UDC 511.3
A. Laurinčikas (Vilnius Univ., Lithuania),
D. Šiaučiūnas (Šiauliai Univ., Lithuania)

ON ZEROS OF PERIODIC ZETA FUNCTIONS

ПРО НУЛІ ПЕРІОДИЧНИХ ДЗЕТА-ФУНКЦІЙ

We consider the zeta functions $\zeta(s ; \mathfrak{a})$ given by Dirichlet series with multiplicative periodic coefficients and prove that, for some classes of functions F, the functions $F(\zeta(s ; \mathfrak{a}))$ have infinitely many zeros in the critical strip. For example, this is true for $\sin (\zeta(s ; \mathfrak{a}))$.

Розглянуто дзета-функції $\zeta(s ; \mathfrak{a})$, що задані рядами Діріхле з мультиплікативними періодичними коефіцієнтами, та доведено, що для деяких класів функцій F функції $F(\zeta(s ; \mathfrak{a}))$ мають нескінченну кількість нулів у критичній смузі. Наприклад, це виконується для $\sin (\zeta(s ; \mathfrak{a}))$.

1. Introduction. The zero distribution of zeta functions is of particular interest in analytic number theory, and, in general, in mathematics. The most important problems are related to the Riemann zeta function $\zeta(s), s=\sigma+i t$, which is defined, for $\sigma>1$, by Dirichlet series

$$
\zeta(s)=\sum_{m=1}^{\infty} \frac{1}{m^{s}},
$$

and is analytically continued to the whole complex plane, except for a simple pole at the point $s=1$ with residue 1 . It is well known that $s=-2 m, m \in \mathbb{N}$, are so called trivial zeros of $\zeta(s)$. Moreover, $\zeta(s) \neq 0$, for $\sigma \geq 1$, and for $\sigma \leq 0, t \neq 0$, however, the function $\zeta(s)$ has infinitely many complex (nontrivial) zeros in the critical strip $\{s \in \mathbb{C}: 0<\sigma<1\}$. The famous Riemann hypothesis (RH) says that all nontrivial zeros of $\zeta(s)$ lie on the critical line $\sigma=\frac{1}{2}$, and this is equivalent to the nonvanishing of $\zeta(s)$ in the half-plane $\left\{s \in \mathbb{C}: \sigma>\frac{1}{2}\right\}$. The last known result on zero-free regions for $\zeta(s)$ is of the form: there exists an absolute constant $c>0$ such that $\zeta(s) \neq 0$ in the region

$$
\left\{s \in \mathbb{C}: \sigma \geq 1-\frac{c}{(\log (|t|+2))^{2 / 3}(\log \log (|t|+2))^{1 / 3}}\right\} .
$$

G. H. Hardy proved [1] that infinitely many nontrivial zeros lie on the critical line. This result was improved by A. Selberg, N. Levinson, B. Conrey. The last result in this direction says [2] that at least 41 percent of all nontrivial zeros of $\zeta(s)$ in the sense of of density are on the critical line. Numerical calculations also support RH: the first 10^{13} nontrivial zeros of $\zeta(s)$ lie on the critical line $\sigma=\frac{1}{2}[3]$.

A natural generalization of the function $\zeta(s)$ is the periodic zeta function. Let $\mathfrak{a}=\left\{a_{m}: m \in \mathbb{N}\right\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. The periodic zeta function $\zeta(s ; \mathfrak{a})$ is defined, for $\sigma>1$, by the series

$$
\zeta(s ; \mathfrak{a})=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}} .
$$

Moreover, the function $\zeta(s ; \mathfrak{a})$ is analytically continuable to the whole complex plane. Really, let $\zeta(s, \alpha)$ denote the Hurwitz zeta function with parameter $\alpha, 0<\alpha \leq 1$, given, for $\sigma>1$, by the series

$$
\zeta(s, \alpha)=\sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^{s}}
$$

and by analytic continuation elsewhere, except for a simple pole at $s=1$ with residue 1 . Then the periodicity of the sequence \mathfrak{a} implies, for $\sigma>1$, the equality

$$
\zeta(s ; \mathfrak{a})=\frac{1}{k^{s}} \sum_{l=1}^{k} a_{l} \zeta\left(s, \frac{l}{k}\right)
$$

Therefore, in virtue of the above remarks, the later equality gives analytic continuation for $\zeta(s ; \mathfrak{a})$ to the whole complex plane. If

$$
a \stackrel{\mathrm{df}}{=} \frac{1}{k} \sum_{l=1}^{k} a_{l} \neq 0
$$

then the function $\zeta(s ; \mathfrak{a})$ has a simple pole at $s=1$ with residue a, otherwise, the function $\zeta(s ; \mathfrak{a})$ is an entire function.

