УДК 546.43' 723 - 36: 544.23.022.246

Е.Д.Соловьева, Е.В.Пашкова, А.Г.Белоус

СТРУКТУРНЫЕ ОСОБЕННОСТИ И МАГНИТНЫЕ СВОЙСТВА МОДИФИЦИРОВАННЫХ ГЕКСАФЕРРИТОВ BaFe_{12-2x}Co_x{Si, Sn, Ti}_xO_{19±g} М-ТИПА

Методами рентгенофазового анализа, мессбауэровской спектроскопии и магнитных измерений изучено влияние модифицирующих добавок (Co²⁺ +{Si, Sn, Ti}⁴⁺) на кристаллохимические особенности и магнитные свойства модифицированных гексаферритов бария М-типа, полученных при термообработке гидроксидно-карбонатных осадков. Показана возможность регулирования магнитных свойств ГФБ М-типа (уменьшение коэрцитивной силы (H_c) при увеличении намагниченности (M_s)) путем гетеровалентного замещения 2Fe³⁺ \rightarrow Co² +{Si, Sn, Ti}⁴⁺.

ВВЕДЕНИЕ. Гексаферрит бария известен как материал для производства постоянных магнитов [1—3], систем высокоплотной записи и хранения информации [4, 5], для различных современных СВЧ-устройств [6], для поглощения электромагнитной энергии в диапазоне сверхвысоких частот [7—9]. Отмечена также перспективность ГФБ для биомедицинского применения в качестве индукторов гипертермии [10, 11].

В зависимости от области применения ГФБ, требования к величине коэрцитивной силы (H_c) существенно различаются. Так, для постоянных магнитов характерны значения $H_c = 480-640$ и более кА/м, для магнитной записи $H_c = 200-280$ кА/м, а для биомедицинского применения — минимальные значения H_c . При этом величина намагниченности (M_s) независимо от области применения ГФБ должна быть высокой. Поэтому проблема получения ГФБ с высоким уровнем M_s и регулируемой H_c является актуальной.

Решение этой проблемы в последнее время осуществляется путем гетеровалентного замещения ионов Fe³⁺ по схеме 2Fe³⁺ \rightarrow Me²⁺ + Me⁴⁺, где Me²⁺ и Me⁴⁺ — ферромагнитный и немагнитный ионы соответственно [12—19]. Такое замещение обеспечивает электронейтральность кристаллической решетки ГФБ. Известно [1, 2], что при замещении магнитного иона на немагнитный наряду с существенным уменьшением коэрцитивной силы, как правило, уменьшается величина намагниченности. Для ферримагнетиков, в частности для ГФБ, намагниченность определяется разницей между суммой магнитных моментов ионов в позициях 12k, 2a, 2b и в позициях $4f_1$, $4f_2$, в соответствии с уравнением: $M_s = M_s$ $(12k + 2a + 2b) - M_s (4f_1 + 4f_2)$ [2]. Таким образом, можно ожидать, что одновременное суммарное повышение магнитного момента и снижение величины коэрцитивной силы можно осуществить путем заселения в позициях $4f_1$ и (или) $4f_2$ немагнитного иона, склонного к тетраэдрической координации. В качестве таких немагнитных ионов, с учетом размерного фактора, рассматривали ионы кремния, олова и титана. Магнитным ионом был выбран ион кобальта. Это обусловлено близостью значений величин константы магнитокристаллической анизотропии (К), а также совпадением направлений осей легкого намагничивания (с) кобальта и ГФБ, что обеспечивает плавное снижение Н_с.

Цель данной работы — исследование влияния гетеровалентного замещения ионов Fe³⁺ по схеме $2Fe^{3+} \rightarrow Co^{2+} + {Si, Sn, Ti}^{4+}$ на кристаллохимические особенности и магнитные свойства ГФБ М-типа.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Исследовали образцы, отвечающие составу $BaFe_{12-2x}Co_x$ {Si, Sn, Ti}_xO_{19 ± γ} (x =0—1).

