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A PARABOLIC EQUATION FOR THE FRACTIONAL LAPLACIAN
IN THE WHOLE SPACE: BLOW-UP OF NONNEGATIVE SOLUTIONS

ITAPABOJIIYHE PIBHAHHSA J1JI1 APOBOBOI'O JIAIIJIACIAHA
B YCBOMY ITPOCTOPI: BUBYX HEBI/'EMHUX PO3B’A3KIB

The main aim of the present paper is to investigate under what conditions the nonnegative solutions blow-up for the

£ uin RY x (0,T), where 0 < a < min(2,d), (—A)? is the fractional

||

parabolic problem % = —(=A)Tu+

Laplacian on R? and the initial condition o is in L?(R?).

. . . . . Ou a C
BuBueHO yMOBH, 3a IKHX ,,BMOYXarOTh’ HEBiL €MHI pOo3B’a3KH mapabomiuHol 3agadi — = —(—A)2u+ ——u B R x
’ ot ||
T

x (0,T), ne 0 < a < min(2,d), (—A)% — npoGoswmii marutacian Ha RY, a nouarkoa ymosa uo mamexuts L2(R?).

1. Introduction. This study aims at verifying that a similar critical behavior of the Cauchy problem
holds when the classical Laplacian is replaced by the fractional Laplacian —(—A)2 with 0 < o <
< min(2,d). In this context we discuss the question of blow-up results of nonnegative solutions for
negatively perturbed Dirichlet fractional Laplacian on R€.

For every 0 < a < min(2,d), we put Ly := (—A)2. Let us consider the parabolic perturbed
problem

_@:Lou—vu in Rx (0,T), T >0,
ot (1.1)

u(z,0) = up(x) forae xeRY
where ug € L2(R%), up > 0 and V is nonnegative potential in L{ (R?). We focus on the special

gaT? <d+a>
4
casch:L c>cf=—~ — 7

||’ 2 d—«
4

This work addresses several important problems of the potential theory of fractional Laplacian.

One of the results is the blow-up of nonnegative solution for a parabolic problem perturbed by
potential. Our main findings were motivated by the result of J. A. Goldstein and Q. S. Zhang [16]
for the Laplacian perturbed by a singular potential.

By using the idea in [4, 10, 16] where the problem was addressed and solved for the Dirichlet
Laplacian (i.e., a = 2), A. Ben Amor and T. Kenzizi [1] established conditions ensuring existence
as well was blow-up of nonnegative solutions for a nonlocal case. The inspiring point for us was
originally developed by P. Baras, J. A. Goldstein [4, 5] and J. A. Golstein, Q. S. Zhang [16] where
the problem was addressed and solved for the Lapacian operator (i.e., « = 2). The authors in [16]
generalized the result of existence and nonexistence of nonnegative solutions in [4] to equations
with variable coefficients in the principal part or to degenerate equations, one of the most important
degenerate equations is the heat equation on the Heisenberg group. However, there is a substantial
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difference between the Laplacian and the fractional Laplacian. While the first one is local and
therefore suitable for describing diffusions, the second one is nonlocal and commonly used for
describing superdiffusions (Lévy flights). These differences are reflected in the Green formula,
integration by part, Leibniz formula, ... . The fractional operator appears in numerous fields of
mathematical physics, mathematical biology and mathematical finance and has attracted a lot of
attention recently. We shall show that the method used in [4, 16] still apply in our setting.

2. Preliminaries and preparing results. To state our main results, it is convenient to introduce
the following notations and definitions. In what follows, R¢ denotes the Euclidean space of dimen-
sion d > 1, dy is the Lebesgue measure on R?. We shall write / ... as a shorthand form

R4
Throughout this paper, letters k, C, ¢, C’, ... denote generic positive constants which may vary

in value from line to line. |A(x,r)| will denote the volume of the ball A centred at x and of radius
r, (a A'b) := min(a,b) and (a V b) := max(a, b).
Consider the quadratic form £ defined in L? by

£(7.0) = a0y [ [ UL st 5,

’(IJ _ y’d-i-oz

D(EY) = WE2ARY) = {f € L?: E[f]: E(f, f) < oo},

w5

21-omir (1- 7))
2
It is crucial to remind the reader that £¢ is a transient Dirichlet form (see [15]) and is related ( via
Kato representation theorem) to the self-adjoint operator commonly named the fractional Laplacian
on R%, and which we shall denote by (—A)%. We note that the domain of (—A\)? is the fractional
Sobolev space W 22(R%). For smooth compactly supported function ¢ € C°(R%), as in [18] the
fractional Laplacian is defined as the L?(R¢)-closure of the operator

where

for 0 < o <min(2,d).

