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STOCHASTIC DIFFERENTIAL EQUATIONS FOR EIGENVALUES
AND EIGENVECTORS OF A G-WISHART PROCESS WITH DRIFT

CTOXACTHUYHI JUPEPEHIIAJIBHI PIBHAHHSA J1JISA BTACHUX 3HAYEHDB
I BIACHHUX BEKTOPIB G-ITPOLECY BIIHIAPTA 31 3HOCOM

We propose a system of G-stochastic differential equations for the eigenvalues and eigenvectors of the G-Wishart process
defined according to a G-Brownian motion matrix as in the classical case. Since we do not necessarily have the independence
between the entries of the G-Brownian motion matrix, we assume in our model that their quadratic covariations are zero.
An intermediate result, which states that the eigenvalues never collide is also obtained. This extends Bru’s results obtained
for the classical Wishart process (1989).

3anponoHoBaHo cucreMy (G-CTOXaCTHYHMX IuepeHLiaJbHUX PIiBHAHb IS BIIACHHX 3HAYCHb i BIACHHX BekTOpiB G-
nporecy Bimapra, BU3Ha4YeHY, SK 1 y KIaCHYHOMY BHHAJKy, yepe3 (G-OpOyHIBCBKY MAaTpHII0 pyXy. 3 ONIsiLy Ha Te, LI0
eneMeHTH (G-OpOyHIBCHKOI MaTpHIll pyxy He € 00OB’SI3KOBO HE3aJC)KHHMH, B HALIill MOZAENI MU NPHUITyCKAEMO, L0 IXHI
KBaJ(paTHi KoBapiamii AOpiBHIOIOTH Hy/110. OTPUMaHO TaKOXK IMPOMIKHHI PE3ysbTar Ipo Te, 1[0 BIACHI 3HAUYCHHSI HIKOJIH He
ctukaroThes. et dakt y3aransaioe pesynsratu bpro (1989), mo orpuMani st kitacuaHOro nporecy Bimapra.

1. Introduction. Random matrices have been widely developed in recent years as a branch of
mathematics, but also as applications in many fields of sciences such as physics, biology, population
genetics, finance, meteorology and oceanography. The earliest studied ensemble of random matrices
is the Wishart ensemble, introduced by Wishart [7] in 1928 in the context of multivariate data
analysis, much before Wigner introduced the standard Gaussian ensembles of random matrices in the
physics literature. In physics, Wishart matrices have appeared in multiple areas: In nuclear physics,
quantum gravity and also in several problems in statistical physics. On the other hand, many studies
have been done on the asymptotic behavior of the eigenvalues of random matrices, in particular
by L. Pastur, M. Shcherbina [10]. In another context, Girko [4] used the perturbation technique to
give the stochastic differential equations (SDEs) of eigenvalues and eigenvectors for a matrix-valued
process with independent increments.

However, the notion of sublinear expectation space was introduced by Peng [3], which is a
generalization of classical probability space. The G-expectation, a type of sublinear expectation, has
played an important role in the researches of sublinear expectation space recently. Together with the
notion of G-expectations Peng also introduced the related G-normal distribution and the G-Brownian
motion. The G-Brownian motion is a stochastic process with stationary and independent increments
and its quadratic variation process is, unlike the classical case, a non deterministic process. Moreover,
an It calculus for the G-Brownian motion has been developed recently in [13—15].

The aim of this paper is to derive from the SDE of G-Wishart matrix with drift, a system of SDE
for its eigenvalues, eigenvectors and prove that the eigenvalues never collide. As in the classical case,
the G-Wishart matrix with drift is defined by X; = (B; + nt)T (Bt + nt) , where 7 is a deterministic
matrix and B; is a G-Brownian motion matrix of dimension n X n, the matrix stochastic process X;
takes values in the space of symmetric n x n matrices. In fact, our results are a generalization of the
works obtained by Bru [1] and by E. Mayerhofer [8] in the sense that the classical Brownian motion
is replaced by a G-Brownian motion. The main difficulties lie in the fact that the G-expectation is not
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linear and that the quadratic variation (B) is not a deterministic process. The notion of independence
of random variables with respect to a non linear expectation being delicate, so we assume in our
model that <Bij, Bkl> =0if (¢,5) # (k,[) and <Bij> depend only on j.

