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Abstract. Following the recent approach [Phys. Rev. Lett. 119, 073901 (2017); New 
J. Phys., 19, 123014 (2017)], we refine and accomplish a general scheme for the 
unified description of momentum and angular momentum of the light fields in 
complex material media. Equations for the canonical (orbital) and spin linear 
momenta, as well as the orbital and spin angular momenta are presented for a 
lossless inhomogeneous dispersive medium in a compact form, which is analogous 
to the Brillouin relationship for the energy. The results are applied to a surface 
plasmon-polariton field. The microscopic calculations support the phenomenological 
expectations. Our refined general scheme describes correctly the known unusual 
properties of the surface plasmon-polariton associated with transverse spin and 
magnetization momentum. Moreover, it predicts a singular momentum contribution 
sharply localized at the metal–dielectric interface, which is confirmed by the 
microscopic analysis. Our results can be useful for the optical systems employing 
structured light, especially in microoptics, plasmophotonics, optical sorting and 
micromanipulation. 
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1. Introduction 
Properties of structured light fields attract great attention during the past decade [1–3]. Such fields 
are necessary elements of various modern applications aimed at optical trapping, sorting, 
delivering, selective treatment, positioning and some other precise manipulations with extremely 
small quantities of matter [4–7]. In these areas, the dynamical characteristics of optical fields, first 
of all the spatial distribution of their energy, as well as their momentum and angular momentum 
(AM), play a crucial role. Therefore their investigations are highly relevant. It is very important 
that electromagnetic interactions in such systems usually develop against the background of highly 
inhomogeneous materials, which invokes the problem of ‘structured light in structured media’. 

Unfortunately, up to the recent time, the very instruments of description of the dynamical 
characteristics have been well established only for the case when the field evolves in free space. 
Even the introductory definitions of the field momentum become controversial and ambiguous in 
the case if continuous material media are present. A debate between the momentum paradigms 
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originated from Abraham and Minkowski continues over a hundred years [8–11]. The most 
reasonable ‘resolutions’ of this dilemma find the arguments that support each of the sides and treat 
the both momenta as different physical quantities, with their own scopes and abilities. However, 
the analyses known up to date have been mostly limited to homogeneous media and plane-wave-
like fields. Additional difficulties arise if a medium reveals any dispersion, i.e. the material 
parameters (the permittivity and/or the permeability) depend upon the light frequency. The only 
field characteristic for which the dispersion can be taken into account in a regular and consistent 
way is the energy whose density can be described by a famous Brillouin formula [12, 13]. 

Recently, Philbin and Allanson [14, 15] have made an important advance in the field by 
suggesting a regular and consistent way to describe the momentum and the AM in the dispersive 
media. Nonetheless, a genuine value of their approach becomes clear only in conjunction with a 
so-called canonical decomposition of the field momentum, when it is subdivided into the spin and 
canonical (orbital) components [16, 17]. With further elaboration and microscopic substantiation, 
this approach has resulted in unified, compact and physically transparent expressions for the 
canonical linear momentum, as well as the orbital and spin AMs of optical fields in lossless, 
inhomogeneous dispersive media. The methods and results of Refs. [16, 17] have enabled 
elaborating a rigorous, consistent theory of surface plasmon-polaritons (SPPs), analyzing 
thoroughly their non-trivial properties (e.g., a transverse spin) and predicting a number of novel 
phenomena (e.g., an SPP-induced magnetization of media).  

The present work is aimed to further refine the methodology reported in Refs. [16, 17]. In 
particular, we enhance their general scheme to include a linear spin momentum whose description 
in the dispersive media has earlier been omitted. As we will see, this enables one to obtain a full 
set of instruments for the description and analysis of electromagnetic momentum and AM in the 
dispersive media, and to shed new light on some important results of the earlier works associated 
with the SPP properties. In particular, we reveal some peculiar features of the momentum and spin 
distributions associated with near-surface contributions and physically essential singular 
components of the momentum sharply localized at the metal–dielectric interface. The present 
consideration is essentially based on the materials of Refs. [16, 17]; we not only employ their main 
ideas but, where possible, adhere to their notation and terminology. 