(—A)2¢(x) = lim [ [¢p(z+y) — d(a)v(y)dy, =z €R,

e—0
ly[>e

where v is the Lévy measure given by the following density function:

v(y) = ZC:lF(di;:)!y
(7))

This definition is very useful to probability applications. Its Fourier transform (see [23]) is given by

|—d—a‘

—

(—=2)F6(€) = —[€"6(9).
Moreover, if ¢ is regular enough and o € (0,2), (—A)2 ¢(x) can be computed by the formula
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1504 T. KENZIZI1

/¢ ‘dw v, 2.1)

M\Q

(=A)

(-
2

where ¢4, is a constant depending only on d and «. The inverse of (—A)2 is (=A)~2. For
0 < o < min(2, d), there is an integral formula which says that (—A)~2u is the convolution of the
function u with the Riesz potential (see [23]):

(—a)% /‘ﬁ‘da v,

which holds a long as ¢ is integrable for the right-hand side to make sense. For instance, if r > 0
and ¢,(x) = ¢(rz), then we obtain

(—L)2¢p(z) = r*(—L) 2 ¢(rz), v € R™
We let p; the fractional heat kernel which is the fundamental solution to the equation

Opt(x)

s (—A)2py =0,

po(x) = do(),
with Fourier transform
pe(&) = /pt(x)eimgdx = e HEI", t>0, zeR% 2.2)
This yields
pi(x) = (27r)_d/e_t|§ae_m£d§, z € RY.
Consequently, we get the scaling property
pe(x) = t_gpl(t_éx), t>0, zeR? (2.3)

and it is well-known (see [25]) that p;(z) =~ 1 A || 9=, Hence, the following inequality holds for
some constant C":

t d t
-1 —-= d
C ( a/\|’d+a>§pt(:€)§c< a/\x|d+a>7 t>07 r € R®.

()
()

semigroup Pio(x) = / pt(x,y)o(y)dy has the fractional Laplacian as generator (see [2, 7, 24]).

. . . d d .
In particular, the maximum of p; is p;(0) = 2l-ar=3 ¢ t~ o. Furthermore, notice that the

Using (2.2), one proves that p satisfies the following equation:

// —5,2,2) u¢(u, z) + A§¢(U, z)}dzdu = —¢(s,1),

where p(t,z,y) = pi(y —z), s €R, x € R? and ¢ € C°(R x RY).
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Let D C R? be an open set. We denote by pp the heat kernel of the Dirichlet fractional Laplacian
on D such that pp is jointly continuous when ¢ ## 0, and we know from [9] (Theorem 1.1) that

0 <pp(t,z,y) =pp(t,y,x) < plt,z,y), t>0, v, y € RL

In particular,

/pD(taJ:ay) <1

In addition, we define the Green function for (—A)2 on D by

o0

Gp(z,y) = /pD(t,w,y)dt,
0

and based on the scaling property of pp, the following scaling of Gp is given by
Grp(rz,ry) = r* 9Gp(x,y), r>0,z, yeR.

Now, as in [1, 17], let us recall the notion of solution for the heat equation (1.1).

Definition 2.1. Let 0 < T < oo. A Borel measurable function w: [0,T) x RY — R is a
solution of problem (1.1) if:

1) ue Llloc((O,T) x R dt ® Vda:),

2) u € ‘61200([0’ T]’ L?oc(Rd))’

3) forevery 0 <t <T,every Q CR?and every ¢ € C°([0,T] x Q), the following identity
holds true:

/((u¢)(t, x) — uo(w)ng(O,m))dx + //u(s,:c)(—%(s,a:) + Logzﬁ(s,a:)) =
0 Q

Q
:/t/u(s,:z:)qb(s,x)V@)dxds.
0 Q

Moreover, for bounded domain € and for fixed o € (0, min(2,d)], the spectrum of the (—A)2|q
is discrete and consists of a sequence {\,(a)}2, of eigenvalues (with finite multiplicity) written in
increasing order according to their multiplicity (see, for example, [6])

0 < A(a) <X(a) <...<Xla)...  +oo.

