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Abstract. We develop a method for measuring piezooptic coefficients kk  
(k = 4, 5, 6) for the crystals that belong to almost all of the point symmetry groups. 
The method is based on the studies of optical birefringence and optical indicatrix 
rotation angle under conditions of known spatial distribution of mechanical stress 
components in a crystalline disk compressed along its diameter. We present the 
relevant theoretical relations that describe piezooptic effect in crystals of all point 
symmetry groups.  
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1. Introduction 
Piezooptic effect is a well-known phenomenon, of which the first experimental studies have been 
carried out by Brewster as early as in the beginning of the 19th century [1, 2]. The effect consists in 
changes of the refractive indices (or, equivalently, the optical impermeability coefficients 

 21/ij ij
B n   ) of an optical medium under the action of mechanical stresses kl : 

0
ij ij ij ijkl klB B B      .     (1) 

Here ijkl = km  is a fourth-rank piezooptic tensor, and ijB  and 0
ijB  the optical impermeability 

tensors corresponding to stressed and free samples, respectively.  
Usually the effect is studied after applying a uniaxial pressure to a sample. It is known that 

uniaxial loading of samples with parallelepiped shapes produces a barrel-shaped mechanical strain, 
due to friction forces that act between sample surfaces and substrates. This leads to appearance of 
all components of the stress tensor, of which spatial distribution is not known in advance [3]. As a 
consequence, the piezooptic coefficients are determined with high enough errors that exceed 
~30%. In our recent work [4] we have developed a novel torsion method for studying the 
piezooptic coefficients. Under torsion, pure shear stress components appear in a crystalline sample, 
which depend linearly on the coordinates so that, in a convenient experimental geometry, one can 
measure the piezooptic coefficients km  (k = 1,…, 3; m = 4,…, 6) with the errors reduced to ~ 3%. 

For determination of the coefficients km  (k = 1,…, 3; m = 1,…, 3), we have developed the 

method based on the known 2D stress distribution in the sample subjected to a four-point bending 
stress [5]. It has been found that employing of such spatial distributions for determination of the 
piezooptic coefficients essentially increases the accuracy, when compared with the known 
techniques relying on application of uniaxial pressures [6, 7]. It is worthwhile that the known 2D 
spatial distributions of the stress tensor components arise not only under bending or torsion of 
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crystals. One of the methods for creating 2D stress states consists in compressing a crystalline disk 
along its diameter. The well-known mechanical model of a compressed crystalline disk has earlier 
been described, e.g., in the works [8, 9]. Moreover, our recent work [10] has clearly demonstrated 
some advantages of the technique based on disks compressed along their diameters, when being 
applied to high-accuracy determination of the piezooptic coefficients in LiNbO3 crystals. Notice 
that the method of the compressed disk can also be suitable for highly accurate determination of 
the coefficients kk  (k = 4,…, 6). 

In the present work we will consider theoretical relations for the refractive indices, the 
birefringence and the optical indicatrix rotation angle for the crystals of different point symmetry 
groups, which hold true for the crystalline disks loaded along their diameters. This will be a basic 
point of the high-accurate method developed by us for measuring the piezooptic coefficients. 

2. General theoretical analysis 
In general, the matrix of the piezooptic tensor may be written as 

11 22 33 32 31 21

11 11 12 13 14 15 16

22 21 22 23 24 25 26

33 31 32 33 34 35 36

32 41 42 43 44 45 46

31 51 52 53 54 55 56

21 61 62 63 64 65 66

B
B
B
B
B
B

     
     
     
     
     
     
     








.    (2) 

In order to describe our approach, let us consider as an example a disk-shaped sample 
prepared from the crystals which belong to the point symmetry group 3m [10]. The faces of the 
disk are perpendicular to the Z axis and the loading force P2 is applied along the Y axis. The 
following components of the stress tensor remain nonzero for this experimental geometry: 

   
2 2

2
1 2 22 2 2 2

2 ( ) ( ) 1 ,
2( ) ( )

P R Y X R Y X
d RX R Y X R Y




      
     

    (3) 

   
3 3

2
2 2 22 2 2 2

2 ( ) ( ) 1 ,
2( ) ( )

P R Y R Y
d RX R Y X R Y




      
     

    (4) 

   
2 2

2
6 2 22 2 2 2

2 ( ) ( ) .
( ) ( )

P R Y X R Y X
d X R Y X R Y




    
     

     (5) 

where d denotes the thickness of the disk and R its radius. Then the optical indicatrix equation 
becomes as follows: 