Obviously, if $a_{1}=1$ and $k=1$, then $\zeta(s ; \mathfrak{a})=\zeta(s)$.
We use the notation

$$
a_{m}^{ \pm}=\frac{1}{k} \sum_{l=1}^{k} a_{l} \exp \left\{ \pm 2 \pi i l \frac{m}{k}\right\}
$$

and $\mathfrak{a}^{ \pm}=\left\{a_{m}^{ \pm}: m \in \mathbb{N}\right\}$. Then the sequences of complex numbers $\mathfrak{a}^{ \pm}$are also periodic with period k. In [4], it was proved that the function $\zeta(s ; \mathfrak{a})$ satisfies the functional equation

$$
\zeta(1-s ; \mathfrak{a})=\left(\frac{k}{2 \pi}\right)^{s} \Gamma(s)\left(\exp \left\{\frac{\pi i s}{2}\right\} \zeta\left(s ; \mathfrak{a}^{-}\right)+\exp \left\{-\frac{\pi i s}{2}\right\} \zeta\left(s ; \mathfrak{a}^{+}\right)\right)
$$

where $\Gamma(s)$, as usual, stands for the Euler gamma function.
In [5], J. Steuding began to study the zero distribution of the function $\zeta(s ; \mathfrak{a})$. Denote the zeros of $\zeta(s ; \mathfrak{a})$ by $\rho=\beta+i \gamma$. Moreover, let $c_{\mathfrak{a}}=\max \left(\left|a_{m}\right|: 1 \leq m \leq k\right), m_{\mathfrak{a}}=\min \left\{1 \leq m \leq k: a_{m} \neq\right.$ $\neq 0\}$, and

$$
A(\mathfrak{a})=\frac{m_{\mathfrak{a}} c_{\mathfrak{a}}}{\left|a_{m_{\mathfrak{a}}}\right|}
$$

Then it was established in [5] that $\zeta(s ; \mathfrak{a}) \neq 0$ for $\sigma>1+A(\mathfrak{a})$.
Now let

$$
\hat{a}_{m}^{ \pm}=\frac{1}{\sqrt{k}} \sum_{l=1}^{k} a_{l} \exp \left\{ \pm 2 \pi i l \frac{m}{k}\right\}
$$

$\hat{\mathfrak{a}}^{ \pm}=\left\{\hat{a}_{m}^{ \pm}: m \in \mathbb{N}\right\}$ and $B(\mathfrak{a})=\max \left\{A\left(\hat{\mathfrak{a}}^{ \pm}\right)\right\}$. Then it was obtained in [5] that the function $\zeta(s ; \mathfrak{a})$, for $\sigma<-B(\mathfrak{a})$, can have only zeros close to the negative real axis if $m_{\hat{\mathfrak{a}}^{+}}=m_{\hat{\mathfrak{a}}^{-}}$, and close to the line

$$
\sigma=1+\frac{\pi t}{\log \frac{m_{\hat{\mathfrak{a}}^{-}}}{m_{\hat{\mathfrak{a}}}+}}
$$

if $m_{\hat{\mathfrak{a}}^{+}} \neq m_{\hat{\mathfrak{a}}^{-}}$. The zeros ρ of $\zeta(s ; \mathfrak{a})$ with $\beta<-B(\mathfrak{a})$ are called trivial, and other zeros of $\zeta(s ; \mathfrak{a})$ are nontrivial. So, nontrivial zeros lie in the strip $-B(\mathfrak{a}) \leq \sigma \leq 1+A(\mathfrak{a})$.

In [5], an asymptotic formula for the number of nontrivial zeros ρ of $\zeta(s ; \mathfrak{a})$ with $|\gamma| \leq T$ also was obtained, and proved that the nontrivial zeros of $\zeta(s ; \mathfrak{a})$ are clustered around the critical line.