The remainder of this paper is organized as follows. In Section 2, we recall some notions
and properties in the GG-expectation space which will be useful in this paper. Section 3 deals with
(G-Brownian motion matrix and G-Wishart process with drift. In Section 4, we state the main results
of this paper, that is the study of SDEs satisfied by the eigenvalues and the eigenvectors processes
and the fact that the eigenvalues never collide. Section 5 is devoted to the proof of the main results.

2. Basic settings. For the convenience of the reader, we review some basic notions and results
of the GG-expectation, the related spaces of random variables and the SDEs driven by a G-Brownian
motion (for more details see [3, 11, 12]).

Let 2 be a given set and let H be a linear space of real valued functions defined on €2, such
that ¢ € H for each constant ¢ and |X| € H if X € H. H is considered as the space of random
variables.

Definition 1. A sublinear expectation on H is a functional E:H—-R satisfying the following
properties: For all X, Y € H, we have:

1) monotonicity: if X >Y, then E[X] > E[Y];

2) preservation of constants: E [c] = ¢ forall c € R;

3) subadditivity: E[X] — E[Y] < E[X —Y];

4) positive homogeneity: E[AX] = NE[X] for all A > 0.

The triple (Q, H, E) is called a sublinear expectation space.

We denote by Cj 1i, (R™) the space of real continuous functions defined on R™ such that

() —p )| <CA+ |z +y*) |r —y| forall =z,yeR,

where £ € N and C > 0 depend only on ¢.
Definition 2. In a sublinear expectation space (Q, H, E), a random vector Y € H" is said to
be independent from another random vector X € H™ under E, if

Elp(X,Y)) = E|Elp(a,Y))

x:X:| VQO S Ol,Lip (Rm+n) .

Let X1 and Xs be two n-dimensional random vectors defined respectively in the sublinear
expectation spaces (Ql, H, El) and (QQ, Ha, Eg). They are called identically distributed, denoted
by X1 £ X, if

Erfp(X1)] = Ex[p(X2)]  forall ¢ € Cprip (R").

If X is independent from X and X 4 x , then X is said to be an independent copy of X.

After the above basic definition we introduce now the central notion of G-normal distribution.

Definition 3. Let be given two reals o, o with 0 < o0 < 7. A random variable £ in a sublinear
expectation space (Q, H, E) is called G ,-normally distributed, denoted by & ~ N (0; [QQ;EQ]) ,
if for each ¢ € Cy1p (R), the following function defined by

u(t,e) = E[o (o4 Vi) ], (t2) €[0,00) x R,
is the unique viscosity solution of the parabolic partial differential equation
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o (t,z) =G (Gixu (t,z)), (t,z)€[0,00) xR,

u(0,2) = ¢ (x).

Here G = Gz is the following sublinear function parameterized by o and o
1
G(a)= 5 (@°at —o%a”), a€R

(recall that o = max{0,a} and o~ = —min{0, a}). In fact 7*> = E [52] and ¢ = —E [—52] .

Definition 4. A4 stochastic process (By),~ in a sublinear expectation space (Q, H, E) is called
a G-Brownian motion if the following properties are satisfied:

(@) By = 0;

(ii) for each t,s > 0, the increment By s— By is N (0; [QQS;EQS] ) -distributed and independent
from (By,...,By,) foralln € Nand 0 <t <...<t, <t.

Definition 5. A d-dimensional random vector X = (X1,...,Xy) in a sublinear expectation
space (Q, H, E) is called G-normal distributed if for each a, b > 0:

aX +bX 2 Va2 + 12X,

where X is an independent copy of X, and
1~
G(A): = 5E[(AX,X>] :Sq — R,

here Sy denotes the collection of d x d symmetric matrices.

By [12] we know that X = (Xi,...,Xy) is G- normal distributed if and only if u (f,z) =
= F[p (v +VtX)], (t,2) € [0,00) x RY, ¢ € C 14, (R") is the unique viscosity solution of the
following GG-heat equation:

Owu(t,z) = G (Du(t,x)),(t,x) € [0,00) X R,

u(0,z) = ¢ (z),

where Du (t,z) is the Hessian of u (¢, z).