2 2
11 11 1 12 2 11 12 1 11 2 11 12 6( ) ( ) 2( ) 1B X B Y XY                  .   (6) 

Application of mechanical stresses in this geometry would lead to changes in both the 
birefringence and the optical indicatrix rotation angle: 

3 2 2
12 11 12 1 2 6

1 ( ) ( ) 4
2 on n          ,     (7) 

11 12 6 6
3

1 11 1 12 2 1 12 1 11 2 1 2

2( ) 2tan 2
( ) ( ) ( )B B

   


         


 
     

.    (8) 
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In particular, we have 6 0   along the diameter X = 0 (i.e., along the diameter parallel to the 

loading force vector), while the components 1  and 2  are equal to 

2
1

P
dR




 ,       (9) 

2
2 2 2

2 2 1
2

P R
d RR Y




     
.    (10) 

The birefringence along the diameter is given by the relation 

3 3 2
12 11 12 1 2 11 12 2 2

21 ( )( ) ( )
2 ( )o o

RPn n n
d R Y

      


      


,  (11) 

while the angle of optical indicatrix rotation is equal to zero (see Eq. (8)). As a consequence, the 
coefficient 66 = 11 12   can, in principle, be determined experimentally using a nonlinear 

dependence of the birefringence on the Y coordinate. 

2.1. Cubic crystals 
The relations for the optical birefringence and the optical indicatrix rotation angle obtained by us 
for the disk-shaped crystalline samples made of cubic crystals are presented in Table 1. Since all of 
the three crystallographic axes of crystals belonging to the cubic system are identical from the 
viewpoint of the piezooptic effect, we will analyse the induced birefringence and the optical 
indicatrix rotation only for the Z-cut disk loaded along its diameter parallel to the Y axis. The 
dependences of the refractive indices on the Y coordinate (i.e., along the diameter of loading force) 
for the crystals of the symmetry groups 432, 43m  and m3m may be written as 

   3 32 2
1 11 12 2 12 112 2 2 2

1 1 4 1 1 1 4 1,
2 2o o o o

P R P Rn n n n n n
d R R d R RR Y R Y

   
 

                 
    (12) 

where no is the initial (unperturbed) refractive index. The induced birefringence for this case reads 
as 

3 2
12 11 122 2

2 ( )o
P Rn n
d R Y

 


   


,    (13) 

while the angle of optical indicatrix rotation should be equal to zero along the Y direction. Using 
Eq. (13) and the spatial distribution of the induced birefringence along the Y direction obtained 
experimentally one can get the difference of the piezooptic coefficients 11 12  . The same 

difference can be determined under the condition Y = 0. In this case the induced birefringence is 
given by 

 
2 2

3 2
12 11 12 2 2 2

2
( )o

P R R Xn n
d X R

 


 
      

,   (14) 

while the optical indicatrix rotation angle is equal to 

44
3 2 2

11 12

2tan 2
( )

RX
R X




 


 
.    (15)  

Therefore the coefficient 44  can be determined after measuring the dependence of the optical 

indicatrix rotation angle upon the X coordinate and using the 11 12   value known from the 

experiments described above (see Eqs. (13) and (14)).  
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For the crystals belonging to the groups m3 and 23, one can easily derive the induced 
birefringence under the same conditions (i.e., the loading force P2 applied). For the case of X = 0 
we have 

3 2
12 12 21 11 122 2

1 2( ) ( )
2o

P Rn n
d R R Y

   


        
.  (16) 

Given the condition of 12 21  , which is valid for the groups 432, 43m  and m3m just analysed, 

one can reduce Eq. (16) to Eq. (13). The birefringence in the centre of the disk is given by the 
relation 

 3 2
12 11 12 21

1 4 3
2o

Pn n
d R

  


     .    (17) 

Eq. (17) may be employed for determining the combination of coefficients 11 12 214 3    . 

Notice that the angle of optical indicatrix rotation is equal to zero along the Y axis. 
The birefringence under the condition of Y = 0 is as follows: 

2 3
3 2

12 21 11 11 12 12 212 2 2 2 2 2

21 2 2 1( ) ( ) ( )
2 2( ) ( )o

P RX Rn n
d RX R X R

     


 
          

. (18) 

Using this formula, one can find a combination of piezooptic coefficients appearing in the round 
brackets of Eq. (18). Inserting this combination into the relation for the optical indicatrix rotation 
angle, 

2

44 2 2 2

3 2 3

21 11 11 12 12 212 2 2 2 2 2

22
( )tan 2

2 2 1( ) ( ) ( )
2( ) ( )

R X
X R

RX R
RX R X R




     




    
 

,  (19) 

one can evaluate the piezooptic coefficient 44 . 

