P is loading force. Light beam propagates along Z direction. 
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surrounding medium, respectively. Since nm = 1 for the air, the phase difference increment  
induced by the loading reads as 

           

    

1 0
2 21 1 1 1

2 1 ,

b n b n b b n n b n

n b b b n

 
  

 


  


                

   
 (9) 

where n is the refractive index increment due to the piezooptic effect, and b the Poisson’s 
elongation (or contraction) along the Z direction. Then the refractive index increments are given by 

3 3
1 || 1 0 11 1 2 1 0 12 1

1 1, .
2 2

n K n n K n       
                 (10) 

where K|| and K are the photoelastic coefficients (sometimes denoted as C1 and C2), and 11 and 
12 the piezooptic coefficients. It is worthwhile to notice that the stress optical coefficient K in 
Eq. (1) is defined by the difference between the photoelastic coefficients K|| and K (K = K|| – K). 
As seen from Eqs. (10), the coefficients 11 and K|| could be derived when dealing with the 
horizontal input polarisation, and coefficients 12 and K for the vertical polarisation. A change in 
the sample thickness can be expressed as 

  3 1 2 1
1

zb b b b
E E


            ,    (11) 

where 3  is the strain tensor component,  the Poisson’s ratio, and E the Young’s modulus. Let us 

now estimate the magnitude of b. We have used the sample with the dimensions b = 5.65 mm, 
h = 3.22 mm, and length = 20 mm, made of an optical glass BK7 (according to Schott’s 
classification). The mechanical parameters of the latter are  = 0.206 and E = 82 GPa [22], and the 
loading parameters are given by a = 4 mm and P = 80.9 N. Thus, the maximal stress values at the 
top and bottom facets ( 2y h  ) calculated with Eq. (7) are estimated as 

max 7
1 2

3 17 MPa 1.7 10 PaPa
bh

     . As a result, we obtain 

1

2

3 4 5 6

6

7

9 10
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11
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Fig. 2. Interferometer setup: (1) He-Ne laser; (2) circular polariser; (3) right angle prism; (4) beam expander; (5) 
linear polariser (Glan prism) with motorised rotary stage; (6) beam-splitting prism; (7) sample under test; (8) 
mirror; (9) objective lens; (10) CCD camera; (11) computer; (12) stepper motor controller. 
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5 54.2 10 mm, 10bb
b


     .    (12) 

Due to the fact that b b  , Eq. (9) could be reduced to the form 

  2 1 ,n b b n
  


         (13) 

which is similar to the optical path change quoted in Ref. [23]. Combining Eqs. (10), (11) and 
(13), we get 

 

 

3
1 11 1 11

3
2 12 1 12

2 1 21 ,
2

2 1 21 ,
2

eff

eff

b n n b C
E

b n n b C
E

  
   

 
  

   
 

       
       

   (14) 

where    3
1

1 1
2

eff
i iiC K D n n

E


        
 is the effective photoelastic coefficient, 

3
1

1
2i iK n    the photoelastic coefficient, and  1D n

E


    the strain-related term. 

Considering Eqs. (7) and (14), we arrive at the following dependences of the phase difference 
increments  on the coordinate y: 

   1 21 23 3
12 12,eff effPa Pay C y y C y

h h
 

 
 

    .   (15) 

Eqs. (15) could be used for experimental determination of the effective photoelastic 
coefficients. 

The measuring procedures include the next steps. First, the input polarisation is switched to 
the vertical position and an interferogram for the free sample is recorded. Then the loading force is 
applied and a relevant interferogram is recorded again. The same procedures are repeated for the 
horizontal input polarisation. Typical interferograms of the central part of sample are presented in 
Fig. 3.  

a)  b) 

 c)  d) 
Fig. 3. Typical interferograms obtained in our studies under conditions of (a) free sample, vertical polarisation; 
(b) loaded sample, vertical polarisation; (c) free sample, horizontal polarisation; (d)  loaded sample, horizontal 
polarisation. Loading force is equal to 80.9 N, field of view 3.65x5.58 mm2, and image size 361x600 pixels. The 
area selected in figure (a) corresponds to a region under analysis and contains smoothed data. 
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Processing of interferograms starts with selecting a region inside the sample image, which 
will be used for calculating the appropriate data. Then a smoothing filter (3×3 or 5×5 pixels) is 
applied to reduce noises and the intensity data I for the first row of the selected region is fitted by a 
sinusoidal function, with some amplitude A, period w, and extremum position xm: 