2. General overview of the dispersion-modified description of optical momentum in 
media 
Below we deal with monochromatic fields in lossless dielectric media where the electric and 

magnetic vectors    , Re i tt e    r E r  and    , Re i tt e    r H r  obey the Maxwell 

equations, 

   
0 0

0, , 0,i i
k k

             H H E E E H .  (1) 

Here the medium is characterized by the real permittivity ( , )   r  and permeability 

 ,   r  that can depend on the coordinates (inhomogeneity) and the frequency (dispersion), 

0 /k c  is the free-space wave number, and c the vacuum light velocity. The only dynamical 

property of the field whose definition is well established and free from controversies in such 
conditions is the electromagnetic energy, with its density described by the well-known Brillouin 
expression [12, 13]: 
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 2 2 ,
2

gW 
  E H        (2) 

, ,d d
d d
 

     
 

    
   

 (3) 

where   18g    [From now on, all dispersion-modified electromagnetic quantities will be 

marked by tildes “~”]. Note a neat and unified form of this expression, which is also valid for the 
inhomogeneous media and differs from the dispersion-free formula [12, 13] just by replacement 
   , ,      . Regrettably, there is no such a straight way if one tries to generalize the field 

momentum and the AM [16, 17]. 
For the case of negligible dispersion, the Abraham and Minkowski momentum densities are 

given by [8–12] 

 *
0 ReA gk E H ,     (4) 

 *
0 ReM gk   E H .    (5) 

These momenta are sometimes referred to as ‘kinetic’, because they appear in the kinetic 
(symmetrical) energy-momentum tensor [18] of the electromagnetic field. Abstracting from the 
Abraham–Minkowski dilemma [8–11], the both kinetic momenta encounter difficulties when 
being applied to the structured light fields [16, 17]. Besides, the corresponding AM densities  

, ,A M A M r       (6) 
are ‘extrinsic’ (i.e., depend on the choice of coordinate origin), and the kinetic formalism based on 
Eqs. (4) or (5) cannot describe separate contributions of spatial (‘orbital’) and polarization (‘spin’) 
degrees of freedom of light. At the same time, the latter represent important subjects of modern 
optics, which are extensively studied [3, 19]. These drawbacks are partly eliminated in the 
‘canonical’ approach associated with the spin-orbital decomposition of the field AM [16–18, 20–
22]. The relevant procedure manifests especially favourable properties of the Minkowski 
momentum (5), which can be represented as 

S
M M M P P ,    1

2
S
M M P S ,   (7) 

where 

   Im
2M
g

         P E E H H    (8) 

denotes the ‘canonical’ momentum, and 

 Im
2M
g

     S E E H H     (9) 

is the Minkowski spin density. The representation given by Eqs. (7)–(9) is grounded on the 
Maxwell equations (1) and, remarkably, it holds for arbitrary spatially dependent  and [Note 
that the similar operation with the Abraham momentum (4) is impossible because additional terms 
appear owing to medium inhomogeneity [16, 17]]. Accordingly, the Minkowski AM (6) can be 
reduced to 

M M M M   r L S  .    (10)  
Here 

M M L r P       (11)  

is the orbital AM representing extrinsic part of the total field AM, for which MS  (9) is intrinsic 
part. Equation (10) is based on the non-local integral equality 
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 1
2

S
M M MdV dV dV      r S S r P ,  (12)  

which is valid for any fields that vanish properly at infinity. Eq. (12) expresses the following 
general rule: for any electromagnetic field with inhomogeneous spin density S, the corresponding 

linear spin momentum SP  exists, with its density given by 
1
2

S  P S .     (13)  

The second relationship in Eq. (7) is a special case of this rule. 
Note that, via the Noether theorem, the canonical momentum given by Eq. (8) follows 

directly from the field Lagrangian as a conserved quantity [18, 23, 24]; this derivation leads to the 

non-symmetric (canonical) energy-momentum tensor. Then the linear spin momentum SP  appears 
as an auxiliary means for tensor symmetrization by adding a solenoidal momentum component 
[25]. However, the recent studies (e.g., those reported in Refs. [16, 17, 20–22, 26, 27]), as well as 
Eqs. (7)–(9) and (13), disclose its deep physical meaning.  