В качестве прекурсора использовали гидроксидно-карбонатные осадки Ва(II), Fe(III), Co(II), Si(IV), Sn(IV) и Ti(IV). Осадки получали методом двухстадийного соосаждения компонентов из водных растворов солей. Исходными реагентами были выбраны Ва(NO₃)₂, Fe(NO₃)₃, Co(NO₃)₂, (C₂H₅O)₄Si, SnCl₄·SH₂O и TiCl₄. Осаждение компонентов проводили при постоянном строго

[©] Е.Д.Соловьева, Е.В.Пашкова, А.Г.Белоус, 2013

контролируемом pH, обеспечивающем полноту их осаждения. Контроль pH осуществляли с помощью иономера И-160МИ (точность \pm 0.05), а регулирование pH — с помощью блока автоматического титрования БАТ-15. На первой стадии соосаждали гидроксиды Fe(III)—Si(IV), Fe (III)—Sn(IV) и Fe(III)—Ti(IV) раствором 25 %-го NH₄OH. Затем осадки отмывали от NH₄⁺-ионов и при перемешивании соосаждали на них карбонаты Ba(II) и Co(II) раствором Na₂CO₃. Полученные осадки фильтровали, отмывали дистиллированной водой до отсутствия в них ионов NO₃⁻, сушили при температуре 390 К и прокаливали при 1273 К в течение 2 ч.

Образцы исследовали методами рентгенофазового анализа (РФА) на дифрактометре ДРОН-3М (Си K_{α} -излучение, съемка в каждой точке 10 с). В качестве внешних стандартов применяли SiO₂ (стандарт 2 θ) и сертифицированный стандарт интенсивности Al₂O₃ [20]. Для РФА использовали базу данных JCPDS. Структурные параметры образцов были рассчитаны на основании результатов РФА.

Мессбауэровские спектры (МС) получали на спектрометре динамического типа, работающем в режиме постоянных ускорений. В качестве источников у-квантов использовали УСо в матрице Cr. Измерение выполняли при комнатной температуре. Калибровку шкалы скоростей проводили по положению линий поглошения α-Fe. Компьютерную обработку спектров выполняли с использованием программы Univvem-2, реализующей метод наименьших квадратов. При аппроксимации спектров суммой секстетов зеемановского расщепления допускалось попарное равенство интенсивностей линий 1-6, 2-5, 3-4 и полуширин всех линий секстетов. Магнитные свойства порошков определяли на баллистическом магнетометре при комнатной температуре в диапазоне полей $H = 0 - 10 \text{ к} \Im$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. В табл. 1 приведены параметры мессбауэровских спектров прокаленных (T = 1273 K) образцов BaFe_{12-2x}Co_xSi_x-O_{19±γ} в области их гомогенности (x = 0—0.3) [21]. Отнесение выделенных компонент МС к структурным позициям катионов железа в структуре ГФБ проведено в соответствии с моделью, используемой в работах [22, 23]. Согласно этой модели, каждая из пяти структурных позиций катионов железа в структуре ГФБ описывается

П	ap	ам бо	ет	ры	M Do	eco	бауэровских	спектров	гексаферри-
Т	а	6	Л	И	ц	а	1		

				-		
Образец	Ион	$H_{9\phi}$,	И.С.	К.Р.	Г	S. %
	(позиция)	кЭ		мм/с		~, /0
x = 0	$Fe^{3+}(12k)$	416	0.37	0.40	0.47	52.4
	$Fe^{3+}(4f_1)$	487	0.29	0.16	0.39	23.4
	$Fe^{3+}(4f_2)$	512	0.45	0.18	0.26	12.1
	$Fe^{3+}(2a)$	509	0.30	0.07	0.31	9.1
	$Fe^{3+}(2b)$	404	0.28	2.12	0.28	3.0
x = 0.1	$Fe^{3+}(12k)$	417	0.35	0.41	0.41	50.2
	$Fe^{3+}(4f_1)$	489	0.28	0.19	0.36	19.8
	$Fe^{3+}(4f_2)$	514	0.47	0.07	0.29	9.3
	$Fe^{3+}(2a)$	511	0.30	0.02	0.31	16.2
	${\rm Fe}^{3+}(2b)$	403	0.29	2.18	0.27	4.5
x = 0.3	$Fe^{3+}(12k)$	417	0.37	0.41	0.41	46.1
	$Fe^{3+}(4f_1)$	487	0.29	0.21	0.38	17.6
	$Fe^{3+}(4f_2)$	513	0.50	0.02	0.30	11.5
	$Fe^{3+}(2a)$	513	0.31	-0.02	0.34	20.4
	$\mathrm{Fe}^{3+}(2b)$	403	0.30	2.19	0.29	4.4

Примечания. $H_{9\phi}$ — эффективное магнитное поле на ядре ⁵⁷Fe; И.С. — изомерный сдвиг относительно металлического железа; К.Р. — квадрупольное расщепление; Г — ширина линии поглощения на половине высоты; S — относительная площадь компоненты. Ошибки измерения: $H_{9\phi}$ – ±5 кЭ, И.С., К.Р. и Г – 0.04 мм/с, S – 6%.