In this context, Weyl’s asymptotic formula for the fractional laplacian with Dirichlet boundary con-
dition (see [8]) is taken as

a2
(@) ~ M as k — +oo,
(wal€2[) @
d
where wy = i d is the volume of the unit ball in R%.
r(l + 5)
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1506 T. KENZIZI1

3. Blow-up of nonnegative solutions. Inspired from the idea of J. A. Goldstein and Q. S. Zhang
[16], we shall study the lower bound of the heat kernel p of the operator Ly — V. The idea of
estimating p;(x, y) is similar to that in [16]. For any positive integer k£ > [a] + 1, where [a] is the
integer function, we introduce the regularized function

%, it |z| > l,
Vi(a) = { 17 ]f
ck®, if |z| < T

AL = inf

(3.1)
$eCee (R)\{0} / Sdx

Lemma 3.1. The operator Hy = Lo — V}, is not nonnegative.

Proof. We consider two cases:

Case o = 2. The authors in [16] prove that the operator H = —/\ — V is nonnegative and if
« > 2, H is not nonnegative.

Case 0 < o < 2. By using the following Hardy-type inequality:

—a p2 (f(l:) B f(y))z 0o (M d
/‘1’| f(z)dx < Cd,a//|x_y|d+ad$d?/ Vf e CZX(RY),
we deduce that the operator H = Ly — V' is not nonnegative, i.e., there exists f € C(‘)X’(Rd) such that

) — 2
//(f‘(x)_y@iy(j) drdy < /V(x)f2(x)d$

Since Vj, is nondecreasing and V, — V a.e. as K — 400, we have

) — 2
//dedy < /Vk(:r)fQ(x)dw, (3.2)

when £ is sufficiently large.
On the other hand, by using (2.1), we get, for any f, g € C5°(R?),

(Lof,g) = cda// |m 2 (ﬁl(i) —9) gy, (3.3)

Now, let us consider u € C§°(RY), g(x) = gs(z) and f(x) = \u(:c)PgB_l(x), where gg(x) =

r (g) 2%
equality the left-hand side of (3.3) is equals to

/!5\‘27 £)d¢ = /f (€)|€]2Pde = /\ gga;f)dx.
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By simple computation, the right-hand side of (3.3) becomes

o | [ (|u<x> —ufy)? -

Let consider v(z) =

2

1
95(@95(9)) dedy.

v 2
(Lou,) = {Lof,9) = o | | ’M%(:c)gﬂ(y)dxdy:muy

Hence,
2 2
(Lou,u) —c Wdﬂﬂ = Hylu] — (¢ —c) ‘u‘(iz‘d:n.
x x
Taking u = gg, we have

2
(Logs,gs) — ¢ [ 2 |a o= [ ‘gf(,a)‘ o

2
S LGl S

]

which implies that Ly — V; is not nonnegative and, consequently, Lo — V. is not nonnegative for
every k > 1.

Lemma 3.1 is proved.

As a consequence of Lemma 3.1, we deduce that the operator Ly — Vi has a nonnegative
eigenvalue.

On the other hand, by Weyl’s theorem [26] on essential spectrum and the fact that

Vi(x) >0 as |z| — oo,

we have
Oess(H) = 0ess(Lo) = (L) = [0, +00].
Hence, the operator A = (—A\)2 is nonnegative.

Lemma 3.2. The operator X g, (A— Lo)~! is compact, where x g, is the characteristic function
of the ball Br := B(0,R) C R?.

Proof. Since the domain D(Lg) (on the L? space based on a bounded subset of R¢, equipped
with its graph norm) is compactly embedded in L?(Bpg), we deduce the result by using the Kato -
Rellich’s theorem.

Remark 3.1. 1. Let p;; be the heat kernel of the operator H}, = Ly — V), for a positive integer
k. Note that, for all £ € N, we have

6 .
Hyp1(prs1t — Prt) + a(pk—i-l,t —prt) = Prt(Vipr — Vi) in R x (0, 400),
Pk+1,0 — Prko =0 forae. z€ RY.
Then, by using the comparison principle, we deduce that
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1508 T. KENZIZI1

Dk+1t > Pkt, When k  increases.