So far, the dispersion has been neglected in our reasoning. An important step to include the 
medium dispersion into the field momentum theory has been made in Refs. [14, 15], where the 
consideration is based on the field Lagrangian in a dispersive medium, and the momentum and 
AM are derived via the Noether theorem. This mode of operation has naturally led to the 
Minkowski-based momentum representation and resulted in the following expressions for the field 
momentum and the AM in the dispersive medium: 

   * *Im
2

P
M M

g d d
d d

  
 

         
E E H H  ,  (14) 

* *Im
2M M

g d d
d d

  
 

        
r E E H H     (15) 

(the superscript in Eq. (14) implies that the dispersion correction has been performed by means of 
the Philbin’s procedure). However, the authors of Refs. [14, 15] have not employed the spin-
orbital decomposition (see Eqs. (7)–(10)), without which the real meaning of their approach is 
underestimated. Indeed, with allowance for Eqs. (8), (9) and (11), the results (14) and (15) can be 
presented as 

P S
M M M P P  ,     (16) 

where 

   Im
2M
g

         P E E H H     (17) 

and 

M M M L S  ,     (18) 

with 

 Im
2M
g

     S E E H H   , M M L r P  .  (19) 

Thus, the Philbin’s transformations (14) and (15) provide explicit expressions for the 

densities of canonical momentum ( MP ) and spin AM ( MS ) of the optical field in the 

inhomogeneous dispersive medium. Note a remarkably compact and unified character of 
expressions (17) and (19): they merely reproduce a scheme in which the dispersion has been taken 
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into account in the Brillouin formula (2) for the energy. In this form, equations for the field 
momentum and the AM have been derived and used for the analysis of the SPP [16, 17]. 

However, there are some imperfections in the pattern described by Eqs. (16)–(19): 

(i) In Eq. (16), the spin momentum S
MP  ‘does not feel’ the dispersion and preserves the 

dispersion-free form given by Eqs. (7) and (9); 
(ii) According to Eq. (13), the first relationship in Eq. (19) should entail the spin momentum 

expression which differs from that accepted in Eq. (16), i.e. 
1
2

S
M M P S  Im

4
g

      E E H H  .   (20)  

Obviously, this discrepancy appears because the procedure of Ref. [14] based on the Noether 
theorem gives dispersion corrections to the conserved canonical momentum, whereas the 
divergence-free spin momentum should be considered separately. The corresponding independent 
result for the spin momentum is just provided by Eq. (20), i.e. one can correct Eq. (16) as  

S
M M M P P   ,     (16a)  

which is equivalent to the following modification of the Philbin’s relation (14): 

   * *

* *

Im
2

Im .
4

M M

P
M

g d d
d d

g d d
d d

  
 

  
 

         

          

E E H H

E E H H






 

    (14a)  

Finally, the system of Eqs. (16a), (20) and (17)–(19) completes description of the field 
momentum and the AM in the inhomogeneous dispersive media. It is the main general statement 
of this work; some of its consequences will be considered below. 

3. Application to surface plasmon-polariton 
Following Refs. [16, 17], we apply the equations derived above to a very representative and non-
trivial example of structured optical fields in dispersive structured matter. It is the SPP wave at the 
metal–vacuum interface [4]. As seen from Fig. 1a, we consider an interface ( 0x   plane) that 
separates half-spaces of a vacuum ( 0x  ; medium 1) and a metal ( 0x  ; medium 2), thus 
making the system inhomogeneous. The SPP wave is a highly structured double-evanescent wave 
that decays exponentially on the both sides of the interface and propagates along z  axis with a 
well-defined wave vector, p pkk z  [Hereafter, x , y  and z  denote the unit vectors of the 

corresponding axes]. The permittivity and permeability of metal are described by a standard 
plasma model [4], 

  2 21, 1 p       .    (21) 
Here  

2 2
04p n e m       (22)  

is the plasma frequency, n0 the volume density of free electrons in the metal, e < 0 the electron 
charge, and m  the electron mass. Thus, the metal represents a dispersive medium with 

2 21 / 2p         , and the dispersion is crucial for the SPP properties. Even the existence 

of the SPP is conditioned by the frequency limit / 2p  , i.e. we have 1    [4]. 
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Fig. 1. (a) Scheme of SPP wave occurring at a metal-vacuum interface [4, 17]. A subluminal group velocity, 
super-momentum (see Ref. [17]) and a transverse spin (see Eq. (27)) are depicted; (b) Dispersion dependence 

( )pk  for the SPP as obtained from Eqs. (21) and (25). 