 2cos - mI C A x x
w
     

,    (16) 

with C being the mean intensity level. An example of data fitting for a one row is depicted in 
Fig. 4. The parameters w and xm obtained from the fitting procedure are used when calculating the 
optical phase difference 2 (here the index “2” means vertical polarisation of the input light). 
This value is calculated for a certain xc coordinate:  

 2
2 -c mx x
w


  .     (17) 

In this work we have chosen the xc coordinate to be located exactly in the centre of the 
selected region (xc =  300 pixels). The procedure is repeated for each 5th row (0th, 5th, 10th, …) of 
the selected region and the dependence of  on the y coordinate is obtained. Calculating the 
2(y) dependences for both free ( 2 0 ( )y ) and loaded ( 2 1( )y ) samples, one gets the 

coordinate dependence of the phase difference increment, 2 2 1 2 0( ) ( ) ( )y y y     .  

In the next stage, the input light polarisation is switched to horizontal and the experimental 
procedure is repeated until the coordinate dependence of  1 y  is obtained. The  1 y  and 

 2 y  dependences are presented in Fig. 5. Fitting the experimental dependences  1 y  and 

 2 y  by a linear function  Ay B   , one can calculate the effective photoelastic 

coefficients: 
3 3

1 21 2,
12 12

eff effh hC A C A
Pa Pa

 
 

  .    (18) 

Then the photoelastic coefficients K|| and K can be derived as 

150 200 250 300 350 400 450
0

64

128

192
 Experimental data
 Fitting function

Equation: y = C+A*cos(2*PI*(x-xm)/w) 
Chi^2/DoF = 226.117; R^2 =  0.91252
C = 80.312 ± 0.870; A = -70.324 ± 1.266
xm = 336.190 ± 0.408; w = 140.226 ± 0.576

In
te

ns
ity

, c
ou

nt
s

X coordinate, pixel  
Fig. 4. An example of experimental data fitted by sinusoidal function. Fitting results and statistics are 
presented in the legend. 
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   1 21 , 1eff effK C n K C n
E E
 

      .    (19) 

The stress optical coefficient K = K|| – K is a standard parameter tabulated for optical 
glasses. It is easily accessible from open manufacturers’ data sheets and so its value can be used 
for checking validity of our technique. We have calculated the photoelastic coefficients K|| and K, 
along with the stress optical coefficient K, for the two configurations of our interferometer. The 
first configuration has been adjusted for approximately five interference fringes within the field-
of-view, whereas the second one for approximately eight fringes. The values obtained for the 
coefficients K||, K and K (in the units of Brewster; 1 B = 10–12 Pa–1) are presented in Table 1, to be 
compared with the reference data. As seen from Table 1, the reference data falls inside the 
confidence intervals for all the coefficients measured experimentally. In other words, our 
experimental results agree well enough with the available manufacturers’ data. This indicates high 
accuracy of the method suggested in the present work. It is important that the relative error for the 
stress optical coefficient K does not exceed 3%, thus confirming high precision of both the 
experimental setup and the calculation procedures developed here. 
 

Table 1. Photoelastic coefficients of standard optical glass BK7 calculated basing on our 
experiments, and the corresponding literature data. 