Suppose that $k>2, a_{m}$ is not a multiple of a Dirichlet character $\bmod k$, and $a_{m}=0$ for $(m, k)>1$. Then it was observed in [6, p. 223] that $\zeta(s ; \mathfrak{a})$ has infinitely many zeros in the strip $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$. Note that, in this case, the sequence \mathfrak{a} is non multiplicative (we recall that \mathfrak{a} is multiplicative if $a_{1}=1$ and $a_{m n}=a_{m} a_{n}$ for all $m, n \in \mathbb{N},(m, n)=1$), and the function $\zeta(s ; \mathfrak{a})$ has no the Euler product over primes.

Our aim is to consider the case of a multiplicative sequence \mathfrak{a}, and to prove that the function $F(\zeta(s ; \mathfrak{a}))$ with certain F has infinitely many zeros in the strip D. In other words, we will construct composite functions of zeta functions with Euler product for which RH is not true. This is motivated by a better understanding of the RH problem.

Let G be a region on the complex plane. Denote by $H(G)$ the space of analytic functions on G equipped with the topology of uniform convergence on compacta. Define some classes of functions $F: H(G) \rightarrow H(G)$ for certain regions G. Let $V>0$ be an arbitrary fixed number, $D_{V}=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1,|t|<V\right\}$, and $S_{V}=\left\{g \in H\left(D_{V}\right): g(s) \neq 0\right.$ or $\left.g(s) \equiv 0\right\}$. Denote by U_{V} the class of continuous functions $F: H\left(D_{V}\right) \rightarrow H\left(D_{V}\right)$ such that, for each polynomial $p=p(s)$, the set $\left(F^{-1}\{p\}\right) \cap S_{V}$ is nonempty.

It is easily seen that the function

$$
F(g)=\sum_{k=1}^{r} c_{k} g^{(k)}, \quad g \in H\left(D_{V}\right), \quad c_{1}, \ldots, c_{r} \in \mathbb{C} \backslash\{0\}
$$

where $g^{(k)}$ stands for the k th derivative of g, is an element of the class U_{V}. Really, for arbitrary polynomial $p(s)$ of degree k, there exists a polynomial $\hat{p}(s)$ of degree $k+1, \hat{p}(s) \neq 0$ for $s \in D_{V}$, such that $F(\hat{p})=p$.

Let $S=\{g \in H(D): g(s) \neq 0$ or $g(s) \equiv 0\}$. Now we introduce a class of functions F for which the image $F(S)$ is a certain subset of $H(D)$. For $a_{1}, \ldots, a_{r} \in \mathbb{C}$, denote by $U_{a_{1}, \ldots, a_{r}}$ the class of continuous functions $F: H(D) \rightarrow H(D)$ such that $F(S) \supset H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$, where

$$
H_{a_{1}, \ldots, a_{r} ; F(0)}(D)=\left\{g \in H(D): g(s) \neq a_{j}, j=1, \ldots, r\right\} \cup\{F(0)\}
$$

For example, the functions $F(g)=\sin g, F(g)=\cos g, F(g)=\sinh g$ and $F(g)=\cosh g$ belong to the class $U_{-1,1}$. To see this, it suffices to solve the equation $F(g)=f$ in $g \in S$. In the case of $F(g)=\cos g$, we have that

$$
\frac{\mathrm{e}^{i g}+\mathrm{e}^{-i g}}{2}=f
$$

Hence, we find that

$$
g_{ \pm}=\frac{1}{i} \log \left(f \pm \sqrt{f^{2}-1}\right) .
$$

Thus, if $f \in H_{-1,1 ; 1}(D)$, then we can choose, say, the solution g_{+}which belongs to S. Therefore, $F \in U_{-1,1}$.

Our last class is very simple. We say that a continuous function $F: H(D) \rightarrow H(D)$ belongs to the class U, if $s-a \in F(S)$ for all $a \in\left(\frac{1}{2}, 1\right)$.

It is easily seen that the function $F(g)=g g^{\prime}, g \in H(D)$, belongs to the class U. Really, solving the equation $g g^{\prime}=s-a$, we find that $g= \pm \sqrt{s^{2}-2 a s+C}$ with arbitrary constant C. We can choose C such that $s^{2}-2 a s+C \neq 0$ for $s \in D$. Thus, there exists $g \in S$ satisfying $F(g)=s-a$.