The electric and magnetic fields of the SPP wave are described by the relations [4, 16, 17] 

 

 

1
1

2
2

exp , 0

1 exp , 0

p
p

p
p

i ik z x x
k

A

i ik z x x
k









  
        

 
       

x z

E

x z

   (23) 

 

 

0
1

0
2

exp , 0

exp , 0,

p
p

p
p

k
ik z x x

k
A

k
ik z x x

k





  
 
  


y

H
y

   (24) 

where A  denotes the field amplitude. The propagation constant pk  and the spatial-decay constants 

1  and 2  of the SPP field are as follows: 

0 1 0 2 0
1, , .

1 1 1pk k k k 
 

  
 

  
     

  (25) 

The dispersion curve for the SPP obtained from Eqs. (21) and (25) is shown in Fig. 1b. 
After substituting Eqs. (23) and (24) into Eqs. (17) and (19), with using Eqs. (21) and (25), 

we obtain readily the canonical momentum distribution 

 

   

12
2 0

2

2

exp 2 , 0
1

1 exp 2 , 0
1

M
p

x x
k

g A
k x x





 


 

       
 

P z   (26)  

(which matches Eqs. (3.4) and (3.9) of Ref. [17]), as well as the spin density of the SPP wave 

 

 

1
1

2

2
22

exp 2 , 0

2 exp 2 , 0

p
M

p

x x
k

g A
x x

k




 




  
 

 


S y    (27)  

(which corresponds to Eq. (3.13) of Ref. [17]). This spin AM has the opposite directions in the 

vacuum and metal; so, we have 0yS   for 0x  , which agrees with the opposite rotation 
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directions of the electric field E  in the contacting media (see Eq. (23)). Accordingly, the spin 
density (27) experiences a ‘jump’ at x = 0:  

     
 

2 21
3 2

2 1 10 0 2M M M
p

x x g A g A
k

 
 

 
      


S S S y y   . (28)  

This is in contrast to the ‘naïve’ Minkowski spin (9) which is continuous at the interface:  

 

 

1
1

2

2
2

exp 2 , 0

exp 2 , 0 .

p
M

p

x x
k

g A
x x

k









  
 
 


S y    (29) 

Formula (27) provides an adequate description of the transverse spin of the SPP predicted 
earlier [24] and characterizes correctly the total spin of the SPP, which is proportional to 

 M x dx


 S  [17]. Now we make use of Eq. (27) for evaluating the linear spin momentum. To 

this end, one can notice that all types of the spin in the SPP geometry under consideration (see 
Fig. 1a) are y-directed and z-independent. Then Eq. (13) can be simplified to 

  y
y

S
S

x


 


y z .     (30) 

Applying this to Eq. (27), one obtains  

 
 

 

 

2 12 2 0
3 2

2

1 exp 2 , 0
1 1

2 exp 2 , 0 .
1

S
M

p

x xk
g A x g A

k x x


 

 


         
 

P z z  (31) 

It is helpful to compare this result with the ‘dispersion-free’ spin momentum S
MP  that follows 

from Eqs. (13), (30) and (7), 

 

 

2 12 0

2

1 exp 2 , 0
1 1
2 exp 2 , 0

1

S
M M

p

x xk
g A

k x x








      
 
 

P S z .  (32) 

The difference between Eqs. (31) and (32) exists only in the metal and at the interface ( 0x  ). It 
can be written as 

     surf vol1
2

S S
M M M M         S S P P �   ,  (33) 

with explicitly separated surface (singular) and volume contributions 

 
 

     
2

2
2 2surf vol 20

3 2
2 11 , , 0

1
x

p

k
g A x g A e x

k






     

 
z z  . (34) 

The term involving the delta function appears due to discontinuity of the spin AM (see 
Eqs. (27) and (28)), whereas the volume part of Eq. (34) describes the additional momentum 
contribution which has been ‘lost’ in the phenomenological SPP analysis in Section 3 of Ref. [17]. 
(Nonetheless, this contribution was implicitly ‘found’ in the subsequent sections of Ref. [17] pre-
senting the microscopic approach, and we will demonstrate this in the next Section of this paper).  