2.2. Hexagonal crystals 
For the crystals that belong to the point symmetry groups 622, 6mm, 6m2  and 6 / mmm , the 

induced birefringence for the Z-cut crystalline disk loaded by the force P2 along the Y axis may be 
expressed as (see Table 2) 

3 2
12 11 12 2 2

2( )o
P Rn n
d R Y

 


   


,    (20) 

where no denotes the ordinary refractive index. This enables determining the piezooptic difference 

11 12  . The same parameter can be obtained under the condition Y = 0. The birefringence along 

the X axis reads as 
2 2

3 2
12 11 12 2 2 2

2 ( )
( )o

RP X Rn n
d X R

 


 
    

 
.   (21) 

The optical indicatrix rotation angle is equal to zero at X = 0, while for the case of Y = 0 it is given 
by 

3 2 2

2tan 2 RX
R X

 


,      (22) 

thus depending only on the geometrical parameters of the disk and the coordinate X. 
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The birefringence induced by the force P3 for the Y-cut disk under the condition X = 0 becomes 

3 3 3 33
13 11 31 13 33 2 2

1 1 2( ) ( ) ( )
2 2o e o e

P Rn n n n n
d R R R Z

    


           
, (23) 

where ne denotes the extraordinary refractive index. This reduces to 

3 3 3 33
13 11 31 13 33

1( ) ( ) 3( )
2 o e o e

Pn n n n n
d R

    


          (24) 

at the disk centre (Z = 0). This relation includes a complicated combination of four piezooptic 
coefficients, which can be thus determined. The induced birefringence at Z = 0 is as follows: 

3
13 2 2 2

3 3 2 2 2 2 3 3 3 2 2 2
31 11 33 13

1( )
2 ( )

( )(2 ( ) ) ( )(2 ( ) )e o e o

P
n

d R X R

n n RX X R n n R X R




   

  


         

. (25) 

Neglecting the natural birefringence (assuming the both refractive indices to be close to their mean 
value, i.e. o en n n ), we simplify Eq. (25) to 

3
3

13 2 2 2

2 2 2 2 2 4 2 2 2
31 11 33 13

( )
2 ( )

( )(4 ( ) ) ( )(4 ( ) )

P nn
d R X R

R X X R R X R




   

  


         

.  (26) 

Inserting the piezooptic combination appearing in the square brackets of Eq. (25) into the relation 
for the optical indicatrix rotation angle, 

   
3

44
2 2 2 2 2 2 4 2 2 2

31 11 33 13

8tan 2
4 ( ) ( ) 4 ( ) ( )

R X
R X X R R X R




   


      
,  (27) 

one can determine the coefficient 44 . This is also true for the point symmetry groups 

422, 4mm, 42m  and 4 / mmm , for which the relations for the optical indicatrix changes are the 

same as for the crystals of the groups 622, 6mm, 6m2  and 6 / mmm  (see Table 2), with the only 

difference that for the tetragonal crystals we have 11 12 66    . For the Z-cut disk made of 

tetragonal crystals belonging to the mentioned groups of symmetry, the angle of optical indicatrix 
rotation at Y = 0, 

66
3 2 2

11 12

2tan 2
( )( )

RX
R X




 


 
,    (28) 

enables determining the coefficient 66  provided that Eq. (20) or Eq. (21) are taken into 

consideration. 
The spatial birefringence distribution along the Y axis for the Z-cut disk of crystals that 

belong to the point symmetry groups 6, 6/m and 6 , which are loaded by the force P2 may be 
written as 

3 2
12 11 12 2 2

2( )o
P Rn n
d R Y

 


   


.    (29) 

This facilitates derivation of the difference 11 12 66    . The angle of optical indicatrix 

rotation under the same conditions, 
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62
3

11 12

2tan 2 


 



,     (30) 

allows one to obtain the 62  coefficient whenever the value 11 12   is already known. Moreover, 

the relation for the birefringence at Y = 0, 
2 2

3 2
12 11 12 2 2 2

( )2 ( )
( )o

P R X Rn n
d X R

 



  


,    (31) 

also allows for determining the above difference of piezooptic coefficients 11 12  , issuing from 

the birefringence distribution measured in the experiment along the X axis. 
Now let us analyse the particular case of the X-cut disk prepared from the crystals that belong 

to the groups 6, 6/m and 6 , and the loading force P3. Then the spatial distribution of the 
birefringence increment along the Y axis under the simplifying condition o en n n  reads as 

