УДК 546.183

М.М.Яцкин, Н.Ю.Струтинская, Н.С.Слободяник, И.В.Затовский, В.Н.Баумер КРИСТАЛЛООБРАЗОВАНИЕ СЛОЖНЫХ ФОСФАТОВ В РАСТВОРАХ-РАСПЛАВАХ СИСТЕМ К₂O-P₂O₅-Fe₂O₃-M^{II}O-K₂Mo₂O₇ (M^{II} – Mg, Co, Ni, Cu, Zn)

Установлены закономерности фазоформирования для растворов в расплавах систем K_2O — P_2O_5 — Fe_2O_3 — $M^{II}O$ — $K_2Mo_2O_7$ (M^{II} — Mg, Co, Ni, Cu, Zn) ($K/P = 0.75, 0.9, 1.3 \text{ и} M^{II}/P = 0.3, M^{II}/Fe = 1.0$). Синтезирован ряд новых фосфатов $K_4M^{II}Fe_3(PO_4)_5$ и $KM^{II}_xFe^{II}_{1-x}Fe^{III}(PO_4)_2$ (M^{II} — Mg, Co, Ni). Показано, что формирование фосфатов $KM^{II}_xFe^{II}_{1-x}Fe^{III}(PO_4)_2$ сопровождается частичным восстановлением Fe^{III}_z до Fe^{II}_z .

ВВЕДЕНИЕ. За последние десятилетия достигнут прогресс в развитии технологии получения неорганических и гибридных материалов. в основе которых находятся фосфатные соединения [1]. Так, фосфаты кальция нашли применение в медицине [2], двойные фосфаты щелочных и поливалентных металлов используются как нелинейно-оптические кристаллы [3], матрицы люминофоров [4], твердые электролиты [5], литиевые католные материалы — в портативных источниках тока [6]. Поэтому сегодня интенсивно продолжается как поиск новых фосфатных соединений с практически важными свойствами, так и исследования, направленные на улучшение характеристик известных фосфатных материалов. В частности, для многокомпонентных расплавленных фосфатных систем выявлено взаимовлияние природы и содержания разновалентных металлов на состав и строение продуктов взаимодействия. Это позволило получить большое количество новых соединений с известными и оригинальными типами кристаллических упаковок [7]. Ранее, при изучении процессов спонтанной кристаллизации растворов в расплавах для систем $M_{2}^{I}O - P_{2}O_{5} - M_{2}^{III'}O_{3} - M_{1}^{IIO}O(M^{I} - Na, Cs; M^{II} и M^{III} - p - и d$ -элементы) нами показано, что на формирование соединений, помимо природы каркасоформирующей пары $M^{II} + M^{III}$, значительное влияние оказывает щелочной металл: ортофосфаты NASIC-ON-ового (Na₄ $M^{II}M^{III}(PO_4)_3$) [8—10] или цеоли-тового (Cs₂ $M^{II}_{2}M^{III}(PO_4)_3$) [7] структурных типов. В этой работе представлены результаты исследований закономерностей фазоформирования в соответствующих калийфосфатных растворах в расплавах для железосодержащих систем. Полученные кристаллические фазы исследованы с использованием методов ИК-спектроскопии и порошковой рентгенографии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ. Первоначальные исследования закономерностей формирования кристаллических фаз в системах К₂О- P_2O_5 — Fe_2O_3 — $M^{II}O(M^{II} - Mg, Co, Ni, Cu, Zn)$ выявили, что такие расплавы вблизи точки их застывания обладают высокой вязкостью и склонны к стеклованию при быстром охлаждении. Эти факторы неблагоприятны для выращивания качественных кристаллов. Их влияния удается избежать при добавлении к исходному расплаву К2М02О7 (10 % мол.), что также способствовало ускорению процесса гомогенизации расплавов и понижению их температуры застывания. Таким образом, кристаллообразование для растворов в расплавах систем К₂О- $P_2O_5 - Fe_2O_3 - M^{II}O - K_2Mo_2O_7 (M^{II} - Mg, Co, K_2Mo_2O_7)$ Ni, Cu, Zn) изучали в разрезах мольных соотно-шений K/P = 0.75, 0.9, 1.3 и $M^{II}/P = 0.3$, $M^{II}/Fe =$ 1.0. На первой стадии экспериментов готовили расплавы исходя из КРО3, К2Мо2О7 и Н3РО4 (K/P < 1.0) или $K_4 P_2 O_7$ (K/P = 1.3), которые постепенно нагревали до 1273 К. После этого при интенсивном перемешивании в них вносили смесь $Fe_2O_3 + M^{II}O$ и в изотермических условиях проводили гомогенизацию (около 1 ч). Затем понижали температуру со скоростью 50-25 К/ч до 873—823 К, периодически отбирая пробы расплава с целью выявления начала образования кристаллических фаз. После завершения охлаждения расплав декантировали из кристаллических продуктов и отмывали последние от остатков стекла кипячением с дистиллированной водой.

