DOI: 10.37863/umzh.v74i1.2355

UDC 517.9

S. Mecheri (Mohamed El Bachir El Ibrahimi Univ., Bordj Bou Arreridj, Algeria),

T. Prasad (Univ. Calicut, Kerala, India)

FUGLEDE – PUTNAM TYPE THEOREMS FOR EXTENSION OF *M*-HYPONORMAL OPERATORS ТЕОРЕМИ ТИПУ ФУГЛЕДЕ – ПУТНАМА ДЛЯ РОЗШИРЕНЬ *M*-ГІПОНОРМАЛЬНИХ ОПЕРАТОРІВ

We consider k-quasi-M-hyponormal operator $T \in B(\mathcal{H})$ such that TX = XS for some $X \in B(\mathcal{K}, \mathcal{H})$ and prove the Fuglede–Putnam type theorem when adjoint of $S \in B(\mathcal{K})$ is k-quasi-M-hyponormal or dominant operators. We also show that two quasisimilar k-quasi-M-hyponormal operators have equal essential spectra.

Розглянуто k-квазі-M-гіпонормальний оператор $T \in B(\mathcal{H})$ такий, що TX = XS для деякого $X \in B(\mathcal{K}, \mathcal{H})$, та доведено теорему типу Фугледе–Путнама, коли спряженим до $S \in B(\mathcal{K})$ є або k-квазі-M-гіпонормальний, або домінуючий оператор. Також показано, що два квазіподібні k-квазі-M-гіпонормальні оператори мають однакові суттєві спектри.

1. Introduction. Let \mathcal{H} and \mathcal{K} be separable complex Hilbert spaces, and let $B(\mathcal{H}, \mathcal{K})$ denote the algebra of all bounded linear operators from \mathcal{H} to \mathcal{K} (We also write $B(\mathcal{H}) = B(\mathcal{H}, \mathcal{H})$.) Throughout this paper, the range and the null space of an operator T will be denoted by $\operatorname{ran}(T)$ and $\ker(T)$, respectively. Let $\overline{\mathcal{M}}$ and \mathcal{M}^{\perp} be the norm closure and the orthogonal complement of the subspace \mathcal{M} of \mathcal{H} . The classical *Fuglede-Putnam theorem* [4] (Problem 152) asserts that if $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are normal operators such that TX = XS for some operators $X \in B(\mathcal{K}, \mathcal{H})$, then $T^*X = XS^*$. The references [2, 6, 9, 10, 17–19] are among the various extensions of this celebrated theorem for nonnormal operators. According to [17], an operator $T \in \mathcal{H}$ is *dominant* if

$$\operatorname{ran}(T - \lambda I) \subseteq \operatorname{ran}(T - \lambda I)^*$$
 for all $\lambda \in \mathbb{C}$.

From [1], it is seen that this condition is equivalent to the existence of a positive constant M_{λ} such that

$$(T - \lambda I)(T - \lambda I)^* \le M_{\lambda}^2 (T - \lambda I)^* (T - \lambda I)$$

for each $\lambda \in \mathbb{C}$. An operator T is called *M*-hyponormal if there is a constant M such that $M_{\lambda} \leq M$ for all $\lambda \in \mathbb{C}$. If M = 1, T is hyponormal. We have the following inclusion relations:

{hyponormal} \subseteq {*M*-hyponormal} \subseteq {dominant}.

Mecheri [5] introduced k-quasi-M-hyponormal operators as follows. An operator T is k-quasi-M-hyponormal if there exists a real positive number M such that

$$T^{*k} \big((T - \lambda I)(T - \lambda I)^* \big) T^k \le T^{*k} \big(M^2 \big(T - \lambda I)^* (T - \lambda I) \big) T^k$$

for all $\lambda \in \mathbb{C}$, where k is a natural number. Evidently,

 $\{M$ -hyponormal $\} \subseteq \{k$ -quasi-M-hyponormal $\}$.

© S. MECHERI, T. PRASAD, 2022

```
ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 1
```

For $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$, we say that FP-theorem holds for the pair (T, S) if TX = XSimplies $T^*X = XS^*$, $\overline{\operatorname{ran}(X)}$ reduces T, and $\ker(X)^{\perp}$ reduces S, the restrictions $T|_{\overline{\operatorname{ran}(X)}}$ and $S|_{\ker(X)^{\perp}}$ are unitarily equivalent normal operators for all $X \in B(\mathcal{K}, \mathcal{H})$. We say that an operator S is quasiaffine transform of an operator T if there exists an injective operator X with dense range such that TX = XS. Two operators $T \in B(\mathcal{H})$ and $S \in B(\mathcal{H})$ are quasisimilar if there exist quasiaffinities $X \in B(\mathcal{H}, \mathcal{K})$ and $Y \in B(\mathcal{K}, \mathcal{H})$ such that XT = SX and YS = TY. In general quasisimilarity need not preserve the spectrum and essential spectrum. However, in special classes of operators quasisimilarity preserves spectra. For instance, it is well-known that two quasisimilar hyponormal operators have equal spectrum and equal essential spectrum.