Now we briefly discuss some aspects of our new results expressed by Eqs. (31), (33) and 
(34). First of all, with allowance for Eqs. (25), the delta-function term in Eq. (34) ensures a zero 
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value of the ‘total’ additional momentum (33) for the SPP cross-section, 

0dx




   � � ,    (35)  

as well as for the integral spin momentum,  

0S S
M M dx





 P P  .      

This is what is required by the general theory [22, 23, 26], being associated with a 
divergence-less nature of the quantities given by Eqs. (20) and (33). Second, the correction (33) of 
the spin momentum (as we pass from Eq. (32) to Eq. (31)) is equivalent to transition from Eq. (14) 
to Eq. (14a), i.e. to adding the second line of Eq. (14a) to the Philbin’s kinetic Minkowski 
momentum (14). Therefore, the ‘true’ kinetic momentum of the SPP is expressed by the relation 

 surf volS P
M M M M M       P P          (36)  

(see Eqs. (33) and (34)). It appears to be singular, due to the first relationship in Eq. (34). In 

Eq. (36), P
M
  corresponds to the Philbin’s dispersive-medium momentum (14), 

 

   

12
2 0 2

2

exp 2 , 0

1 2 exp 2 , 0 ,
1

P
M

p

x x
k

g A
k x x



 


 

  


  
 

z   (37)  

which expectedly presents the same result as Eq. (3.10) of Ref. [17], and 

 

 

2 12vol 0

2

exp 2 , 0
1 exp 2 , 0 .M

p

x xk
g A

k x x






 
 



z    (38)  

Remarkably, the expression (38) coincides with the kinetic Abraham momentum A  of the 

SPP obtained in Eq. (3.7) of Ref. [17] with no account of the dispersion:  
vol

A M   .     (39) 

This is an interesting conclusion. It suggests that the dispersion-modified kinetic Minkowski 
momentum can be equivalent to the dispersion-free Abraham momentum as an instrument for 
describing the energy flow and the group velocity [16, 17]. However, Eq. (39) is associated with a 
special form of the SPP field adopted in the present study and with a simple model of the metal 
permittivity given by Eqs. (21) and (22). It can hardly be generalized to other cases. More 
instructive and demonstrative are the singular terms in Eqs. (31), (33) and (36). In the next Section 
we consider their physical nature via the microscopic analysis. 

4. Microscopic approach to SPP momentum 
Here we briefly consider how the modifications of the SPP momentum description brought about 
by the new definitions of the field momentum in the dispersive medium (see Eqs. (20), (14a), (31), 
(36) and (38)) are compatible with the microscopic analysis. Following Refs. [16, 17], the micro-
scopic approach is based on separation of the microscopic electromagnetic field ( E  and H ) and 
charges/currents inside the medium. The metal is described by the Bloch hydrodynamic model for 
electron plasma, in which the electron density is characterized by the uniform ‘background’ den-
sity 0n  (see Eq. (22)) modified by small additive time-harmonic perturbation, 

   Re expn i t  r , and the local velocity of electrons is taken in the form    Re exp i t  v r . 
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Then the free-space Maxwell equations with 1    and with the densities of charge en  and 

current 0en v ,  

0

0 0

4
0, , 4 ,

eni i
en i

k k





           H H E E E H v  , (40) 

yield the following for the medium 1 (x < 0): 

     2 221 1 exp , 0 ,px xx x
p

p

kA e e i e e ik z x
k

   
 

 

                    
E x z  (41) 

(the magnetic field is still described by Eq. (24)), and 

 
21

exp 0
4

,p x

p

kA
n e ik z x

e



  


  

 
 
 

 ,    (42)  

   2 22 exp 0,px xx x

p

p

kA e
i e e i e e ik z x

m k
   

  
      

   
  

   
v x z .  (43)  

Here the relation 2 2 2 2/pk      holds, where the coefficient  2 23 5 Fv   involving 

the Fermi velocity Fv  of electrons is responsible for the additional quantum pressure. The 

parameter is still described by Eq. (21) although in Eqs. (41)–(43), like everywhere in this 
Section, it is not postulated but derived from the microscopic analysis. According to Refs. [16, 17], 

we imply the limit 2 0   and, correspondingly,    in our further consideration.  