Фазовый состав синтезированных образ-

[©] М.М.Яцкин, Н.Ю.Струтинская, Н.С.Слободяник, И.В.Затовский, В.Н.Баумер, 2013

цов установлен по результатам рентгенографии порошка (дифрактометр Shimadzu XRD-6000, Cu K_{α} -излучение с λ = =1.54187, изогнутый графитовый монохроматор перед счетчиком, θ-2θ сканирование 0.3 град/мин, $2\theta = 5.0$ —90.0 град). Параметры элементарных ячеек для ряда соединений также получены методом PCA кристаллов (дифрактометр Oxford-Diffraction XCalibur 3 c 2048x2048 K (4M Pixel) CCD-детектором). Элементный состав монофазных образцов установлен по данным атомно-эмиссионной спектроскопии (спектрометр ICAP 6500 DUO). ИК-спектры записаны на спектрометре FTIR Perkin-Elmer Spectrum BX в частотном диапазоне 400-4000 см⁻¹ для образцов, запрессованных с КВr.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. Анализ полученных результатов показал, что состав продуктов взаимодействия зависит от природы двухвалентного металла и соотношения К/Р (табл. 1). При охлаждении расплавов в разрезе соотношений К/Р = 0.75 до 1023 К практически для всех исследованных систем были получены тро-йные фосфаты: $KM_{x}^{II}Fe_{1-x}^{II}Fe_{1-x}^{III}(PO_{4})_{2}$ (M^{II} — Mg, Ni), KCuFe(PO₄)₂ и K₄CoFe₃(PO₄)₅, формирование которых в ряде случаев сопровождается одновременной кристаллизацией КFeP₂O₇ (табл. 1). В цинксодержащей системе при этих условиях образуется двойной дифосфат калияжелеза (III) в смеси с КZnPO₄. При повышении значения К/Р до 0.9 также формируются тройные фосфаты, а КFeP₂O₇ в продуктах взаимодействия отсутствует. При этом их состав сохраняется только в случае медьсодержащей системы (КСиFe(PO₄)₂). Для магний- и никельсодержащих расплавов ниже 1073 К получены призматические кристаллы с элементным соотношением K:M^{II}:Fe:P = 4:1:3:5, что соответствует составу K₄M^{II}Fe₃(PO₄)₅ (M^{II} — Mg, Ni). В ИК-спектрах этих соединений (рисунок) в области 1100-900 см⁻¹ присутствуют поглощения, соответствующие v_{as} и v_s колебаниям связей Р–О, а также деформационным колебаниям Р-О ниже 600 см⁻¹, что однозначно свидетельствует о наличии в составе фосфатов только изолированных РО₄групп. Для расплавов в разрезе К/Р = 1.3 характерно стеклование расплавов при охлажде-

Таблица 1

Продукты взаимодействия, полученные в растворах-расплавах систем K_2O — P_2O_5 — Fe_2O_3 — $M^{II}O$ — $K_2Mo_2O_7$ (M^{II} — Mg, Co, Ni, Cu, Zn)

M ^{II}	Соотношение К/Р							
	0.75	0.9	1.3					
Mg	$\mathrm{KMg}_{x}\mathrm{Fe}^{\mathrm{II}}_{1-x}\mathrm{Fe}^{\mathrm{III}}(\mathrm{PO}_{4})_{2}$	K4MgFe ₃ (PO ₄) ₅	Стекло					
Co	$K_4 CoFe_3 (PO_4)_5 + KFeP_2O_7$	Стекло	"					
Ni	$KNi_xFe^{II}_{1-x}Fe^{III}(PO_4)_2$	$K_4 NiFe_3 (PO_4)_5$	KNiPO ₄					
Cu	$KCuFe(PO_4)_2 + KFeP_2O_7$	$KCuFe(PO_4)_2$	Стекло					
Zn	$KZnPO_4 + KFeP_2O_7$	Стекло	,,					

ИК-спектры K₄M^{II}Fe₃(PO₄)₅ (M^{II} — Mg (1), Ni (2)).