Recall that an operator $T \in B(\mathcal{H})$ is *k*-quasihyponormal if $T^{*k}(T^*T - TT^*)T^k \ge 0$, where k is a positive integer and an operator $T \in B(\mathcal{H})$ is said to be (p, k)-quasihyponormal operators if $T^{*k}((T^*T)^p - (TT^*)^p)T^k \ge 0$, where k is a positive integer and 0 [3, 19]. Recently, Tanahashi, Patel and Uchiyama [19] found some extensions of Fuglede–Putnam theorems involving <math>(p, k)-quasihyponormal, dominant, and spectral operators.

Recall [8] that an operator $T \in B(\mathcal{H})$ is said to have the *single-valued extension property* (SVEP) if for every open subset D of \mathbb{C} and any analytic function $f: D \to \mathcal{H}$ such that $(T - \lambda)f(\lambda) \equiv 0$ on D, it results $f(\lambda) \equiv 0$ on D. We say that a Hilbert space operator satisfies *Bishop property* (β) if, for every open subset D of \mathbb{C} and every sequence $f_n: D \longrightarrow \mathcal{H}$ of analytic functions with $(T - \lambda)f_n(\lambda)$ converges uniformly to 0 in norm on compact subsets of D, $f_n(\lambda)$ converges uniformly to 0 in norm on compact subsets of D, $f_n(\lambda)$ converges uniformly to 0 in norm on that

Bishop property(β) \Rightarrow SVEP

(see [8] for more information). Mecheri [5] proved that k-quasi-M-hyponormal operators satisfies Bishop property (β). Recently, some spectral properties of k-quasi-M-hyponormal operators has been studied by Zuo and Mecheri [22]. In the present note, we seek some extensions of Fuglede – Putnam type theorems involving k-quasi-M-hyponormal operator and dominant operators. Let U be an open set in \mathbb{C} . Stampfli [16] investigated the equation $(T - \lambda I)f(\lambda) \equiv x$ for some non-zero $x \in \mathcal{H}$ and $f: U \to \mathcal{H}$ in an effort to discover necessary and or sufficient condition for analyticity of f when T is a dominant operator. In this paper, we show that if $T \in B(\mathcal{H})$ be k-quasi-Mhyponormal, if $0 \notin \delta \subseteq \mathbb{C}$ be closed, and if there exists a bounded function $f: \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(T - \lambda I)f(\lambda) \equiv x$ for some non-zero $x \in H$, then f is analytic at every non zero point and hence f has analytic extension everywere on $\mathbb{C} \setminus \delta$. In Section 3, we show that if $T, S \in B(\mathcal{H})$ are quasisimilar k-quasi-M-hyponormal operators, then they have equal spectrum.

2. Fuglede – Putnam type theorem. Throughout this paper we would like to present some known results as propositions which will be used in the sequel.

Proposition 2.1 [5]. Let T be k-quasi-M-hyponormal operator, $ran(T^k)$ be not dense and

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k}).$

Then $T_1 = T|_{\overline{\operatorname{ran}}(T^k)}$ is M-hyponormal, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

Proposition 2.2 [15]. Let $T \in B(\mathcal{H})$ and let $S \in B(\mathcal{K})$. Then the following assertions are equivalent:

(i) If TX = XS where $X \in B(\mathcal{K}, \mathcal{H})$, then $T^*X = XS^*$.

(ii) If TX = XS where $X \in B(\mathcal{K}, \mathcal{H})$, then $\overline{\operatorname{ran}(X)}$ reduces T, and $\ker(X)^{\perp}$ reduces S, the restrictions $T|_{\overline{\operatorname{ran}(X)}}$ and $S|_{\ker(X)^{\perp}}$ are normal.

Proposition 2.3 [10]. Let T and S be M-hyponormal operators and $TX = XS^*$. Then

(i) ran(X) reduces T and ker(X) reduces S.

(ii) $T|_{\overline{\operatorname{ran}(X)}}$ and $S^*|_{\ker(X)^{\perp}}$ are unitarily equivalent normal operators.

It is well-known that a normal part of hyponormal is reducing. This result remains true for dominant operators.

Proposition 2.4 [14, 17, 21]. Let $T \in B(\mathcal{H})$ be dominant and \mathcal{M} be an invariant subspace of T. Then:

(i) The restriction $T|_{\mathcal{M}}$ is dominant.

(ii) If the restriction $T|_{\mathcal{M}}$ is normal, then \mathcal{M} reduces T.