33
23 2 2 2

2 2 2 2 2 4 2 2 2
31 11 33 13

1( )
2 ( )

( )(4 ( ) ) ( )(4 ( ) )

P
n n

d R Y R

R Y Y R R Y R




   

  


         

. (32) 

After measuring additionally the distribution of the optical indicatrix rotation angle along the Y 
axis, 

   
3

44
1 2 2 2 2 2 4 2 2 2

31 11 33 13

8tan 2
4 ( ) ( ) 4 ( ) ( )

R Y
R Y Y R R Y R




   


      
,       (33) 

one can evaluate the coefficient 44 . 

2.3. Tetragonal crystals 
The coefficient 44  for the tetragonal crystals can be obtained in the same way as that for the 

hexagonal ones. However, the appropriate relations for the Z-cut disk in case of the groups of 

symmetry 4, 4/m and 4  differ from those valid for the hexagonal crystals (see Table 3). In 
particular, the birefringence in the case of X = 0 acquires the following form: 

32
12 11 12 2 2

2( ) ( )o
P Rn n
d R Y

  


  


.    (34) 

Basing on the experimental dependence of the birefringence increment on the Y coordinate, this 
relation enables evaluating the piezoptic difference 11 12  . Then the coefficient 61  can be 

determined from the relation for the optical indicatrix rotation at X = 0,  

61
3

11 12

2tan 2 


 



.      (35) 

Finally, using the theoretical relations for the birefringence at Y = 0, 

 3 2 22
12 11 12 162 2 2

2 ( )( ) 2
( )o

P Rn n X R RX
d X R

  


    


, (36)  

and for the angle of optical indicatrix rotation at Y = 0, 
2 2

61 66
3 2 2

11 12 16

2 ( ) 2tan 2
( )( ) 2

X R RX
X R RX

 


  
 


  

,   (37) 

one can find the coefficients 66  and 16 , provided that the coefficient 61  is already known. 
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2.4. Trigonal crystals 
Phenomenological relations for the changes happening in the optical indicatrix parameters for the 
crystals of point symmetry groups 32, 3m and 3m  have been derived in our recent work [10]. As 
follows from the results [10], the analysis presented in the beginning of Section 2 and Table 4, one 
can easily determine the combined difference 66 11 12     for these crystals. The procedure of 

evaluation of the coefficients 44  and 41  is described in the work [10], too. 

Let us discuss the crystals belonging to the symmetry groups 3 and 3 . The birefringence for 
the disk perpendicular to the Z axis, the loading force P2 and the experimental geometry X = 0 is 
given by 

32
12 11 12 2 2

2 1( )
2o

P Rn n
d RR Y

 


       
.   (38) 

Using this relation and the induced birefringence distribution along the Y axis studied in the 
experiment, one can find the piezooptic difference 66 11 12    . 

For the X-cut disk, under the condition Z = 0 and the assumption o en n n , the relation for 

the induced birefringence becomes 

33
23 2 2 2

2 2 2 2 2 4 2 2 2 3
31 11 33 13 14

1( )
2 ( ( ) )

( ) 4 ( ) ( ) 4 ( ) 4

P
n n

d R Y R

R Y Y R R Y R R Y




    

  


                

.  (39) 

Basing on the formula for the optical indicatrix rotation obtained under the condition Z = 0, 

 3 2 2 2 2 2
44 41

1 2 2 2 2 2 4 2 2 2 3
31 11 33 13 14

2 4 4 ( )
tan 2

4 ( ) ( ) 4 ( ) ( ) 4

R Y R Y Y R

R Y Y R R Y R R Y

 


    

    
             

,    (40)  

and inserting the known piezooptic combination from Eq. (39) into denominator of Eq. (40), one 
can derive the combination of coefficients 44  and 41 . At the same time, Eq. (40) for the case of 

Y = 0 may be rewritten to the form 

41
1

31 11 33 13

2tan 2
( ) 3( )




   


  
,    (41) 

thus enabling independent evaluation of the coefficients 41  and 44 . 