отдельным резонансным секстетом магнитного взаимодействия. Эта модель позволяет оценить заселенность ионами Fe³⁺ всех структурных позиций однофазного ГФБ с хорошо сформированной структурой. Параметры МС исследуемых образцов соответствуют высокоспиновым ионам Fe^{3+} с октаэдрической (12k, 4f₂ и 2a), тетраэдрической (4f1) и бипирамидальной (2b) координациями. На рис. 1 приведены зависимости концентрации ионов железа $C(Fe^{3+})$ от степени замещения Fe^{3+} в области гомогенности (x = 0— 0.3). Как видно, при замещении ионов Fe^{3+} на ионы Co^{2+} и Si^{4+} наблюдается уменьшение концентрации ионов железа в позициях 12k и $4f_1$, что указывает на заселенность в них ионов Co²⁺ и Si^{4+} соответственно. Коэрцитивная сила (H_c) образцов BaFe_{12–2x}Co_xSi_xO_{19 $\pm\gamma$} с увеличением x также уменьшается и равняется 378, 104 и 96 кА/м

для x = 0, 0.1 и 0.3 соответственно (табл. 2). Уменьшение H_c можно объяснить снижением константы магнитокристаллической анизотропии (*K*) образцов BaFe_{12-2x}Co_xSi_xO_{19±γ} по сравнению с *K* образцов BaFe₁₂O_{19±γ}. Очевидно, что данное увеличение намагниченности модифицированных ГФБ (табл. 2) связано с увеличением концентрации ферромагнитных ионов (Fe³⁺ и Co²⁺) в положительной составляющей $M_s = M_s$ (12k + 2a + 2b) и уменьшением ионов Fe³⁺ в отрицательной составляющей M_s (4 $f_1 + 4f_2$) (рис. 1).

Рис. 1. Зависимости концентрации ионов железа $C(Fe^{3+})$ в неэквивалентных позициях $BaFe_{12-2x}Co_xSi_xO_{19\pm\gamma}$ от степени замещения $2Fe^{3+} \rightarrow Co^{2+}+Si^{4+}$ (x = 0, 0.1, 0.3).

Таблица 2

Результаты магнитных измерений гексаферритов $BaFe_{12-2x}Co_x\{Si,\,Sn,\,Ti\}_xO_{19\pm g}$

Образец	x	<i>H_c</i> , кА/м	<i>M</i> _s , Ам ² /кг
$BaFe_{12-2r}Co_rSi_rO_{19+r}$	0	280	56.7
$12 2x x x 1) \pm 1$	0.1	104	58.5
	0.3	96	60.1
$BaFe_{12-2r}Co_rSn_rO_{19+\gamma}$	0	334	60.0
12 24 4 4 19 2 1	0.03	382	56.0
	0.05	318	55.7
	0.08	199	58.0
	0.1	127	58.6
	0.2	94	59.7
	0.3	87	61.8
$BaFe_{12-2r}Co_rTi_rO_{19+rr}$	0	362	56.0
$12-2x$ x x 17 ± 1	0.2	278	58.0
	0.3	208	59.7
	0.5	188	61.2
	1.0	8.0	62.7

Рис. 2. Концентрационная зависимость объема элементарной ячейки образцов $BaFe_{12-2x}Co_xSn_xO_{19\pm\gamma}$ (*a*) и $BaFe_{12-2x}Co_xTi_xO_{19\pm\gamma}$ (*b*), прокаленных при 1523 (*a*) и 1273 К (*b*).