In the following lemma we prove, a normal part of a k-quasi-M-hyponormal operator is reducing. Lemma 2.1. If the restriction $T|_{\mathcal{M}}$ of the k-quasi-M-hyponormal operator $T \in \mathcal{B}(\mathcal{H})$ to an invariant subspace \mathcal{M} is injective and normal, then \mathcal{M} reduces T.

Proof. Let T be k-quasi-M-hyponormal and $T_1 = T|_{\mathcal{M}}$ is injective and normal. Decompose T on $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ as follows:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}.$$

The following inclusion relation holds by the k-quasi-M-hyponormality of T and Theorem 1 of [1]:

$$\operatorname{ran}(T^{*k}(T-\lambda I)) \subset \operatorname{ran}(T^{*k}(T^*-\overline{\lambda}I)) \subset \operatorname{ran}(T^*-\overline{\lambda}I)$$

for $\lambda \in \mathbb{C}$. Then, for any arbitrary vector $y \in \mathcal{M}^{\perp}$, $T_1^{*k}T_2y = (T_1^* - \overline{\lambda})u_{\lambda}$ for some $u_{\lambda} \in \mathcal{M}$. Choose v_{λ} such that $(T_1^* - \overline{\lambda}I)u_{\lambda} = (T_1 - \lambda I)v_{\lambda}$. It follows that $T_1^{*k}T_2y = (T_1 - \lambda)v_{\lambda}$ and so

$$T_1^{*k}T_2y \in \bigcap_{\lambda \in \mathbb{C}} \operatorname{ran}(T_1 - \lambda I).$$

Then, by [11] (Theorem 1), $T_1^{*k}T_2y = 0$ and hence $T_2y = 0$. Therefore, $T_2 = 0$.

Remark 2.1. The condition $T|_{\mathcal{M}}$ is injective in Lemma 2.1 is indispensable because ker(T) for k-quasi-M-hyponormal operator T is not always reducing.

In [19], the authors considered the situation S and T^* are (p, k)-quasihyponormal operators and proved Fuglede – Putnam theorem for (S, T) if either S or T is injective. Now we study Fuglede – Putnam theorem for the case that T and S^* are k-quasi-M-hyponormal operators with the condition that either T or S^* is injective.

Theorem 2.1. Let $T \in B(\mathcal{H})$ and $S^* \in B(\mathcal{K})$ be k-quasi-M-hyponormal operators. If either T or S^* is injective, then Fuglede – Putnam theorem holds for (T, S).

Proof. Suppose T and S^* are k-quasi-M-hyponormal operators and TX = XS for any operator $X \in B(\mathcal{K}, \mathcal{H})$. Since $\overline{\operatorname{ran}(X)}$ is invariant under T and $\ker(X)^{\perp}$ is invariant under S^* , we decompose T, S and X into

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(X)} \oplus \overline{\operatorname{ran}(X)}^{\perp}$,

$$S = \begin{pmatrix} S_1 & 0 \\ S_2 & S_3 \end{pmatrix}$$
 on $\mathcal{K} = \ker(X)^{\perp} \oplus \ker(X)$,

and

$$X = \begin{pmatrix} X_1 & 0\\ 0 & 0 \end{pmatrix} \quad \text{on} \quad \ker(X)^{\perp} \oplus \ker(X) \to \overline{\operatorname{ran}(X)} \oplus \overline{\operatorname{ran}(X)}^{\perp}$$

where T_1 and S_1^* are k-quasi-M-hyponormal operators by Proposition 2.1, and

$$X_1: \ker(X)^{\perp} \to \overline{\operatorname{ran}(X)}$$

is injective with dense range.

From TX = XS, we have

$$T_1 X_1 = X_1 S_1. (2.1)$$

First consider the case where T is injective. Clearly, T_1 is injective. It is not difficult to show from (2.1) that S_1 is injective or equivalently, $\operatorname{ran}(S_1^*)$ is dense. Incidently, S_1^* turns out to be a Mhyponormal operator. In particular, $\ker(S_1^*) \subset \ker(S_1)$ and hence $\ker(S_1^*) = 0$. From (2.1), it is easy to see that T_1^* is injective, thereby T_1 is M-hyponormal. Next consider the case that S^* is injective. Then S_1^* is injective and so T_1^* is injective by (2.1). Obviously, T_1 is an injective M-hyponormal operator, and, by (2.1), S_1 is injective. Therefore, S_1^* is M-hyponormal. Ultimately, if either T or S^* is injective, then T_1 and S_1^* are both M-hyponormal operators. Then, by Propositions 2.2 and 2.3 and (2.1), we obtain

$$T_1^* X_1 = X_1 S_1^*$$

and T_1 , S_1 are normal operators. Since T_1 and S_1 are injective, $T_2 = S_2 = 0$ by Lemma 2.1. Hence,

$$T^*X = T_1^*X_1 = X_1S_1^* = XS^*.$$

The rest of the proof follows from Proposition 2.2.