2.5. Orthorhombic crystals 
For the crystals that belong to the orthorhombic groups of symmetry (see Table 5), one can easily 
determine the coefficients 44 , 55  and 66 . For example, using the X-cut disk and assuming 

2 3n n n  under the condition Z = 0, one can arrive at the following relations for the 

birefringence increment and the angle of optical indicatrix rotation: 

   

3 3
23 2 2 2

2 2 2 2 2 4 2 2 2
22 32 23 33

1( )
2 ( ( ) )

4 ( ) 4 ( )

P
n n

d R Y R

R Y Y R R Y R




   

  


               

, (42) 

2 2
44

1 2 2 2 2 2 4 2 2 2
22 32 23 33

8tan 2
4 ( ) ( ) 4 ( ) ( )

R Y
R Y Y R R Y R




   
 

            
.      (43) 
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The denominator of Eq. (43) is equal to the term appearing in Eq. (42) in the square brackets. 
Hence, solving the system of these equations would result in determination of the coefficient 44 . 

The coefficients 55  and 66  may be evaluated using respectively the Y - and Z -cut disks and 

applying the same procedures. 

2.6. Monoclinic and triclinic crystals 
Let us finally consider theoretical relations for the birefringence and the optical indicatrix rotation 
angle that hold for the low-symmetry monoclinic crystals (see Table 6). The birefringence 
increment for the X-cut disk under the force P3 applied and the conditions Z = 0 and 2 3n n n  

takes the form 

     3 2 2 2 2 2 4 2 2 23
23 22 32 23 332 2 2

1( ) 4 ( ) 4 ( )
2 ( ( ) )

Pn n R Y Y R R Y R
d R Y R

    


          
, (44) 

while the optical indicatrix rotation angle is given by the relation 

   
3

44
1 2 2 2 2 2 4 2 2 2

22 32 23 33

8tan 2
4 ( ) ( ) 4 ( ) ( )

R Y
R Y Y R R Y R




   



      

. (45) 

Solving the system of Eqs. (44) and (45), one can find the piezooptic coefficient 44 . The 

coefficient 55  is derived using the analogous procedure and the Y-cut disk. 

Using the theoretical dependence of the birefringence on the Y coordinate (X = 0) for the case 
of the force P2 applied to the Z-cut disk, 

    3 2 2 2 2 22
12 12 22 11 212 2

1( ) 4 ( )
2 ( )

Pn n R R Y R Y
d R R Y

    


         
, (46) 

and the corresponding relation for the angle of optical indicatrix rotation, 

  
 

2 2 2 2 2
62 61

3 2 2 2 2 2
12 22 11 21

2 4 ( )
tan 2

4 ( ) ( )( )

R R Y R Y

R R Y R Y

 


   

   


     
,   (47) 

we can determine the combination 62 613  . For example, we have at Y = 0 

 62 61
3

12 22 11 21

2 3
tan 2

3( ) ( )
 


   




  
,    3 2

12 12 22 11 21
1( ) 3

2
Pn n
d R

    


       . (48) 

Under the condition Y = 0, the birefringence increment and the optical indicatrix rotation angle 
may be written respectively as 

         

3 2
12 2 2 2

2 2 2 2 2 4 2 2 2 3
11 21 12 22 16 26
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,  (49) 
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
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. (50) 

These relations enable evaluating only the piezooptic combination appearing in the nominator of 
Eq. (50), i.e. the term     2 2 2 2 2 4 2 2 2 3

61 62 664 ( ) 4 ( ) 4R X X R R X R R X        . In other words, it 

is impossible to find the 66  coefficient itself for the case of monoclinic crystals. The similar is 

also true for the triclinic crystals (see Table 7): here the coefficients 44 , 55  and 66  cannot be 

determined separately. 
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3. Conclusion 
We have derived phenomenological relations that describe the changes in the optical birefringence 
and the optical indicatrix rotation angle for the crystals of all the point symmetry groups. These 
relations cover different geometries of mechanical stress application and different light 
propagation directions. In all of the cases analysed by us, we have dealt with crystalline disks 
compressed along their diameters. We have shown that the technique intended for the studies of 
piezooptic coefficients and developed in this work makes it possible to determine accurately the 
coefficients 44 , 55  and 66  for almost all of the point groups of symmetry. 
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Анотація. В роботі розвинуто метод вимірювання п’єзооптичних коефіцієнтів kk  
(k = 4, 5, 6) для кристалів, що належать майже до всіх точкових груп симетрії. Метод 
засновано на дослідженні подвійного оптичного заломлення і кута повороту оптичної 
індикатриси за умови відомого просторового розподілу компонент тензора механічних 
напружень у кристалічному дискові, стиснутому вздовж діаметра. Представлено 
відповідні теоретичні співвідношення для опису п’єзооптичного ефекту в кристалах усіх 
груп симетрії.  