The function G (.) : S;4 — R is a monotonic, sublinear functional on S;, from which we can
deduce that there exists a bounded, convex and closed subset 3 € S; the collection of nonnegative
matrices in Sy such that

G (4) = Lsuptr (4B).
2 ey
We write X ~ N (0; ).

We now give the definition of d-dimensional GG-Brownian motion.

Definition 6. A d-dimensional process (By),~ defined on (Q, H, I/[*i) is called a d- dimensional
G-Brownian motion if the following properties are satisfied:

(1) By =0;
(ii) for all t, s > 0, the increment Byis — By is N (0;s.)-distributed and independent of
(Bty, ..., Bs,), for each n € N and each sequence 0 <t, <...<t, <t.

Note that (a, By) is a real G, 5 -Brownian motion for each a € R?, where (., .) is tihe Euclidean
inner product of R?, 5,2 = E ((a, Bl>2) and 0,2 = —E (— (a, Bl>2) (for more details see [12]).
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3. G-Whishart process with drift. In the following we will identify each n x n matrix to
a vector of n? dimension. Let us consider Q = Cj (M,,) be the set of all M,,-valued continuous
functions (w¢),cp+ With wy = 0, where M,, is the space of n x n matrices, equipped with the
distance

oo
12 —i 1 2 1 2
w,w) = 2 max |w; — w All, whw* e
P () Z; Kte[o,ﬂ‘ t t‘) ]

We denote by B(2) the Borel o-algebra on 2. We also set, for each ¢t € [0,00), Q; =

= {w.t: w € Q}. The spaces of Lipschitzian functions on €2 are denoted by

Llp (Qt) = {90 (Btl/\tv v 7Btn/\t) : t17 <o atn € [07 OO) , P E C’l,Lip (Mn)} )

Lip () = J Lip ().
n=1

Here we use Cj rip (M) in our framework only for convenience. In general Cj i, (M) can
be replaced by the following spaces of functions defined on M,,:

L*> (My,): the space of all bounded Borel-measurable functions;

Cunit (My,): the space of all bounded and uniformly continuous functions;

Ch.Lip (My,): the space of all bounded and Lipschitz continuous functions;

Lip (M,,): the space of all Lipschitzian functions on M,,.

As in Peng [11,12], we can construct a nonlinear expectation E on Lip (), under which the

coordinate process (B;) ( i.e., B;(w) = wy) is a G-Brownian motion matrix. Thus (B:j ) is
. N2 . N2

a Go,, 7;7-Brownian motion where 7;;2 = E [(Bij> ] and 0;;2 = —F [— (B?) ] for each i,

j€eln.

Following Peng [3] (see also [11] for a simple proof), there exists a weakly compact family P of
probability measures defined on (2, B (£2)) such that

E[X]= sup EP[X] for each X € Lip (),

where ET stands for the linear expectation under P. We say that a property holds quasi surely (q.s.)
if it holds P a.s. for each P € P.

Let 7' > 0 be a fixed time. We denote by LY, (Qr) ,lp > 1, the completion of G-expectation
space Lip (Q7) under the norm || X|[, ;: = (E [\X|p]> v, Peng [12] defined also the conditional
expectation E (. | ), which is continuous on L (Qr).

Definition 7 [12]. A process (M),~ is called a G-martingale if for each t € [0;T], M; €
€ LL () and for each s € [0,t] we have E [My | Qs] = M q.s.

For each partition {tg,...,txy} = 7p of [0,T], such that 0 =ty < t; < ... <ty =T, we set

/L(WT)ZmaX{‘ti+1—ti’ :iZO,...,N—l}.