нии, за исключением никельсодержащих систем, где был получен двойной ортофосфат KNiPO₄ (табл. 1).

Параметры элементарных ячеек синтезированных тройных фосфатов и твердых растворов на их основе приведены в табл. 2. Анализ строения полученных соединений показал, что они принадлежат к трем структурным типам. Фосфаты общего состава $K_4 M^{II} Fe_3 (PO_4)_5 (M^{II} - Mg, Co,$ Ni) являются изоструктурными и принадлежат к тетрагональной сингонии. Ранее был получен и охарактеризован методом РСА только один представитель этого ряда — K₄MgFe₃(PO₄)₅ [11]. В основе их кристаллического остова находится анионная подрешетка $[M^{II}Fe_3(PO_4)_5]^4$, образованная сочленением изолированных (M¹¹/Fe)O₅полиэдров РО₄-группами. При этом атомы железа(III) и двухвалентного металла разделяют одну кристаллографическую позицию и находятся в практически правильном тригональнобипирамидальном кислородном окружении. В

Π	an	ам	ет	nь	ГЭ	лем	иентарной	ячейки	полученных	тройных	оптофосфатов
Т	а	б	Л	И	Ц	а	2				

A aalaa		а	b	С	0	
Φοεφατ	Сингония (пр.гр.)	Å			р, град	
$KMg_{0.09}Fe_{0.01}^{II}Fe_{0.01}^{III}(PO_{4})^{*}$	Моноклинная (P2 ₁ /n)	7.8444(3)	10.0033(3)	9.0371(4)	114.838(5)	
$KNi_{0.93}Fe^{II}_{0.07}Fe^{III}(PO_4)_2 *$,,	5.102(1)	14.463(3)	9.226(2)	104.74(3)	
$K_4MgFe_3(PO_4)_5$	Тетрагональная (<i>P</i> 42 ₁ <i>c</i>)	9.7138(3)		9.4875(5)		
K ₄ CoFe ₃ (PO ₄) ₅	"	9.7096(2)		9.4387(1)		
$K_4 NiFe_3 (PO_4)_5$	"	9.7143(1)	—	9.4539(4)		

* По результатам рентгеноструктурного анализа монокристалла.

данном случае этот фактор следует считать определяющим в отношении возможности получения соответствующих соединений-аналогов.

Для фосфатов общего состава $KM^{II}_{x}Fe^{II}_{1-x}$ -F $e^{III}(PO_4)_2$ и твердых растворов на их основе выявлен полиморфизм. Представленные нами ранее результаты РСА для кристалла КМg_{0.09}-Fe^{II}_{0.91}Fe^{III}(PO₄)₂ [12] показали изоструктурность полученного твердого раствора известным фосфатам KCuFe(PO₄)₂ [13] и KFe^{II}Fe^{III}(PO₄)₂ [14]. При этом установлено, что формирование твердого раствора сопровождается окислительно-восстановительным процессом, так как в его состав одновременно входит железо(II) и железо (III). Атомы железа(II) и (III) статистически заселяют две кристаллографические позиции и соответственно имеют пяти- и шестикоординационное кислородное окружение, а магний частично замещает железо только в полиэдрах (Mg/Fe)O₆ [12]. Процессы частичного восстановления поливалентных металлов при формировании сложнозамещенных фосфатов из растворов в расплавах наблюдались и ранее, например, восстановление титана(IV) до титана(III) при кристаллизации изоструктурных лангбейниту твердых растворов [7]. В то же время в подобных систе-мах переход $Fe^{III} \rightarrow Fe^{II}$ с фиксацией железа(II) кристаллической решеткой ранее не наблюдался.

Хотя по результатам PCA твердый раствор $KNi_{0.93}Fe^{II}_{0.07}Fe^{II}(PO_4)_2$ также формируется в моноклинной сингонии (пр.гр. $P2_1/n$, табл. 2), данный фосфат имеет оригинальный тип кристаллической упаковки. Подробные результаты проведенного структурного исследования в этой рабо-

те не рассматриваются. Следует отметить, что анионная подрешетка $KNi_{0.93}Fe^{II}_{0.07}Fe^{III}(PO_4)_2$ также одновременно содержит кислородные полиэдры MO_6 и MO_5 , а формирование каркаса происходит с частичным восстановлением $Fe^{III} \rightarrow Fe^{II}$.