Now we are ready to state the theorems on zeros of the function $F(\zeta(s ; \mathfrak{a}))$. In the notation used in Introduction, we suppose that $c_{\mathfrak{a}}<\sqrt{2}-1$. Note that this inequality implies, for all primes p, the inequality

$$
\begin{equation*}
\sum_{\alpha=1}^{\infty} \frac{\left|a_{p^{\alpha} \alpha}\right|}{p^{\alpha / 2}} \leq c<1 . \tag{1}
\end{equation*}
$$

Theorem 1. Suppose that the sequence \mathfrak{a} is multiplicative such that the inequality $\boldsymbol{c}_{\mathfrak{a}}<\sqrt{2}-1$ is satisfied, and that F belongs to at least one of the classes U_{V} and U with sufficiently large V. Then, for every $\sigma_{1}, \sigma_{2}, \frac{1}{2}<\sigma_{1}<\sigma_{2}<1$, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, \mathfrak{a}, F\right)>0$ such that, for sufficiently large T (in the case of the class U_{V}, we suppose that $T<V$), the function $F(\zeta(s ; \mathfrak{a})$) has more than $c T$ zeros in the rectangle $\left\{s \in \mathbb{C}: \sigma_{1}<\sigma<\sigma_{2}, 0<t<T\right\}$.

Theorem 2. Suppose that the sequence \mathfrak{a} is the same as in Theorem 1 , and $F \in U_{a_{1}, \ldots, a_{r}}$, where $\operatorname{Re} a_{j} \notin\left(-\frac{1}{2}, \frac{1}{2}\right), j=1, \ldots, r$. Then the same assertion as in Theorem 1 is true.

For the proof of Theorems 1 and 2, we apply the universality property of the function $\zeta(s ; \mathfrak{a})$.
2. Universality. The universality property of zeta functions was discovered by S. M. Voronin in 1975. In [8], he proved that the Riemann zeta function $\zeta(s)$ is universal in the sense that its shifts $\zeta(s+i \tau), \tau \in \mathbb{R}$, approximate a wide class of analytic functions. The last version of the Voronin theorem is contained in the following theorem, see, for example, [9, p. 225]. Denote by meas $\{A\}$ the Lebesgue measure of a measurable set $A \subset \mathbb{R}$.

Theorem 3. Let $K \subset D$ be a compact set with connected complement, and let $f(s)$ be a continuous nonvanishing function on K which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\varepsilon\right\}>0
$$

The first result on the universality of the function $\zeta(s ; \mathfrak{a})$ was obtained in [10, p. 145], see also [11]. We state a more general case given in [6, p. 219].

Theorem 4. Suppose that $k>2, a_{m}$ is not a multiple of a Dirichlet character $\bmod k$, and $a_{m}=0$ for $(m, k)>1$. Let $K \subset D$ be a compact set with connected complement, and let $f(s)$ be a continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau ; \mathfrak{a})-f(s)|<\varepsilon\right\}>0
$$

Note that the sequence \mathfrak{a} in Theorem 4 is not multiplicative. The general case was discussed in [12] and [13]. We recall an universality theorem for $\zeta(s ; \mathfrak{a})$ with multiplicative sequence \mathfrak{a} [14].

Theorem 5. Suppose that the sequence \mathfrak{a} is multiplicative and inequality (1) holds. Let K and $f(s)$ be the same as in Theorem 3. Then the same assertion as in Theorem 4 is true.

Since $f(s)$ is nonvanishing on K, Theorem 5 does not give any information on zeros of the function $\zeta(s ; \mathfrak{a})$.

In [7], the first author began to study the universality of $F(\zeta(s ; \mathfrak{a}))$ for some classes of functions F, and in theorems obtained the shifts $F(\zeta(s+i \tau ; \mathfrak{a}))$ approximate not necessarily nonvanishing analytic functions. Therefore, the theorems of such a kind provide an information on the zerodistribution of the function $F(\zeta(s ; \mathfrak{a})$). For the proof of Theorems 1 and 2, we use the following universality statements.

Lemma 1. Suppose that the sequence \mathfrak{a} is multiplicative and inequality (1) holds, $K \subset D$ is a compact set with connected complement, and $f(s)$ is a continuous function on K and is analytic in the interior of K. Let $V>0$ be such that $K \subset D_{V}$, and $F \in U_{V}$. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{s \in K}|F(\zeta(s+i \tau ; \mathfrak{a}))-f(s)|<\varepsilon\right\}>0
$$

Proof of the lemma is given in [7].
Now we state an universality theorem for the functions from the class $U_{a_{1}, \ldots, a_{r}}$.
Lemma 2. Suppose that \mathfrak{a} is the same as in Lemma 1, and $F \in U_{a_{1}, \ldots, a_{r}}$. For $r=1$, let $K \subset D$ be a compact set with connected complement, and $f(s)$ be a continuous and $\neq a_{1}$ function on K and analytic in the interior of K. For $r \geq 2$, let $K \subset D$ be an arbitrary compact set, and $f \in H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$. Then the same assertion as in Lemma 1 is true.