Definition 8. Ler M, 8’0 (0, T;R) be the collection of processes in the following form: for a given
sequence (71'71\[ ) of partitions of [0, T such that limy_, o 14 (7r¥ ) =0,
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N—

(W) =Y & (@) 1,000 (1),

Jj=0

—_

where £; € Lip (Qt].), 7=0,...,N—1.
Definition 9. The quadratic variation of (sz ) . is defined by
t=>

g N-Lo N N2 P
(B = tm S (B, -BY) = (87) -2 [ Byasy.
,u(7rt —0 -0 0

It was proved in [3,12] that o0;;%t < <Bij>t < 7;;%t. We denote by MZ (0, T;R) the completion
o 1/p

T
of Mg’o (0, 7;R) under the norm ||77||Mg. = (E {/0 Ins|? ds}) for p > 1.
Definition 10. For each n € Mé’o (0,T;R), we define

T

N-1
1) = [mdBf:= Y& (B, - BY).
=0

0

The mapping I : Mé’o (0, T;R) — LZ (Qr) is continuous and thus can be continuously extended
to MZ (0,T;R).
Definition 11. The integral of a process n € Mé’ﬂ (0, T;R) with respect to <Bij>t is defined by

Q)= /md <Bm>t: = Z & <<Bw>tl+1 - <Bm>tl) :
0 =0

The mapping Q: M(l;’0 (0,T;R) — L& (Qr) is continuous and thus can be continuously ex-
tended to M}, (0, T;R).

Unlike the classical theory, the quadratic covariation process of B is not always a deterministic
process and it can be formulated in L% (€;) by

t t
(B,B") : = BB} - / BYdBY — / BaBY.
t
0 0

For the following generalized It6 formula (see [11] for the vectorial case), we use Einstein’s
notation.

Theorem 1. Let ¢ € C?(M,,) and its first and second derivatives are in Cy1ip (My). Let
X = (X%) be a matrix process on [0,T] with the form

t

t
xpr=xtts [amsyas [0 )a (BB [ o al
0 0

where a1, Hﬁ}gm € ML (0,T) and By} € ME(0,T). Then for each t € [0,T], we have
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p (Xt) — ¢ (Xo) =

t t
= / Oyrap (Xu) By (u) dBY + / Ozpatp (Xu) P (u) dut
0 0

t
1 /! 'i
- [axmwxu)e?fm (1) + 500 () A1 () B <u>] a(BY,B%)  ¢s.
0

u

Note that this formula remains valid if X is not a square matrix.

Remark 1. By a direct application of the G-1t6’s formula, we find the integration formula by
parts, that is

d(XPIX]"™) = dXPIX]™ + XPUAX + dXPld X,
where dXPUdX[" =3, o AP grnkld (B B

Then we have d <Bij, Bk’l> = dB7dB".

In the rest of this paper, we write <Bij > , instead of <Bij , BY > , and we assume that B satisfies
the following assumption:

(A) There exist an increasing real process b’ such that <Bij , BHl > . = ik5ﬂbg g.s. for each 4,
j, k.1 € 1,n, where §,, is the Kronecker symbol.

Then we get ot < b{ < @2t, where 7 := max; j 0;; and ¢ := min;; 0;;. Note that in the
classical case the assumption (A) is satisfied with b{ =t.

Definition 12. A G-Wishart process with drift is defined by X, = (By + nt)" (B; +nt) , where
n is a deterministic matrix, and Y denotes the transpose of a matrix Y .

Note that if B is the classical Brownian motion, then X is the classical Wishart process with drift,
which appeared in many different applications such as communication technology, nuclear physics,
quantum chromodynamics, statistical physics of directed polymers in random media.

As in the classical case, we define the Stratonovich differential o for two matrices X and Y':

XodY = XdY + %dXdY and dX oY =dXY + %dXdY,

where dXdY is the matricial product. The following proposition holds.
Proposition 1. For each matrices X,Y defined as in the above theorem, we have:
(i) the integration formula by parts:

d(XY) = XdY +dXY +dXdY,
(i1) the formulae
d(XY)=dX oY + X odY,
dXo(YZ)=(dXoY)oZ

and
(XodY) =dyToxT.
Proof. (i) follows from the Remark 1.
(i1) follows from (i) and the definition of the Stratonovich differential.
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4. Main results.  We wish to find SDEs of eigenvalues and eigenvectors for a (G-Wishart
process with drift. Our approach is the same as that used in [1]. The idea is simply to set

Mt = Bt + T]t.
Then we have
X, = MM,
and
dXy = dBl My + M{'dB, + (n" M, + M['n) dt + dB{ dB;.
Note that dBf dB; = nd (B),. Since dX*“dX" = 4X"db", then

dX" = 2\/ﬁdﬂi+2(7ITM)ii dt + ndb’, t=1,...,n,

where ~! are G-Brownian motions, such that <ni, Iij> = 5ijbj for each 7, j.