Based on
ug(x,t) = e Mrug(x) = /pk,t(x,y)uO(y)dy,
it is enough to establish that

li —
k_lgoopk,t(w, y) = o0

for all 2,y € R? and ¢ > 0.
2. Since V}, is bounded, the estimation of py ;(x,y) is deduced from the Kato theorem and the
identity

wn(z,t) = / Pre(@ y)uo(y)dy.

3. Let A\, be the ground state energy of Hj, and let ®; be the corresponding eigenfunction, then
we have

€ L2(RY), ||®pll2 =1, Hy®), = \p®p, and ®p(z) >0 forall 2 e R
4. The operator py,; is continuous and satisfies
Prt = DY
Lemma 3.3. Since Vi(x) = k*Vy(kx), a scaling argument implies
Oy(z) = k2 (kx),  Ap = k%N
Proof. Let @5 be a normalized eigenfunction corresponding to the first eigenvalue Ay, i.e.,
Hyp®p = M@y, [|Ppllr2 = 1.
Note that Vj, = k“Vi(kx), we obtain
Lo®j, — Vi@, = A\ Py (3.4)
On the other hand, we have
Lo®q(kx) — Vi(2)®1 (kx) = A\ Py (kx).

Hence,
k_aLo[(I)l(k.%')} — Vl(x)él(kx) = )\1@1(]{.%).

Let now ®(z) = ®;(kz), then we obtain
Lo®(y) — Vi(y)®(y) = k*\iD(y).

Note that ® is a solution of (3.4), which implies that wi) is a solution of (3.4) for all © € R and
|p®| ;2 = 1. Then

,uQ/\q)l(kx)Fda: =1.
Rd
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Let y = kx, yields
2

o

o O
Rd

Hence,

[SIIoH

w==kK2.
Then . ]
Op(x) = k2®(x) = k2P (k).

Lemma 3.4. The operator py; satisfies the following inequality:
Prt(x) > e M0 (z) = ke ™ M (k). (3.5)

Proof. For R > 0, let pkB 7 be the Dirichlet heat kernel of Hj, on B(0, R). Since the resolvent is
compact, so by using the spectral decomposition [13, 21], we have

[e.@]
B ARt Sk R k,R
Pog(@y) =D e e (@) (y) =
j=1
k,R s E,R
—M\e Ry 2k R kR NPt kR kR
=e R ()Y (y) + Ze ¢ (x)q)j (¥),
j=2
where \*% and ®* 1 are the ground state energy and the ground state, respectively.
Notice that, )\?’R and @?’R are the other eigenvalues and normalized eigenfunctions, conse-

quently,
B _ )k, R
Dy (@) = e (@M ()2,
Since the proof is very similar to the one in [14, p.94] (Theorem 1) we omit it, and, by using the
comparison principle, we have

li Br(z) = .
R Py () = pre()

On the other hand, using the same idea as in the proof of [12, p. 128] (Theorem 6.2.3) and the fact
that

Mol —info(HE)  and M\, = info(Hy),
we have

lim A\oF = Ak-
R—+o00

We also need to show that limp_, o ®¥F(z) = ®,(z) for all z € R% To this end, observe that
”(I)k’RHLz(BR) =1and V, € L.
Let us recall that, ®* satisfy the equation

Hp oM = \kEQEE in B(0, R),
d*F =0 on B0, R).
Notice that, the standard subelliptic theory [22] shows that
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1510 T. KENZIZI
SR () = ABR / GH R (2, ) B () dy =

Nt [ GG )8 R (g)dy i € BT

BR

where G* is the Green function of Hj;, on B®. So by using Holder inequality there exists Cj, > 0
depending only on & such that

125 F| oo () < C. (3.6)
It is easily seen that, if R is sufficiently large, the sequence \*
and limp_, 400 AOF = ).
On the other hand, by (3.1) and (3.2), we have \; < 0.
Now, since A% —» X\, as R —» +o0, so there exists N € N such that, for all R > N,
M5B < 0. Hence, by using the fact that (\*#) is nonincreasing, we get A, < APF < \BN <0,
Let § > 0 such that \®Y = —24, then we have

is nonincreasing for some § > 0

e < MR < 95 < 0.
Thus, by the decay property of Vj, there exists Ry > 0 such that
Vi(z) + AP < 6, when |z| > Ry. (3.7)

Consequently, this shows that, the operator —Lg + Vi + A®% satisfies the maximum principle in
B¢(0, Ry).