Corollary 2.1. Let $T \in B(\mathcal{H})$ and $S^* \in B(\mathcal{K})$ be k-quasi-M-hyponormal operators with reducing kernels. Then Fuglede – Putnam theorem holds for (T, S).

Proof. By hypothesis, we can write $T = T_1 \oplus T_2$ on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and $S = S_1^* \oplus S_2^*$ with respect to $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_2$, where T_1 and S_1^* are normal parts and T_2 and S_2 are pure parts. Let

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \quad \text{on} \quad \mathcal{K}_1 \oplus \mathcal{K}_2 \to \mathcal{H}_1 \oplus \mathcal{H}_2.$$

From TX = XS, we have

$$\begin{pmatrix} T_1 X_1 & T_1 X_2 \\ T_2 X_3 & T_2 X_4 \end{pmatrix} = \begin{pmatrix} X_1 S_1 & X_2 S_2 \\ X_3 S_1 & X_4 S_2 \end{pmatrix}.$$

The underlying kernel conditions ensures of T_2 and S_2^* are injective. The operator T_2 is injective k-quasi-M-hyponormal and S_1 normal. From the above matrix relation, we obtain $T_2X_3 = X_3S_1$. Then by applying Theorem 2.1, we get $T_2^*X_3 = X_3S_1^*$, $\overline{\operatorname{ran}(X_3)}$ reduces T_2 and $T_2|_{\overline{\operatorname{ran}(X_3)}}$ is normal and so $X_3 = 0$. In a similar manner we have $X_2 = 0$ from $T_1X_2 = X_2S_2$ and $X_4 = 0$ from $T_2X_4 = X_4S_2$. Since T_1 and S_1 are normal and since $T_1X_1 = X_1S_1$, required result follows from classical Fuglede–Putnam theorem and Proposition 2.2.

ISSN 1027-3190. Укр. мат. журн., 2022, т. 74, № 1

92

Proposition 2.5 [21]. If $T^* \in B(\mathcal{H})$ is M-hyponormal, $S \in B(\mathcal{K})$ is dominant, and XT = SX for $X \in B(\mathcal{H}, \mathcal{K})$, then $XT^* = S^*X$.

Now we consider the situation that where T is a k-quasi-M-hyponormal operator and S^* is a dominant operator.

Theorem 2.2. Let $T \in B(\mathcal{H})$ be k-quasi-M-hyponormal and $S^* \in B(\mathcal{K})$ be dominant. If either T or S^* is injective, then Fuglede–Putnam theorem holds for (T, S).

Proof. Suppose that $T \in B(\mathcal{H})$ is k-quasi-M-hyponormal and $S^* \in B(\mathcal{K})$ is dominant such that TX = XS for $X \in B(\mathcal{K}, \mathcal{H})$. Since $\overline{\operatorname{ran}(X)}$ is invariant under T and $\ker(X)^{\perp}$ is invariant under S^* , we can write T, S and X as follows:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \quad \text{on} \quad \mathcal{H} = \overline{\operatorname{ran}(X)} \oplus \overline{\operatorname{ran}(X)}^{\perp},$$
$$S = \begin{pmatrix} S_1 & 0 \\ S_2 & S_3 \end{pmatrix} \quad \text{on} \quad \mathcal{K} = \ker(X)^{\perp} \oplus \ker(X)$$

and

$$X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{on} \quad \ker(X)^{\perp} \oplus \ker(X) \to \overline{\operatorname{ran}(X)} \oplus \overline{\operatorname{ran}(X)}^{\perp}.$$

From TX = XS, we have

$$T_1 X_1 = X_1 S_1, (2.2)$$

where T_1 is k-quasi-M-hyponormal by Proposition 2.1, S_1^* is dominant by Proposition 2.4 and

$$X_1: \ker(X)^{\perp} \to \overline{\operatorname{ran}(X)}$$

is injective with dense range. First assume that T is injective. Then T_1 is injective. From (2.1), S_1 is injective. Since S_1^* is dominant, it turns out to be injective. By (2.2), we have that T_1^* is injective. Ultimately, T_1 is *M*-hyponormal. Applying Proposition 2.5 to (2.2), we obtain

$$T_1^*X_1 = X_1S_1^*$$

and T_1 , S_1 are normal operators. Since T_1 injective, $T_2 = 0$ by Lemma 2.1. Also $S_2 = 0$ by Proposition 2.4. Next assume S^* is injective. Then S_1^* is injective. Then by (2.2) T_1^* is injective. Ultimately, T_1 turns out to be *M*-hyponormal. Conclude as before that

$$T_1^*X_1 = X_1S_1^*$$

and T_1 , S_1 are injective normal operators and so $T_2 = S_2 = 0$. Hence,

$$T^*X = T_1^*X_1 = X_1S_1^* = XS^*.$$

The rest of the proof follows from Proposition 2.2.