In what follows, let H! X;H; = A; := diag ()\; (t)) be the diagonalization form of X;, where
H; is an orthonormal matrix. The following result is the equivalent of Theorem 18.5.1 [4], proved
in the linear context for a matrix-valued process with independent increments.

Theorem 2. Suppose that at time t = 0 all the eigenvalues are distinct. Then the following
G-stochastic differential system holds:

dAi=2\/EZH“dyl+2(nH)“@dt+Z(H’i)2dbl ZA‘A”A |+
/ 1 pti v TP

1 2
A . zl: (Hlp) v’ (1)

p#i

where V', U2, ..., v™ are G-Brownian motions, satisfying <yi, Vj> = 5Z-jb7 foreach i,j € 1,n.

Corollary 1. Assume that b' = b for each i = 1,...,n. Then we have the following SDEs: for
t < Tp: = inf {t: det (X;) = 0}
d (tr (X)) = 21/tr (Xy)dy + 2tr (nT\/Xt) dt + n2db;, )
d (det (X)) = 2det X\ /tr (X, )dB, + 2 det X,tr (nHX—%H) dt -+

+ det Xytr (X, 1) dby, 3)
d (log (det (X;))) = 2y/tr (X, 1)dB, + 2tx (nHX’%H) dt — tr (X;7) dby, )
d (det (X;)") = 2r (det X;)" \/tr (X7 1)dBy + 2r (det X,)" tr (on—%H) dt-+
+7(2r — 1) (det Xy) tr (X; 1) dby for r€R, (5)
where ~y (resp. () is a G-real Brownian motion, such that () = b (resp. (3) = b).
Remark 2. 1t is easy to derive from this corollary, the corresponding of these SDEs in the

classical case which are obtained by Demni [2].
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As in [1], the matrix H; satisfy
1
dH = HodA = HdA + §HdAdA,
where A is the skew-symmetric n X n matrix, such that
dA = HT o dH.

Theorem 3. The eigenvectors satisfy the following equations:

aHi =% HZ'K . (f ST HYAp 4 /N Z Hlkcw’“> + %ZHikdv’”’, (6)
k

k#j

where

1

dvh =
()‘p - )‘k) (>‘j - )‘p)

p#£JpF£k

[Ap > HRHYAY + 6phe Y H’lepdbl] ,
l l

and (ﬁij ) is a G-Brownian motion matrix satisfying the assumption (A).

Collision time. Let us consider the first collision time 7 = inf {¢ > 0: \; (t) — X; (£) = 0 for
some i # j}.

Corollary 2. If; at time t = 0, the eigenvalues of X are distinct \1 < Ao < ... < A\, then they
will never collide, that is, T = +00 ¢.s.

Proof. Let (\j (t) — i (t)),., be the R, \{0} valued stochastic process. As in [1], by applying

the G-1t6 formulato U = — g » log (A; — A;) and by using the fact that the quadratic covariation
i<j
of i, A;j is equal to 40,51/ A;(/A;db", we get
dN; — d\;j A\idb + \;db
dU = — +2 o
By M

i<j 1<J
It follows from the SDE satisfied by A; that
2 2
t li [ 1j !
Ai () H) db,+ \j(s) HJ) db