Let ug be the weak solution of
—Loug + Viug + Mofug =0 in B0, R),
up(z) =Cr in B(0,R),
uo(x) — 0 as |z| — +oo,
which implies, with (3.7), that
Loug + dug < 0 in the distribution sense.

Let consider
\Ijk’R — (I)k,R — .

Hence,
Hk\I/k’R > —Louo — (5U[) > 0.

Moreover, by using [19] (Corollary 3), there exists c¢5 > 0 such that
uo(w) < a1+ [a]) ",

whence
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M (a) < uolw) < es(1+Jal) 0,

when |z| > Ry and R is sufficiently large. Thus, there exists a constant ¢’ > 0 such that
|@%F || e < €. (3.8)

Furthermore, by (3.6) and (3.8), we can extract a subsequence still denoted by ®* converging
weakly to a nonzero function ®;. On the other hand, taking p; as a mollifier function, we obtain

(@ — ®p)ppllr — 0 as R — 4oo0.

Therefore,
PrR P, ae. as R — +oo.

Thus, we get

dFF 5 &, pointwise as R — +00.

Lemma 3.4 is proved.
Lemma 3.5. There exists 8 > 0, n > 0 such that

Oy () > Be T v eRY (3.9)

Proof. Since V) is a bounded function, by using [11] (Remark 4.4), we show that the Harnack
inequality holds for the first eigenfunction ®; of the operator H; = Lo — Vi, so there exists a
universal constant 7 > 0, which can be made explicitly in [20] such that

sup Oi(y) <H inf ®i(y) VzeRL
veB(z,22/%) yeB(a, 25

Let z and m be the smallest integer such that m > ]z]% + 1, by chain arguments we only need
to give a lower bound of ®4(z).

It’s known that, the segment {72/0 < 7 < 1} can be covered by at most m interconnected balls
1

@

of radius . Then we obtain

D1(0) < CFI* 19, (2),
which implies that

di(z) > @1(0)0*(|Z\%+1) > @1(0)67(|z\%+1)1n0 >

> (I)l(o)e—lnCe—Lz\?lnC > ﬁe—n|z|7.

Lemma 3.5 is proved.
Remark 3.2. Referring back now to the previous study of the inequality (3.5), by using inequa-
lity (3.9) and the fact that A; < 0, we deduce that

O {0 I e o
> 82k exp ( RO — an%|x|%)) oo as k — 400 (3.10)
for all t > 0 and z € R
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1512 T. KENZIZI1

The aim of this section is devoted to show that

lim ppi(x,y) =00 forall t>0 and z,y€ RY.
k—+o0

For the proof, we need several lemmas.
1
Lemma 3.6. Let z,y € R? such that |z|,|y| < aite for some a; > 0. Then there exist positive
constants C,n such that

_d t N[ _a t o\
pe(z,y) = C1 (¢ ‘*/\W t QAW pe(2),

where 1) and C1 are two positive constants. Here z is a point such that |x — z| = (alt)i.

Proof. Without loss of generality, we take a; = 1.

Let v be a minimal geodesic connecting 0 and . We extend ~y to infinity, pick z on « such that
|lx — 2| = to and |z| = |z| + |z — z|. For simplicity, we parameterize v by arc-length such that
v(0) = x and (/%) = 2. Here we remark that the ratio between the distance d and the length
of minimal geodesic is bounded away from zero at infinity. So the above choice is always possible
up to a constant multiple, hence we can take that constant to be 1 for simplicity. For nonnegative

) 1
integer ¢, we write y; = v(2'd|x|) with § € [, 1} to be determined later.
a
Clearly,
- i is 11
Yi, Yi+1 € B(yit1,2'0]z]) C B yit1,2 5|x’TO :
First, observe that

i — Yir1| = ‘7(2i5\$|) - 7(2i+15\$|)| < 205|z|
) 11
and, for 3/ € B(yi+1, 2’6|x|10), we have

Y| > lyit1| = 1Y = yital,
which implies
: 11
" —yip1| < 2%z .

Since y; 11 = y(2°15]x|), we have
lyir1] > 2F16].