Corollary 2.2. Let $T \in B(\mathcal{H})$ be dominant and $S^* \in B(K)$ be k-quasi-M-hyponormal operator. If either T or S^* is injective, then Fuglede–Putnam theorem holds for (T, S).

Proof. From TX = XS, we have $S^*X^* = X^*T^*$. Applying Theorem 2.2, it follows that $SX^* = X^*T$. The rest of the proof follows from Proposition 2.2.

Corollary 2.3. Let $T \in B(\mathcal{H})$ be k-quasi-M-hyponormal operator with reducing kernel and $S^* \in B(\mathcal{K})$ be dominant operator such that TX = XS for $X \in B(\mathcal{K}, \mathcal{H})$. Then Fuglede–Putnam theorem holds for (T, S).

Proof. Let $T \in B(\mathcal{H})$ be k-quasi-M-hyponormal with reducing kernel and $S^* \in B(\mathcal{K})$ be dominant. We decompose T, S and X as follows:

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{H} = \ker(T)^{\perp} \oplus \ker(T)$

and

$$S = \begin{pmatrix} S_1 & 0 \\ 0 & 0 \end{pmatrix}$$
 on $\mathcal{K} = \ker(S)^{\perp} \oplus \ker(S)$

Let

$$X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix} \quad \text{on} \quad \ker(S)^{\perp} \oplus \ker(S) \to \ker(T)^{\perp} \oplus \ker(T).$$

From TX = XS, we have

$$\begin{pmatrix} T_1 X_1 & T_1 X_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} X_1 S_1 & 0 \\ X_3 S_1 & 0 \end{pmatrix}.$$

The equations $T_1X_2 = 0$ and $X_3S_1 = 0$ yields $X_2 = X_3 = 0$ because T_1 and S_1^* are injective. Applying Theorem 2.2 to $T_1X_1 = X_1S_1$, it follows $T_1^*X_1 = X_1S_1^*$.

Stampfli and Wadhwa [17] proved if T be dominant and S be a normal operator and if TX = XS where $X \in B(\mathcal{H})$ has dense range, then T is a normal operator (see [17], Theorem 1). This remarkable result for k-quasihyponormal operators has been studied by Gupta and Ramanujan [3]. Now we show this result remains true for k-quasi-M-hyponormal operators.

Theorem 2.3. Let T be a k-quasi-M-hyponormal and S a normal operator. If S is quasiaffine transform of T, then T is a normal operator unitarily equivalent to S.

Proof. Let T be k-quasi-M-hyponormal. By Proposition 2.1, decompose T on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \oplus \operatorname{ker}(T^{*k})$ as follows:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$

where $T_1 = T|_{\overline{\operatorname{ran}(T^k)}}$ is M-hyponormal and $T_3^k = 0$. Let $S_1 = S|_{\overline{\operatorname{ran}(S^k)}}$. Decompose

$$S = \begin{pmatrix} S_1 & 0\\ 0 & 0 \end{pmatrix}$$

Obviously, S_1 is normal. Let $X_1 = X|_{\overline{\operatorname{ran}(S^k)}}$. Then

$$X_1: \overline{\operatorname{ran}(S^k)} \to \overline{\operatorname{ran}(T^k)}$$

is injective and has dense range.

From TX = XS, we have

$$T_1 X_1 = X_1 S_1.$$

Since T_1 is *M*-hyponormal and S_1 is normal, it follows from [17] (Theorem 1) that T_1 is normal operator unitarily equivalent to S_1 . Consequently, $\overline{\operatorname{ran}(T^k)}$ reduces T and so $T_2 = 0$ by Lemma 2.1. Since $X^*(\ker(T^{*k})) \subset \ker(S^{*k}) = \ker(S^*)$,

$$X^*T_3^*x = X^*T^*x = S^*X^* = 0$$

for each $x \in \ker(T^{*k})$. Since X has dense range, X^* is one-to-one. Therefore, $T_3^*x = 0$ for each $x \in \ker(T^{*k})$. Hence, $T_3 = 0$ and so $T = \begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix}$ is normal.

Proposition 2.6 [16]. Let $T \in B(\mathcal{H})$ be dominant and $\delta \subseteq \mathbb{C}$ be closed. If there exists a bounded function $f(z) : \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(T - zI)f(z) \equiv x$ for some non-zero $x \in \mathcal{H}$, then f(z) is analytic on $\mathbb{C} \setminus \delta$.