Исследование системы $BaFe_{12-2x}Co_xSn_xO_{19\pm\gamma}$ (x = 0 - 0.3) проводили аналогично предыдущей. Методом РФА было установлено, что однофазные образцы всех исследуемых составов образуются при термообработке (T = 1523 K). Увеличение объема кристаллической решетки (V) в исследуемой области x при замещении ионов Fe³⁺ $(rFe_{\kappa.ч.6, HS}^{3+}=0.645 \text{ Å})$ на ионы Co²⁺–Sn⁴⁺ со средним радиусом ($\overline{r} = 0.670$ Å) соответствует правилу Вегарда, что подтверждает образование твердых растворов замещения (рис. 2, а). Анализ магнитных параметров образцов системы BaFe_{12-2x}- $Co_x Sn_x O_{19\pm\gamma}$ (x =0—0.3) показал, что намагниченность (M_s) гексаферритов BaFe_{12-2x}Co_xSn_xO_{19 $\pm\gamma$} уменьшается в интервале x = 0 - 0.05 и увеличивается в интервале x = 0.05—0.3 (табл. 2). Коэрцитивная сила (*H*_c) существенно уменьшается в интервале x = 0.05—0.3 (табл. 2). Уменьшение результирующей M_s в интервале x = 0.01 - 0.05,

возможно, связано с увеличением отрицательной составляющей M_s (позиции $4f_1$ и $4f_2$). Это может быть реализовано при условии замещения ионов Fe³⁺ в позициях, которые определяют положительную составляющую M_s (12k, 2a и 2b), на ионы Co²⁺ и Sn⁴⁺ и, учитывая выше сказанное, переселения их (Fe³⁺) в позицию $4f_2$. Увеличение результирующей M_s в интервале x = -0.05 —0.3, вероятно, связано с перераспределением катионов, которое приводит к уменьшению отрицательной составляющей M_s (позиции $4f_1$ и $4f_2$). Это может быть реализовано при замещении в этих позициях ионов Fe³⁺ на Co²⁺ (электромагнитный момент Fe³⁺ = 5 µB, а Co²⁺ = 3 µB [24]) и (или) на немагнитный ион Sn⁴⁺.

Результаты РФ-анализа образцов системы ВаFe_{12-2x}Co_xTi_xO₁₉ (x = 0.15—1) указывают на образование однофазных образцов всех исследуемых составов при термообработке (T ==1273 K). Показано, что замещение ионов Fe³⁺ на комбинацию ионов Co²⁺-Ti⁴⁺ соответствует правилу Вегарда, что подтверждает образование твердых растворов замещения во всем исследуемом интервале x (рис. 2, δ). Установлено, что замещение 2Fe³⁺ \rightarrow Co²⁺+Ti⁴⁺ способствует увеличению намагниченности (M_s) гексаферритов и снижению величины H_c (табл. 2). Увеличение результирующей M_s в исследуемом интервале x = 0.15—1 может быть связано с замещением ионов Fe³⁺ в позициях 4 f_1 и 4 f_2 на ионы Co²⁺ и (или) Ti⁴⁺.

Таким образом, в данной работе исследовано влияние модифицирующих добавок (Co²⁺ +{Si, Sn, Ti}⁴⁺) на кристаллохимические особенности и магнитные свойства ГФБ М-типа. Показана возможность регулирования магнитных свойств ГФБ М-типа путем его модифицирования. При гетеровалентном замещении в подрешетке Fe³⁺ удалось увеличить магнитный момент и снизить коэрцитивную силу. Показано, что наиболее эффективное снижение коэрцитивной силы наблюдается при замещении $2Fe^{3+} \rightarrow Co^{2+}+Ti^{4+}$.

РЕЗЮМЕ. Методами рентгенофазового аналізу, месбауерівської спектроскопії та магнітних вимірювань вивчено вплив модифікуючих добавок (Co^{2+} +{Si, Sn, Ti}⁴⁺) на кристалохімічні особливості та магнітні властивості модифікованих гексаферитів барію М-типу, отриманих при термообробці гідроксидно-карбонатних осадів. Показана можливість регулювання магнітних властивостей ГФБ М-типу (зменшення коерцитивної сили (H_c) при збільшенні намагніченості (M_s)) шляхом гетеровалентного заміщення 2Fe³⁺ \rightarrow Co²⁺+{Si, Sn, Ti}⁴⁺.