Hence,

. 11 9
Y1 > |y = |V = yira| = <2H1 - 2110> O] = 20l 5

Therefore, there exists C' > 0 such that

Bi = sup V(Y| <
Y €B(yiy1,210|z|15)
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C < aC
) ‘y/’a — 2ai6a’x‘a'

< sup
Y €B(Yit1,20]7] 15

Let u be a positive solution of the problem (1.1) for V =V, = © By the Harnack’s inequa-

|

lity [11], for o', v € B(yiy1,2°|z|) and s > s', we have

/ It — s 1
u(az,s)Zu(y,s)<1/\|m/'S_g;|;dJrO[) 1A N\
(6= (5+3))

Taking now 4/ = yi 1, «’ = y;, ' = 2t — 2009522 and s = 2t — 2%95%| 2|, we obtain

. X 1
of _ . _ ga(l+i) -
u(yi, 2t — 240%|2|*) = w(yitr, 2t — 2907V 6%|2|) <1 A 2id5d’x’d> X

1
X LA 1 d+a
i Sa [ .
(2ol (8 + g
Thereby, we derive
w(yi, 2t — 2°76%|2]®) > coulyipr, 2t — 200FD 5% |*). (3.11)
ta 1
Since W > 1, there exists § € [, 1} such that
T «

k=1 to i int
=lo —_— is an integer.
g2 5|3§'|d+a g
Observe that, for such an integer k£ we get
= (2¥5|z]) = y(t7) = 2t — 20503 = ¢
yk = 7(2%0]z]) = y(t=) = z, 2" =t.
Now, iterating (3.11) k£ times, we obtain

u(z,t) < Chu(yo, 2t — 6%|z|*) <

1
clog, <5|;3+a>
<, u(zx,2t) <
1
ta
§|z|dta

< (Cg»,e@*a)ClogQ< ) u(, 2t).

Therefore, there exists 7 = C5 + aCg > 0 such that
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1514 T. KENZIZI1

Notice that in the above, § € [1, 1} is absorbed into C.
a

Repeating the above process for z; satisfying |y — 21| = t« and |z1] = |y| + |y — 21|, we have

1 -n
to t t
— - < — .
C(ry\d+a> “<4> —“<y’2>

Let us fix y € R? and set u(z,t) = ps(z,y). Applying the above inequality to the first entry of py,
we obtain

1 -n
ta
pt(xay) > C(md—m) bt (y) >

AN 2\
ZC(W) (W) pi(zl,z)-

. 1
Next we need to find a lower bound for p: (z1, z). Based on our construction, we have ta < |z| <
4

1 1 1
< 2ta and ta < |z] < 2ta.

Clearly we can form a chain of fixed number of parabolic cubes satisfying:
1

. . ta e ta . . o
1. Each cube is of size S the spacial direction and 16 in the time direction.
2 2

ta ta
2. The first cube covers (21, 4) and the last one covers (z, 8>’

3. Adjacent cubes have a gap 1of cte in the time direction and the centers of the adjacent cubes
have a distance no greater than ct« in the spacial direction.

4. For each (z,t) in the cubes, |z| > cta for some ¢ > 0.
Notice that, along this chain, by statement 4, we obtain

Vi) < L <L
z C
2| ™ et

On the other hand, by the parabolic Harnack principle [11] (Proposition 4.3), for any (z;,7;) in the
ith cube, we have

N o, L
Priyq (Zi+17 Z) < C1Pr; (ziu Z) vzi-‘rl €B <Z7 (n - ’L)Cta) )

where n is the number of cubes.
Now, multiplying the above together, we obtain

pé(z) < clpi(zl) Vz € B (z,ncti> , 1<i<n-—1.

Then we derive that

_a t N[ _a t o\
pe(z,y) > C1 (¢ “/\W t QAW pé('z)-
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1 1 1
Lemma 3.7. Assume that |x — y| > ajte, |x| > aste and |y| > aste for some aq, az > 0.
Then there exist two positive constants ¢1 and co such that

—d—a\ €2
pu(a,y) > o (m(t) >p;<y>. (.12

|z —y[*

Proof. Without loss of generality we take a; = ay = 1. Since |z —y| > ti, we can form a chain
of parabolic cubes such that:

. . ot . S “ . o
1. Each cube is of size ——— in the spacial direction and < ) in the time direction.

|z — ] |z — |

t
2. The first cube covers (z,t) and the last one covers <y, 2) .

ot \“
3. Adjacent cubes have a gap of c<> in the time direction and the centers of the

|z — |

adjacent cubes have a distance no greater than ¢ in the spacial direction.

|z =yl
4. For each (z,t) in the cubes, |z| > cta for some ¢ > 0 depending on b and 6.