In the limit   , the  -containing terms are nonzero only in the closest vicinity of the 

interface in the metal half-space 0x  , and we will call them as ‘near-surface terms’. Though 
their contributions seem to be negligible, we keep them explicitly because they are crucial to fulfil 
the boundary conditions (i.e., continuity of the electric field and a zero normal velocity of 
electrons at x = 0 – see Eq. (43)) and additionally characterize the near-surface behaviour of the 
field characteristics. Besides, in some cases such terms provide specific non-vanishing near-
surface contributions due to the limiting transition  

   exp x x   .     (44)  

Now let us consider the momentum calculation for the metal. According to Refs. [8–10], the 
electromagnetic momentum includes the field and material contributions, where the field 
contribution is described by the Poynting vector of the free-space field of Eqs. (40), 

 *
0 0 Regk E H .    (45)  

In view of Eqs. (40), its spin-orbital decomposition reads as (cf. with Eqs. (7)–(9)) 

     
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* *
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       

E E H H H v

E E H H E


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




  (46)  

The material contribution is calculated considering a long but finite wave packet and a cycle-
averaged force density acting on the dipole moment induced in the medium by an external 
electromagnetic field [10, 17]. Afterwards, the length of the wave packet tends to infinity, with the 
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result  

     * *
mat 0Im 1 Re

2
g d gk

d
 




       E E E H .    

In combination with Eq. (45), this gives the kinetic momentum that corresponds to the 
Philbin’s expression (14):  

   * *
0

0

Re Im
2

P
M

g dgk
d

 



      E H E E






.   (47) 

Applying this result to the SPP field (41), we get 

 
 

 
2 2

2 2
2 20 1 1 2 , 0,

1 1
x xP

M
p

k
g A e e x

k
    

   
   

    
   

z  (48)  

which, excluding the near-surface term, coincides with the phenomenological expression given by 
Eq. (37). The canonical and spin parts of this momentum follow from decomposition of the 0  

term in Eq. (47) with using Eq. (46). Then we obtain, with the aid of Eqs. (A1) and (A2) (see 
Appendix),  

 
 
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   

P z  (49)  

and  

 
   2 2

22
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, 0
2 1 1

x xS x x
M

p

k
g A e e e e x

k
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 
     

   
P z . (50)  

The both results correspond well to the macroscopic relations (26) and (32). Note that, due to 
the near-surface terms in Eq. (49), the microscopic canonical momentum is continuous at the 
interface x = 0 (cf. with Eq. (26)). 

To find further momentum constituents, let us address microscopically the spin AM of the 
SPP field. Since the spin contains only the y-component, Eq. (30) gives a direct way to the spin 
constituent associated with the spin momentum (50), 

     2 2

2 22
2 220

2 2

1 11 , 0
1 2

x xx
M

s

k
g A e e e x

k
    

    


  
     
   

S y ,             (51)  

which reduces to Eq. (29) upon the condition   . This is the ‘naïve’ Minkowski spin which, 

according to Eq. (4.21) of Ref. [17], equals to  

 Im
2M
g

  S E E .    (52)  

There exists another spin constituent associated with the elliptic motion of free electrons 
driven by the rotating electric field (23) or (41) (see Fig. 2). It has been considered in Ref. [17] and 
described by the relation  

     
2

* * *0 0
mat 3Im Im Im .

2 22
n m n e g d

dm
 

 
     S v v E E E E   (53)  

This ‘material’ spin corresponds to the dispersion terms in Eq. (15), and the sum matM M S S S  

forms the true dispersion-modified spin (19) for the SPP. Therefore, to finalize the SPP 
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momentum calculation, we should determine the quantity whose macroscopic prototype is 
presented by Eq. (33): 

  mat
1 1
2 2M M     S S S� .  