The above result proved for hyponormal operators by Radjabalipour [13]. This result for kquasihyponormal with a condition $0 \notin \delta$ and its consequences has been studied by Gupta [2]. In the following theorem, we show this result hold true in the case of k-quasi-M-hyponormal operators.

Theorem 2.4. Let $T \in B(\mathcal{H})$ be k-quasi-M-hyponormal and $0 \notin \delta \subseteq \mathbb{C}$ be closed. If there exists a bounded function $f(\lambda) : \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(T - \lambda I)f(\lambda) \equiv x$ for some non-zero $x \in \mathcal{H}$, then f is analytic at every non-zero point and hence f has analytic extension everywhere on $\mathbb{C} \setminus \delta$.

Proof. Suppose that T is k-quasi-M-hyponormal. By Proposition 2.1, decompose T on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k})$ as follows:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix},$$

where $T_1 = T|_{\overline{\operatorname{ran}(T^k)}}$ is *M*-hyponormal and $T_3^k = 0$.

Let $f(\lambda) = f_1(\lambda) \oplus f_2(\lambda)$ and $x = x_1 \oplus x_2$ are the decomposition of f and x, respectively. Then

$$(T_1 - \lambda I)f_1(\lambda) + T_2f_2(\lambda) \equiv x_1,$$

 $(T_3 - \lambda I)f_2(\lambda) \equiv x_2.$

Since $T_3^k = 0$ and $0 \notin \delta$, $f_2(\lambda) = (T_3 - \lambda I)^{-1} x_2$ ($\lambda \neq 0$) can be extended to a bounded entire function. Since k-quasi-M-hyponormal operators satisfies single valued extension property, we conclude $x_2 = 0$ (see [8], Proposition 1.2.16 9(f)). Hence $f_2(\lambda) = 0$. Therefore, for all $\lambda \notin \delta$,

$$(T_1 - \lambda I)f(\lambda) \equiv x_1.$$

M-hyponormality of T_1 ensures $f_1(\lambda)$ is analytic at every non zero point and has analytic extension every where on $\mathbb{C}\setminus\delta$ by Proposition 2.6.

If T and T^* are M-hyponormal, then T is normal [14]. Gupta [2] proved if T and T^* are k-quasihyponormal and T is injective, then T is normal. Now we establish a similar result for k-quasi-M-hyponormal operators.

Corollary 2.4. Let T be dominant or k-quasi-M-hyponormal and S^* be k-quasi-M-hyponormal. If either T or S is injective and S is a quasiaffine transform of T, then T and S are unitarily equivalent normal operators. In particular, if T, T^* are k-quasi-M-hyponormal and T is injective, then T is normal.

Proof. Let T be dominant or k-quasi-M-hyponormal and S^* be k-quasi-M-hyponormal. Since S^* is k-quasi-M-hyponormal, there exists a real positive number M such that $||(S - \lambda I)S^{*k}|| \le M||(S - \lambda I)^*S^{*k}||$. Therefore,

$$S^{k}(S - \lambda I)^{*}(S - \lambda I)S^{*k} \le M(S - \lambda I)(S - \lambda I)^{*}.$$

Applying [14] (Theorem 2), it follows that

$$(S - \lambda)(S - \lambda)^* \ge c^2 |(SS^* - S^*S)S^k|^2$$

for some c > 0, where |.| denote the positive part of operator. If $S^k(SS^* - S^*S) \neq 0$, then by [12] (Theorem 1) there exists a bounded function $f(\lambda) : \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(S - \lambda I)f(\lambda) \equiv x$ for some non-zero $x \in \mathcal{H}$ and so

$$(T - \lambda I)Xf(\lambda) \equiv Xx.$$

If T is k-quasi-M-hyponormal, then, by Theorem 2.4, we have Xx = 0. If T is dominant, then we obtain Xx = 0 by Proposition 2.6. Ultimately, x = 0, a contradiction. Therefore,

$$S^{k}(SS^{*} - S^{*}S) = 0.$$

Since S is a quasiaffine transform of T, TX = XS for injective operator $X \in B(\mathcal{H})$. If T is injective, then S is injective, Since $S^k(SS^* - S^*S) = 0$, S is normal. Then the required result follows by Theorem 2.3.

Spectral manifold (analytic), denoted by $X_T(\delta)$, of an operator $T \in B(\mathcal{H})$ is defined as follows:

 $X_T(\delta) = \big\{ x \in H : (T - \lambda I) f(\lambda) \equiv x \text{ for some analytic function } f(\lambda) : \mathbb{C} \setminus \delta \to \mathcal{H} \big\}.$

If a closed subspace \mathcal{M} of \mathcal{H} is said to be hyperinvariant of T if \mathcal{M} is invariant under every operator which commutes with T.

From Theorem 2.4, $X_T(\delta) \neq \{0\}$ for k-quasi-M-hyponormal operators and it is known that k-quasi-M-hyponormal operators satisfies single valued extension property. The above results yields the following result by the method of [13] (Proposition 2).