—d—a
t
5. The number of cubes along this chain is chosen as £ = —clIn (1 A <||a> ) . In the
=y

above ¢ is a fixed number.
Notice that, along this chain, by using statements 4 and 3, we have

V(i) < — < — <

which implies that
pT¢+1 (zi+17 Z) S CpTZ (Zi7 Z)'

Now, multiplying the above together, by statement 5 we obtain

p%(y)fg C%?%(xay%

whence it follows (3.12).

Theorem 3.1. Assume that ¢ > c*. Then the heat equation (1.1) has no nonnegative solution
except u = 0.

Proof. We consider two cases:

Case 1: |z —y| < ta.

(a) For |z| < 2t and ly| < 2tw. In view of Lemma 3.6, there exist two positive constants C1, 7
such that

_d t N _a t o\
pi(z,y) > Cr | t O‘/\W 13 O‘/\W pé(z)a

where z satisfies |z — z| = (alt)i. Thus, by using the scaling property (2.3) and (3.10), we obtain

odn £\ e\ AR 2.d —the XL _opk$ (2|3
pt(l’,y)ZClt o 1A W 1A ﬂ 5]66 8 n .
x Yy

Consequently, we have
Prt(T,y) — 400 as k — +oo.
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(b) For y = 0 and |z| # 0. By using the reproducing formula (or semigroup property) and a
comparison argument, we get

prel@) = [ by @ 2)py 3 ()ds >

> pk%(aj, z)po’%(z)dz — o0 as k —» oo,

1<2|<2

where pg is the fundeimental solution of the problem (1.1) when V = 0. X X
(c) For |z| > 2ta. First, notice that |z — y| > ||y| — |z| and |y| > |z| — ta > t=. Hence, by
using the parabolic Harnack principle in [11] (Proposition 4.3), we obtain

21
pk‘7%(y7w) < Clpk7t(x7y) for weB (ya 3ta>7

where ¢; > 0 is independent of x, y and ¢. Consequently, there exists a positive constant ¢ > 0
such that

)

Pt () < cpra(2,y).
Finally, by (3.10), we obtain

ke M ok 1y1S
Pri(x) > cB2kletH 5 20k W2 500 as k — +oo.

1
Case2: |z—y| > tw . First, notice that ly| < |z| or |y| > |z|, therefore we have either |x| > ité

1
or |y| > iti If both inequalities hold, Lemma 3.7 implies

+ —d—a\ “2
> _ .
pra(z,y) 2 e [ 1A (x — y’a> Pt (y)

Hence, as in the first part, we see that py, +(x,y) — 0o as k — oo.
1

1 1 : : ta
(a) For |z| > ité and |y| > 55 Pick now a point z such that |y — z| = T and |z| =
= |y| + |y — z|. By using the Harnack chain argument again as in the proof of Lemma 3.6, we
obtain

AN
to
prt(T,y) > c <|y|d+a> pk,%(maz)‘ (3.13)

1 1 1

. to to to o
Since |z — z| > R |x| > 5 and |z| > T Lemma 3.7 implies that

" —d—a\
pk,%(xaz) > c3 (1 A <|x—z|a> ) pk’i(z).

. 1 :
On the other hand, notice that |z — z| < |z — y| + ité, hence there exists ¢ > 0 such that

|z — z|¢ < ¢|x — y|*. Therefore,
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¢ —d—a\ %
> -
pké(x, z)>e5 | 1A (!x — y[‘l) pki(z) (3.14)
Combining now (3.13) and (3.14), we derive

) A
>
pk,t(xvy) ZC |y|d+o‘ IA <|I—y|a> pké(z) el

tx ) oy e\

>
ASRNTGEE h (Iw—yla) Pr ()

which implies, by using (3.10), that

Prt(z,y) — 00 as k — oo.

(b) For y = 0. As in the first part, we have

Prt(z) = /pk,g($’ z)pk’%(z)dz > / pk,%(:z, z)poé(z)dz —r 00 as k — oo,
1<[2]<2

which is the desired result.

Theorem 3.1 is proved.
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