Note that in [7], the universality of $F(\zeta(s ; \mathfrak{a}))$ with F satisfying a stronger condition $F(S)=$ $=H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$ has been considered.

Lemma 3. Suppose that \mathfrak{a} is the same as in Lemma $1, K \subset D$ is a compact subset, and $f \in F(S)$. Then the same assertion as in Lemma 1 is true.

Lemmas 2 and 3 are deduced from a limit theorem on the weak convergence of probability measures in the space $H(D)$ [14] as well as from the Mergelyan theorem on the approximation of analytic functions by polynomials [15], see also [16, p. 436].
3. Remarks on Theorems 1 and 2. Theorems 1 and 2 are consequences of the classical Rouché theorem, see, for example, [17, p. 246] and Lemmas 1, 3, and 2, respectively.

1. Hardy G. H. Sur les zéros de la function $\zeta(s)$ de Riemann // C. R. Acad. Sci. Paris. - 1914. - 158. - P. 1012 - 1014.
2. Bui H. M., Conrey B., Young M. P. More than 41% of the zeros of the zeta function are on the critical line // Acta Arith. - 2011. - 150. - P. 35-64.
3. Gourdon X. The 10^{13} first zeros of the Riemann zeta function and zeros computation at very large height / $\mathrm{http}: / /$ numbers.computation.free.fr (2004).
4. Schnee W. Die Funktionalgleichung der Zetafunction und der Dirichletschen Reichen mit Periodishen Koeffizienten // Math. Z. - 1930. - 31. - S. 378-390.
5. Steuding J. On Dirichlet series with periodic coefficients // Ramanujan J. - 2002. - 6. - P. 295-306.
6. Steuding J. Value Distribution of L-Functions // Lect. Notes Math. - 2007. - 1877.
7. Laurinčikas A. Universality of composite functions of periodic zeta functions (in Russian) // Mat. Sb. - 2012. - 203, № 11. - P. 105-120 (English transl.: Sb. Math. - 2012. - 203, № 11. - P. 1631-1646).
8. Voronin S. M. Theorem on the "universality"of the Riemann zeta function in Russian // Izv. Akad. Nauk SSSR, Ser. Mat. - 1975. - 39. - P. 475 - 486 (English transl.: Math. USSR Izv. - 1975. - 9. - S. 443-453).
9. Laurinčikas A. Limit theorems for the Riemann zeta function. - Dordrecht etc.: Kluwer Acad. Publ., 1996.
10. Bagchi B. The statistical behaviour and universality properties of the Riemann zeta function and other allied Dirichlet series: Ph. D. Thesis. - Calcuta, 1981.
11. Bagchi B. A joint universality theorem for Dirichlet L-functions // Math. Z. - 1982. - 181. - S. 319-334.
12. Sander J., Steuding J. Joint universality for sums and products of Dirichlet L-functions // Analysis. - 2006. - 26. P. 285-312.
13. Kaczorowski J. Some remarks on the universality of periodic L-functions // New Dirrections in Value Distribution Theory of Zeta and L-Functions / Eds R. Steuding, J. Steuding. - Aachen: Shaker Verlag, 2009. - P. 113-120.
14. Laurinčikas A., Šiaučiūnas D. Remarks on the universality of periodic zeta functions // Mat. Zametki. - 2006. - 80, No. 4. - S. 561 - 568 (English transl.: Math. Notes. - 2006. - 80, № 3-4. - P. 532-538).
15. Mergelyan S. N. Uniform approximations to functions of complex variable // Usp. Mat. Nauk. - 1954. - 7. - S. $31-122$ (English transl.: Amer. Math. Soc. Trans. - 1954. - 101. - P. 99).
16. Walsh J. L. Interpolation and approximation by rational functions in the complex domain (in Russian). - Moscow: Izd. Inost. Lit., 1961.
17. Privalov I. I. Introduction to the theory of functions of complex variable (in Russian). - Moscow: Nauka, 1967.

Received 13.04.12, after revision - 31.10.12