Corollary 2.5. Let $T \in B(\mathcal{H})$ be k-quasi-M-hyponormal and $0 \notin \delta \subseteq \mathbb{C}$ be closed. If there exists a bounded function $f : \mathbb{C} \setminus \delta \to \mathcal{H}$ such that $(T - \lambda I)f(\lambda) \equiv x$ for some non-zero $x \in H$, then T has non-zero hyperinvariant subspace \mathcal{M} with $\sigma(T|_{\mathcal{M}}) \subseteq \delta$. In particular, \mathcal{M} is a nontrivial invariant subspace of T if δ is proper subset of $\sigma(T)$.

3. Quasisimilarity. Equality of spectra of quasisimilar k-quasihyponormal operators has been proved in [3] by Gupta and Ramanujan. In Theorem 3.1, we show that spectrum of quasisimilar k-quasi-M-hyponormal operators are same. Recall, a subspace \mathcal{M} of \mathcal{H} is called *spectral maximal space* for T if \mathcal{M} contains every invariant subspace C of T for which $\sigma(T|_{\mathcal{C}}) \subset \sigma(T|_{\mathcal{M}})$. An operator $T \in B(\mathcal{H})$ is said to be decomposable if for any finite open covering $\{U_1, U_1, \ldots, U_1\}$ of spectrum of T, there exist spectral maximal subspaces $\mathcal{M}_1, \mathcal{M}_2, \ldots, \mathcal{M}_n$ of T such that

(a) $\mathcal{H} = \mathcal{M}_1 + \mathcal{M}_2 + \ldots + \mathcal{M}_n$

and

(b) $\sigma(T|_{\mathcal{M}_i}) \subset U_i$ for $i = 1, 2, \ldots, n$.

We say that an operator T is subdecomposable operator if it is the restriction of a decomposable operator to its invariant space (see [8]). It is well-known that T is decomposable if and only if T has Bishop property (β). The following result of Yang [20] is crucial to our purpose. It is known that two quasisimilar M-hyponormal operators have equal spectrum.

Proposition 3.1 ([20], Corollary 2.2). Let $S \in B(\mathcal{H})$ and $T \in B(\mathcal{K})$ be two quasisimilar subdecomposible operators. Then $\sigma(T) = \sigma(S)$.

Theorem 3.1. If k-quasi-M-hyponormal operators $T, S \in B(\mathcal{H})$ are quasisimilar, then they have equal spectrum.

Proof. Let $T, S \in B(\mathcal{H})$ be k-quasi-M-hyponormal operators. From [5], T and S satisfies Bishop property (β) and hence T and S are subdecomposible operators. Then, by Proposition 3.1, it follows that spectrum of T and S are equal.

Two operators $T \in B(\mathcal{H})$ and $S \in B(\mathcal{K})$ are densely similar if there exist $X \in B(\mathcal{H}, \mathcal{K})$ and $Y \in B(\mathcal{K}, \mathcal{H})$ such that XT = SX and YS = TY, and are with dense ranges.

Theorem 3.2. If k-quasi-M-hyponormal operators $T, S \in B(\mathcal{H})$ are densely similar, then they have equal essential spectrum.

Proof. Since T and S are k-quasi-M-hyponormal operators, both T and S satisfies Bishop property (β) . Then, by applying [8] (Theorem 3.7.13), it follows that essential spectrum of T and S are equal.

The following result is due to Yang [20].

Proposition 3.2 ([20], Theorem 2.10). Let $S \in B(\mathcal{H})$ and $T \in B(\mathcal{K})$ be two quasisimilar *M*-hyponormal operators. Then $\sigma_e(T) = \sigma_e(S)$.

Equality of essential spectrum of quasisimilar (p, k) quasihyponormal operators has been investigated by Kim and Kim [7]. Let $M_Q = \begin{pmatrix} S & Q \\ 0 & T \end{pmatrix}$ is an 2×2 upper-triangular operator matrix acting on the Hilbert space $\mathcal{H} \oplus \mathcal{K}$ and let $\sigma_e(T)$ denote the essential spectrum of T in $B(\mathcal{H})$.

Now we prove two quasisimilar k-quasi-M-hyponormal operators have equal essential spectra. The following result is due to Kim and Kim [7].

Proposition 3.3 [7]. Let $\sigma_e(S) \cap \sigma_e(T)$ has no interior points. Then, for every $Q \in B(\mathcal{K}, \mathcal{H})$,

$$\sigma_e(M_Q) = \sigma_e(S) \cup \sigma_e(T). \tag{3.1}$$

Theorem 3.3. If k-quasi-M-hyponormal operators $T, S \in B(\mathcal{H})$ are quasisimilar, then they have equal essential spectrum.