SUMMARY. Using X-ray powder diffractions, Mossbauer spectroscopy, and magnetic measurements, the effect of dopants $(\text{Co}^{2+}+\{\text{Si}, \text{Sn}, \text{Ti}\}^{4+})$ on the fine structure and magnetic properties of M-type bari- um hexaferrite prepared by hydroxide and carbonate precipitations has been studied. It has been shown that the magnetic properties of M-type barium hexaferrite can be controlled by heterovalent substitution $2\text{Fe}^{3+} \rightarrow \text{Co}^{2+}+\{\text{Si}, \text{Sn}, \text{Ti}\}^{4+}$.

ЛИТЕРАТУРА

- 1. Крупичка С. Физика ферритов и родственных им магнитных окислов. -М.: Мир, 1976. -Т. 2.
- 2. Смит Я., Вейн Х. Ферриты. -М.: Изд. иностр. лит., 1962.
- 3. Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Успехи химии. -2005. -74, № 6. -С. 539-574.
- Lei Fu, Xiagang Liu, Zhang Yi et al. // Nano letters. -2003. -3, № 6. -P. 757—760.
- 5. Pankhurst Q.A., Pollard R.S. // J. Phys. Condens. Mater. -1993. -5, № 42. -P. 8487—8508.
- 6. Lebedev S.V., Patton C.E., Wittenauer M.A. et al. // J. Appl. Phys. -2002. -91, № 7. -P. 4426-4431.
- Haijun Z., Zhichao L., Chenliang Ma et al. // Mater. Sci. Eng. B. -2002. -96, № 27. -P. 289–293.
- 8. Ragotani T., Fujiwara D. et al. // J. Magn. Mater. -2004. -276. -P. 272-276.
- 9. Meshram, M.R., Agarwal N.K., Sinha B., Misra P.S. // J. Magn. Magn. Mater. -2004. -271. -P. 207-213.
- Muller R., Hergt R., Dutz S. et al. // J. Phys. Condens. Matter. -2006. -18. -P. 2527—2542.
- 11. Pollert E., Veverka P., Veverka M. et al. // Progr. Sol. St. Chem. -2009. -37, № 1. -P. 1—14.
- 12. He H.Y., Huang J.F, Cao L.Y. et al. // Mater. Techn. -2007. -2. -P. 30-32.
- Koga N., Tsutaoka T. // J. Magn. Magnet. Mater. -2007 -313. -P. 168—175.
- Haijun Z., Zhichao L., Chenliang Ma et al. // Mater. Chem. Phys -2003. -80. -P. 129—134.
- Mendoza-Suareza G., Corral-Huacuza J.C., Contreras-Garciab M.E., Juarez-Medinab H. // J. Magn. Magnet. Mater. -2001. -234. -P. 73—79.
- Lisjak D., Drofenik M. // J. Europ. Ceram. Soc. -2004. -24. -P. 1841—1845.
- Belous A.G., Vyunov O.I., Pashkova E.V. et al. // J. Phys. Chem. B. -2006. -110. -P. 26477—26481.
- An S.Y., Lee S.W., Shim I.B., Kim C.S. // J. Appl. Phys. -2002. -91, № 10. -P. 8465—8467.

ISSN 0041-6045. УКР. ХИМ. ЖУРН. 2013. Т. 79, № 4

- 19. Xin Tang, Yuanguang, Keao Hu // J. Allous. Comp. -2009. -477. -P. 488-492.
- 20. Соловьева Е.Д., Пашкова Е.В., Чмель Л.Л., Рак А.В. // Укр. хим. журн. -2011. -77, № 3. -С. 14—17.
- 21. Certificate of Analysis Standart Ref. Material 1976, Instrument Sensitivity Standart for X-Ray Powder Diffraction. -Gaithersburg Natl. Inst. of Standarts and Technology, 1991. -P. 1-4.

Институт общей и неорганической химии им. В.И.Вернадского НАН Украины, Киев

- 22. Evans B.J., Grandjean F., Lilot A.P. // J. Magn. Magn. Mater. -1987. -67, № 1. -P. 123—129.
- 23. Thompson G.K., Evans B.J. // Ibid. -1991. -95, № 2. -P. 142-144.
- 24. Скопенко В.В., Зуб В.Я. Координационная химия. -ИПЦ "Київський університет", 2002. - С. 331.

Поступила 09.12.2012