The evaluation becomes straightforward with the known distributions of the SPP field (41) 
and the electron velocity (43). However, the different expressions (53) are not fully equivalent; the 
first equality is more accurate because, in further transformations, simple proportionality between 
v  and E  is supposed, with discarding the near-surface terms [17]. Therefore we use the ‘original’ 
form 

 *0 Im
4
n m


     v v � .     (54)  

Based on Eq. (43), it can be transformed by the procedure described in Appendix. Eventually, it 
yields the following formulae for 0x  : 
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z

z z



 (    ) 

This is precisely the result given by Eqs. (33) and (34). Therefore, the microscopic model of 
the SPP confirms perfectly the results obtained in Section 3 uisng the general phenomenological 
approach. 

As a final remark, we emphasize that the momentum � (more exactly, its volume part 

 vol ) is in fact present in Refs. [16, 17], although not deduced from the general scheme of the 

momentum description in complex media. It appears in the analysis of metal magnetization effect 
due to rotational motion of free electrons (see subsection 4.4 of Ref. [17]), and is interpreted as a 
‘magnetization momentum’ magn . It is evident that its expression given by Eq. (4.29) of Ref. 

[17] coincides completely with  vol  (see Eq. (34)).  

This means that due to the corrected expressions for the field momentum (16a) and (14a), the 
magnetization momentum finds its place in the unified picture of the field momentum and AM in 

complex media. Really, obeying the easily verifiable relation magn mat
1
2

 S , it appears as a 

part of the linear spin momentum. Now, its immediate link with the vortex motion of electrons 

 

Volume 
magnetization 
momentum 

Surface magnetization momentum z 

x 

y 

 
Fig. 2. Illustration of elliptic trajectories of electrons and magnetization momentum. The size of the ellipses and 
the electron velocities decay with increasing off-surface distance in the half-space x < 0.  
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discloses a general physical mechanism of genesis of the spin momentum and deep analogies with 
the similar phenomena in, e.g., electromagnetism and fluid mechanics [29–34], where a linear 
macroscopic current emerges in the system of inhomogeneously distributed microscopic 
vorticities. In our case, the volume magnetization appears due to incomplete compensation of 
oppositely directed electron velocities in adjacent horizontal layers of the metal (see Fig. 2) and is 
proportional to the ‘vorticity gradient’ ( matdS dx ). Additionally, matS  abruptly changes to zero at 

the interface [This fact can be seen from the second term in parentheses of Eq. (55), which is zero 
almost everywhere in the volume at large  but rapidly increases to unity at x = 0], which 
corresponds to the delta-like gradient though of the opposite sign. Therefore, the surface part in the 
expression (34),  surf , should also be considered as a part of the magnetization momentum, in 

addition to the volume part discussed in Refs. [16, 17] (see Fig. 2). Accordingly, the true form of 
the magnetization momentum is magn     which appears in Eq. (34), with the singular part 

 surfsurf
magn    . 

This surface part of the magnetization momentum is similar to the surface Ampere current in 
magnets [32, 33]. It is noteworthy that, according to Eq. (35), the integral magnetization 

momentum over the whole SPP cross-section is magn 0dx



    , so that the surface 

(singular) current forms a ‘closed circuit’ with the volume (distributed) part. 

5. Conclusions 
The main result of this work is the unified description of the momentum and the AM in the los-
sless dispersive media, which is provided by Eq. (16a) and Eqs. (17)–(20). Due to enhanced inter-
pretation of the known relation (13) and recognition that every sort of the spin AM is accompanied 
by the corresponding linear spin momentum, we have accomplished the recent scheme suggested 
in Refs. [16, 17] to its logical end. Now the system of equations for all the constituents (i.e., the 
canonical (orbital) and linear spin momenta, together with the orbital and spin AMs) appears in the 
perfect form, including neatly and concisely the dispersion corrections introduced in the same 
manner as in the well-known Brillouin formula (2), (3) for the energy. Importantly, all the other 
conclusions of Refs. [16, 17] remain unchanged. They are associated with physical interpretation 
of the kinetic and canonical pictures, meaningful discrepancies and appropriateness of the 
Abraham-type and Minkowski-type paradigms, as well as the novel effects predicted for the SPP 
physics. 