Proof. Let $T, S \in B(H)$ be quasisimilar k-quasi-M-hyponormal operators. Then there exist quasiaffinities X and Y such that XT = SX and YS = TY. By Proposition 2.1, decompose T and S as follows:

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker(T^{*k})$

and

$$S = \begin{pmatrix} S_1 & S_2 \\ 0 & S_3 \end{pmatrix}$$
 on $\mathcal{H} = \overline{\operatorname{ran}(S^k)} \oplus \ker(S^{*k}),$

where $T_1 = T|_{\overline{\operatorname{ran}(T^k)}}$, $S_1 = T|_{\overline{\operatorname{ran}(S^k)}}$ are *M*-hyponormal operators, $\sigma(T) = \sigma(T_1) \cup \{0\}$ and $\sigma(S) = \sigma(S_1) \cup \{0\}$. Since quasisimilar *M*-hyponormal operators, have same essential spectrum (see Proposition 3.2), in view of Propositions 2.1 and 3.3, it is enough to show that domain of T_3 is $\{0\}$ if and only if domain of S_3 is $\{0\}$. Since XT = SX, $XT^k = S^kX$. Let $0 \neq x \in H$ such that $T^{*k}x = 0$. Then, by the equality $XT^k = S^kX$, we have $S^{*k}Y^* = 0$. Since Y^* is one-to-one, we get that domain of S_3 is $\{0\}$ implies domain of T_3 is $\{0\}$. By a similar argument as above using the equality YS = TY we obtain domain of T_3 is $\{0\}$ implies domain of S_3 is $\{0\}$.

References

- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17, 413–415 (1966).
- B. C. Gupta, An extension of Fuglede Putnam theorem and normality of operators, Indian J. Pure and Appl. Math., 14, № 11, 1343 – 1347 (1983).
- 3. B. C. Gupta, P. B. Ramanujan, On k-quasihyponormal operators-II, Bull. Aust. Math. Soc., 83, 514-516 (1981).
- 4. P. R. Halmos, A Hilbert space problem book, second ed., Springer-Verlag, New York (1982).
- 5. S. Mecheri, On k-quasi-M-hyponormal operators, Math. Inequal. Appl., 16, 895–902 (2013).
- 6. S. Mecheri, Fuglede Putnams theorem for class A operators, Colloq. Math., 138, 183–191 (2015).
- A. H. Kim, I. H. Kim, Essential spectra of quasisimilar (p, k) quasihyponormal operators, J. Inequality and Appl., 1-7 (2006).
- 8. K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Clarendon Press, Oxford (2000).
- M. S. Moslehian, S. M. S. Nabavi Sales, Fuglede Putnam type theorems via the Aluthge transform, Positivity, 17, № 1, 151–162 (2013).
- R. L. Moore, D. D. Rogers, T. T. Trent, A note on intertwining M-hyponormal operators, Proc. Amer. Math. Soc., 83, 514–516 (1981).
- 11. C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J., 18, 33-36 (1971).
- 12. C. R. Putnam, Hyponormal contraction and strong power convergence, Pacif. J. Math., 57, 531-538 (1975).
- 13. M. Radjabalipour, *Ranges of hyponormal operators*, Illinois J. Math., **21**, 70–75 (1977).
- 14. M. Radjabalipour, On majorization and normality of operators, Proc. Amer. Math. Soc., 62, 105-110 (1977).
- 15. K. Takahashi, On the converse of Fuglede Putnam theorem, Acta Sci. Math. (Szeged), 43, 123–125 (1981).
- 16. J. G. Stampfli, B. L. Wadhwa, On dominant operators, Monatsh. Math., 84, 143-153 (1977).
- J. G. Stampfli, B. L. Wadhwa, An asymmetric Putnam Fuglede theorem for dominant operators, Indiana Univ. Math. J., 25, 359–365 (1976).
- 18. S. Jo, Y. Kim, E. Ko, On Fuglede Putnam properties, Positivity, 19, 911-925 (2015).
- 19. K. Tanahashi, S. M. Patel, A. Uchiyama, On extensions of some Fuglede Putnam type theorems involving (p, k)quasihyponormal, spectral, and dominant operators, Math. Nachr., **282**, No 7, 1022 – 1032 (2009).
- 20. L. M. Yang, Quasisimilarity of hyponormal and subdecomposable operators, J. Funct. Anal., 112, 204-217 (1993).
- 21. T. Yoshino, Remark on the generalized Putnam-Fuglede theorem, Proc. Amer. Math. Soc., 95, 571-572 (1985).
- 22. F. Zuo, S. Mecheri, *Spectral properties of k-quasi-M-hyponormal operators*, Complex Anal. and Oper. Theory, **12**, 1877–1887 (2018).

Received 03.02.20