Таким образом, установленные закономерности образования кристаллических фаз для растворов в расплавах систем K_2O — P_2O_5 — Fe_2O_3 — $M^{II}O$ — $K_2Mo_2O_7$ (M^{II} — Mg, Co, Ni, Cu, Zn) выявили возможности синтеза новых разнометаллических фосфатов $KM^{II}_xFe^{II}_{1-x}Fe^{III}(PO_4)_2$ и $K_4M^{II}Fe_3(PO_4)_5$ (M^{II} — Mg, Co, Ni), в том числе соединений с оригинальным типом кристаллической упаковки. При этом впервые были зафиксированы процессы частичного восстановления Fe^{III} → Fe^{II} при формировании соединений в расплавах фосфатных систем.

РЕЗЮМЕ. Встановлено закономірності фазоформування в розчин-розплавах систем K_2O — P_2O_5 — Fe_2O_3 — $M^{II}O$ — $K_2Mo_2O_7$ (M^{II} — Mg, Co, Ni, Cu, Zn) (K/P = 0.75, 0.9, 1.3 і $M^{II}/P = 0.3, M^{II}/Fe = 1.0$). Синтезовано ряд нових фосфатів $K_4M^{II}Fe_3(PO_4)_5$ та KM^{II}_x - $Fe^{II}_{1-x}Fe^{II}(PO_4)_2$ (M^{II} — Mg, Co, Ni). Показано, що формування фосфатів $KM^{II}_xFe^{II}_{1-x}Fe^{II}(PO_4)_2$ супроводжується частковим відновленням Fe^{III}_{II} до Fe^{II}_{II} .

SUMMARY. The peculiarities of crystallization of complex phosphates systems $K_2O - P_2O_5 - Fe_2O_3 - M^{II}O - K_2Mo_2O_7$ ($M^{II} - Mg$, Co, Ni, Cu, Zn) (K/P = 0.75, 0.9, 1.3 and $M^{II}/P = 0.3$, $M^{II}/Fe = 1.0$) have been studies. The synthetic conditions of novel solids $K_4M^{II}Fe_3(PO_4)_5$ and $KM^{II}_xFe^{II}_{1-x}Fe^{III}(PO_4)_2$ ($M^{II} - Mg$, Co, Ni) have been discovered. For the latter solid solutions the phenomena of partial reduction Fe^{III} to Fe^{II} has been shown.

ЛИТЕРАТУРА

- 1. Каназава Т. Неорганические фосфатные материалы. -Киев: Наук. думка, 1998.
- 2. Noetzel J., Kielbassa A.M. Schweiz Monatsschr Zahnmed. -2005. -115. -P. 1148--1156.
- 3. Сорокина Н.И., Воронкова В.И. Кристаллография. -2007. -52, № 1. -С. 82—95.
- Horchani K., Gacon J.C., Ferid M. et al. // Opt. Mat. -2003. -24. -P. 169—174.
- 5. Anantharamulu N., Koteswara Rao K., Rambabu G. et al. // J. Mater. Sci. -2011. -46. -P. 2821-2837.
- Hautier G., Jain A., Ping Ong S. et al. // Chem. Mater. -2011. -23. -P. 3495—3508.
- 7. Затовський І.В. Дис. ... докт. хім. наук. -Київ, 2011.
- 8. Яцкін М.М., Струтинська Н.Ю., Затовський І.В.,

Киевский национальный университет им. Тараса Шевченко НТК "Институт монокристаллов" НАН Украины, Харьков Слободяник М.С. // Доп. НАН України. -2012. -№ 4. -С. 145—148.

- 9. Струтинская Н.Ю., Затовский И.В., Яцкин М.М. и др. // Неорган. материалы. -2012. -48, № 4. -С. 472—477.
- Яцкін М.М., Струтинська Н.Ю., Затовський І.В. та ін. Біоресурси і природокористування. -2012.
 -4, № 3-4. -С. 33—38.
- Hidouria M., Sendi N., Wattiaux A., Amara M.B. // J. Phys. Chem. Solids. -2008. -69. -P. 2555—2558.
- 12. Yatskin M.M., Zatovsky I.V., Baumer V.N. et al. // Acta Crystallogr., Sect. E. -2012. -E68. -P. i51.
- Badri A., Hidouri M., Lypez M.L. et al. // J. Solid State Chem. -2011. -184. -P. 937—944.
- Якубович О.В., Евдокимова О.А., Мельников О.К., Симонов М.А. Кристаллография. -1986. -31, № 5. -С. 906—912.

Поступила 09.12.2012