Our refined general prescriptions have been applied to the SPP case which provides an 
example of highly structured field in a strongly inhomogeneous and essentially dispersive 
medium. The microscopic analysis supports completely the expectations based on the phenome-
nological grounds. Additionally, the magnetization momentum earlier introduced in Refs. [16, 17] 
upon considering the special effect of the SPP-induced magnetization, has now been included into 
the unified general scheme and appears to be its essential part. Moreover, its singular component 
associated with the surface current has been revealed and explained on the footing of far-reaching 
electromagnetic and hydrodynamic analogies.  

Our microscopic analysis is based on the free-electron gas model for the metal but involves 
partly the quantum-pressure influence immanent in the hydrodynamic model of the electron 
plasma. Although this influence is supposed to be negligible, some residual effects have been 
taken into account in the form of corrections to the distributions of electric field, electron density 
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and velocity, which are sharply localized near the metal–vacuum interface. These ‘near-surface’ 
terms do not affect the main volume properties of the SPP wave though provide conceptually 
meaningful contributions necessary for the boundary conditions to be fulfilled. Besides, they 
describe some principled details of the near-interface behaviour of various momentum 
components. In particular, it is these terms that stipulate the singular surface part of the 
magnetization momentum (34). Another remarkable observation is that the canonical momentum 
of the SPP field appears to be continuous at the interface (cf. Eqs. (49) and (26)). At the same time, 
the meaning and the consequences of the near-surface terms need additional elucidation and, 
probably, require a more accurate model for the electron properties of metals, which is a promising 
direction for further elaboration. 

We hope that the present study provides a suitable and efficient toolkit for the analysis and 
description of the momentum and AM of light in dispersive and inhomogeneous (but isotropic and 
lossless) media. It can be used to solve a variety of modern problems, involving those related to 
photonic crystals, metamaterials and optomechanical systems.  

Appendix 

We consider transformations of the second line of Eq. (46). In the first term, the product * H H  

vanishes for the SPP field given by Eq. (24) and we must calculate the term  *Im
4
g
 E E  

only. By substituting Eq. (41), we find 
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Further, direct application of the rule (30) leads to representation 
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  (A1) 

where the limiting transition     is performed and Eqs. (44) and (25) are employed. 

In the second term of the second line of Eq. (46), substitution of Eqs. (41) and (42) 
accompanied with the same limiting transition and taking Eq. (44) into account gives 
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Note that the terms with the delta functions in formulae (A1) and (A2) are mutually 
cancelled. Transformation of Eq. (54) is performed similarly to Eq. (A1), with taking into account 
Eq. (43), instead of Eq. (41). 
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Анотація. На основі нещодавно розробленого підходу [Phys. Rev. Lett. 119, 073901 (2017); 
New J. Phys., 19, 123014 (2017)] вдосконалено і завершено загальну схему уніфікованого 
опису імпульсу та кутового моменту в складних матеріальних середовищах. Рівняння для 
канонічного (орбітального) і спінового імпульсів, а також для орбітального та спінового 
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кутових моментів у непоглинаючому неоднорідному диспергуючому середовищі 
представлено в компактній формі, аналогічній до формули Бриллюена для енергії. 
Результати застосовано до поля поверхневого плазмон-поляритона. Наші мікроскопічні 
розрахунки підтверджують очікування феноменології. Уточнена нами загальна схема 
правильно описує незвичні властивості поверхневого плазмон-поляритона, пов’язані з 
поперечним спіном та імпульсом намагнічування. На додаток, вона прогнозує сингулярні 
складові імпульсу, локалізовані на межі метал–діелектрик, що підтверджується 
мікроскопічним аналізом. Одержані результати можуть бути корисними для оптичних 
систем, що використовують структуроване світло, особливо в мікрооптиці, 
плазмофотоніці, оптичному сортуванні та мікроманіпуляціях. 