Coefficient Configuration 1 Configuration 2 
Reference data  

(for = 589 nm) 
K||, B –0.490  0.045 –0.548  0.050 –0.5 (Ref. [24]) 
K, B –3.302  0.063 –3.269  0.050 –3.3 (Ref. [24]) 
K, B 2.811  0.077 2.722  0.071 2.77 (Ref. [22]) 

 

-1,2 -0,8 -0,4 0,0 0,4 0,8 1,2
-225
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-45

0

45

90

135

 2 Data
 2 Fitting
 1 Data
1 Fitting

1 (Horizontal Polarization)
Chi^2/DoF = 34.247
R^2 = 0.97513
A = -81.511 ± 0.819
B = -48.316 ± 1.102

2 (Vertical Polarization)
Chi^2/DoF = 75.410
R^2 =  0.99161
A = -37.403 ± 1.216
B = -124.448 ±1.636

Equation: y = A + B*x


, d

eg

Y, mm  

Fig. 5. Coordinate dependence of phase difference increments  1 y  and  2 y  fitted by 

linear functions. Fitting results and statistics are summarised in the legends. 
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Finally, the piezooptic coefficients can be calculated using the measured values of the 
photoelastic coefficients K|| and K: 

11 123 3

2 2
,

K K
n n

      .    (20) 

We obtain the following piezooptic coefficients: 11 = 0.282  0.026 B and 
12 = 1.899  0.036 B for the first configuration of our interferometer, and 11 = 0.315  0.029 B 
and 12 = 1.880  0.029 B for the second one. The average values are 11 = 0.299 B and 
12 = 1.890 B. The absolute error associated with repeatability reached for the piezooptic 
coefficients does not exceed  0.036 B, thus corresponding to the best accuracy known from the 
literature [20, 25]. 

Unfortunately, the handbook [24] on optical materials does not contain the piezooptic 
coefficients for the optical glass BK7, providing instead its elastooptic coefficients (p11 = 0.12 and 
p12 = 0.22). These coefficients are related to the piezooptic coefficients through the elastic modules 
E and : 

 
   

 
   

11 12 12 11
11 12

1 2
, .

1 1 2 1 1 2
E E

p p
    
   

      
   

   (21) 

Issuing from our experimental data, we find p11 = 0.118  0.004 and p12 = 0.226  0.005. 
These values also agree perfectly with the manufacturers’ data, with the error levels being 
satisfactory from the standpoint of demands for the reference literature. Moreover, simple 
comparison testifies that the precision of our method is not worse than that of the Dixon–Cohen 
method, which is known to provide the best accuracy for the elastooptic coefficients [26, 27]. 

Besides, a significant advantage of our method is that it allows determining unambiguously 
the sign of both the piezooptic and photoelastic coefficients, unlike the canonical technique 
developed by Dixon and Cohen. Unambiguous determination of the signs of these coefficients is 
facilitated by the known signs of stresses and a proper calibration of interferometer. Though we 
have tested our instrumentation on an optical glass only, it seems to be a promising tool for 
studying piezooptic coefficients of crystalline materials. 

4. Conclusion 
In this work we have developed a new method for measuring the piezooptic coefficients, which 
combines digital imaging interferometry with the known four-point sample bending technique. 
The design of our interferometer, the measuring procedures, and the experimental data processing 
are described in detail. Exploiting one of the most popular optical glasses, BK7, as an example, we 
have successfully verified the capabilities of the method. High accuracy for measuring photoelasti-
city (namely, the piezooptic and elastooptic parameters) and low experimental errors of determi-
nation of the corresponding coefficients confirm good performance of instrumentation built by us. 
The absolute error determined by experimental uncertainty for the piezooptic coefficients does not 
exceed 0.036 B. This is among the best figures known from the literature. At the same time, the 
error for the elastooptic coefficients does not exceed 0.005. An additional advantage of our 
method is unambiguous determination of signs of both the piezooptic and photoelastic coefficients. 
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Анотація. В даній роботі запропоновано новий метод вимірювання п’єзооптичних 
коефіцієнтів, який є комбінацією цифрової лазерної інтерферометрії зображення і 
відомого методу чотирьох-точкового згину. Детально описані конструкція 
інтерферометра, процедура вимірювання і обробка результатів. Можливості даного 
методу випробувані на прикладі, широко вживаного оптичного скла BK7. Висока точність 
разом з можливістю визначення знаку, як п’єзооптичних (qm) так і фотопружних (pqm) 
коефіцієнтів дозволяє стверджувати, що запропонований метод є найточнішим і надійним 
при визначенні коефіцієнтів qm і pqm. 
 