=~ (A (5) — A ()7

Obviously U, is a classical local martingale with respect to its natural filtration under each probability
measure P € P. If two eigenvalues collide, then there exists P € P such that P? (7 = +00) < 1,
limy, Uy = —oo and U is continuous on [0, 7]. Let & be the inverse of (U),. By the argument
of McKean [9, p. 47], and Bru [1], the process B, = Ug, is a Brownian motion on [0, (U)_[ PY as.
on {7 < +oo} [5, p. 92]. Thus,

lim B; = limUg, = limU; =
H(U) (5 &t ks

which is impossible for a Brownian motion. Hence 7 = +o0 g:s.
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5. Proofs of theorems. Proof of Theorem 2. Since
(aMTam)” =" dBMdBY = ngav’,
k

then
dx =%" (M’fde’“' + M’“dB’“j) +) (nkiM’“j + Mkinkj) dt +né;;db’,
k k
which implies that

dX7dx*m =" (MPIdBP + MP'dBPT) (ququk + ququm> —
p q

- (ij(gik + Xjk&m) dbt + (Ximéjk + Xikéjm) dv’.

As in [1], we have dA = dN —dAo A+ AodA, where dN: = H” o dX o H and introduce the
skew-symmetric matrix A such that, Ag = 0, dA = H” o dH. Then we obtain

1
dH = HdA + §HdAdA.
The process A o dA — dA o A is zero on the diagonal, consequently d)\; = dN% and
0=dN" + (\; — \j) dA", when i # j. Thus, for {t < 7},

g 1 g
dAY = —— N,
A — A

1 1
In fact N = HTdX H + §H TdXdH + §dH TdX H, which implies that the G-martingale part
of dN equals the G-martingale part of H7 dX H given by

ANAN*™ =" HP dXPIHY Y~ HPRAXPY 1O =
p.q p/,q/

= Y HYHYHVREI™ [(qu’app, + qu’apq/> b +

1,409’

+ (XM’aq,,/ + pr’éqq/) dbq] -

=" [ HPHPR A HY x99 '™
p

a9

+HPHP™ WY " HYX® HPR | 4

q.p

+ Z HY 9 qpe Z P xpd fgram +
q p,q’
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+HYHMAYY " HPXPP HPR | =

p,p’

- Z HP'HPEgRP AT™ Z HPHP™ qpP AIF
p p

+ Z HY H%gpapim Z HY I qpa Ak
q q

and

ANPANII = 4\Y Z HP'HPI qpP —
p

= aNo; Y (HP) b
p
The finite-variation part of dN
dF = H" (n" M + M"n) Hdt,
since M = A%HT, then
dF = (HTnTA%HTH + HTHA%nH) dt =
= (HT9TAT + AByH )t

It follows that ) B
dF*™ =2 (nH)" \/ \dt.
Now we compute the integral part dQ of dN, with respect to db’:

dQ = H"dBTdBH + %HTdXdH + %dHTdXH =
= H"dBTdBH + % ((dH"H) (H"dXH) + (H"dXH) (H"dH)) =

1
~ HTdB"dBH + <deA + (deA)T> .

Since g
(H"dB"dBH)” =) " H" (dB"dB)" HY
p,q
and
(dBTdB)™ = " dB%dB"Y =) " 5pqdbP = népgdb?,
l l
then

(HTdBTdBH)ij = ZHpinépqdprqj — nZHpinjdbp.

p.q p
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On the other hand,

(ANdA)7 = " dNPdAP =" dN”’ ANPI =

DPFj p

P#j l

+> HPHPAY AT + ) " HPHY AL A
l l

l

+Xibip Y HPHY dbl] :
l

It now follows from (8) and (9), that

dQ“:Z(H“fdbl ZA A_A ol + N ZA . Z(H“’)del.

l DFi pFi
Then
A\ =2y/X; Y HY'dV' + dF7 4+ dQ,
l
where /! is a G-Brownian motion such that dv'dvd = 5ijdbi.

Theorem 2 is proved.
Proof of Corollary 1. 'We have

d (tr (X;)) ZdX“ =

-y (2 Xiidi + 2 (g@)“ dt + ndbt) .

On the other hand, since the quadratic variation of tr (X) is 4 X%*db = 4tr (X) db, then

d (tr (X3)) = 2/tr (Xp)dys + 2tr (nT Xt) dt + ndb,.

Firstly, observe that, by using the formula (1), we obtain

Ap + Ai
d\i = 2¢/ Nidv® + 2 (nH)" \/Nidt + A

Ai — A
pF#i P

By using the G-1t6 formula, we have

=Y v A [Z HUHPAY AP +> " HHYdb AP +

- [Ap S HUHYIAY + Ay (Hlp)2 dbt +
l

©)
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det X det X
y & d)\i+ S dhid),.

d(det X) = N #] Wy

It follows, from the fact that dA\;d\; = 4/ Xy /\;j0;jdb, that

d(det X) =

1 Ay + A
+det X — L +n| db.
Z )\z Y] D
The formula (3) follows from the following facts:

Z (nH)" — tr (UHA_%> = tr (nHX_%H> )

~ VN
1 Ap + A

D O R 55 +zz( ) -

i p#i i p#i Ap
=ntr (X)) — (n— 1) tr ( +2ZZ)\ W

i pFi
= tr (Xfl) ,

and the quadratic variation of det X is 4 (det X)? Z ——=08;;db = 4det X?tr (X1) db.

J\/>\/>

Equations (4) and (5) follows from (3), the G-It6 formula and the quadratic variation of det X .
Proof of Theorem 3. In order to find SDEs for H; on {t < 7}, we deduce from the definition
of dA that

dH = H odA = HdA + %HdAdA.

By using the formula (7), we have, for i # 7,
.. .. N 2 A 2
ANYANT = x> (HY) a3 (B,
l l

which implies that

ANY = /N CHYIAE! + /x> Hdp!,
I I
where (%) is a G-Brownian motion matrix satisfying the assumption (A). It follows that

¥ —/\ (fZHl]dﬂﬂJr\FZH”dﬂ”)

dAY =
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Now we compute (dAdA):

(dAdA)Y =" dAPdAPT =
p

1 ) )
= > ANPANPI =
pj pti ()‘p - )‘i) ()‘j - )‘p)

Z HYHPapl APT 1 Z HYHY gyt APP 4
l !

Z 1
pipi ()‘p - )‘i) ()‘j - )‘p)

+> HPHPAY AT+ " HPHYdb AP
l [

1
pjpti ()‘p - >‘i) ()‘j - )‘p)

Similarly as in [1], we obtain the formula (6).

Theorem 3 is proved.

Example 1. We consider the case of the classical Wishart process, which corresponds to n = 0
and X; = B} B;, where (B;) is the classical Brownian motion matrix. It was shown in [1] that

Ap D HUHYAN + 650> Hllepdbl] :
l l

)\p+)\i
Ai — Ap

dhi = 2/ \dv' + +n| dt,

pF#i
where v are classical Brownian motions. We can obtain this formula by the formula (1) with b} = ¢

N2
and the fact that Zl (H h) = 1. The same is true for the SDE of the eigenvectors.
Remark 3. 1f we consider the G-Wishart process X; = Y,TY; where Y is the G-Ornstein—

Uhlenbeck matrix, that is the solution of the G-SDE
1
dY; = —aYtdt +adB;, a >0,

where B is a G-Brownian motion satisfying the assumption (A), we can obtain with the same manner
(see [6]) that

d)\i:2a\/)\>iZHlidVl_>\idt+a2 Z)\)‘p)\ +n Z(Hl’b>2dbl+
1 pFi v !

+a2)\iz>\_i)\ 3 (HZP>2dbl,
pti L

and

2
dH' :azHik/\ji)\k (\/TkZH”d6ﬂ+\/7szmdﬁkl> + G 2 HAVY,
! ! k

Py
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6. Conclusion. In this paper, the system of the SDEs of eigenvalues and eigenvectors for a
(G-Wishart process with drift defined by using a G-Brownian motion matrix was given. This system
has been difficult to obtain because of the fact that the quadratic variation of the (G-Brownian motion
is not deterministic. Added to that, our main difficulty lies in the fact that the entries of the G-
Brownian motion matrix are not independent in general. To avoid these difficulties, it was assumed
in our model, that the quadratic covariations of the entries of the (G-Brownian motion matrix are zero
and that the quadratic variations depend only on the index of column. The G-formula of integration
by parts was the key of this work. An intermediate result of the non collision of the eigenvalues was
also proven.
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