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Automorphisms of semigroups
of k-linked upfamilies
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Abstract. A family A of non-empty subsets of a set X is called an
upfamily if for each set A ∈ A any set B ⊃ A belongs to A. An upfamily
L is called k-linked if

∩
F ̸= ∅ for any subfamily F ⊂ L of cardinality

|F| ≤ k. The extension Nk(X) consists of all k-linked upfamilies on X.
Any associative binary operation ∗ : X ×X → X can be extended to an
associative binary operation ∗ : Nk(X)×Nk(X) → Nk(X). In the paper,
we study automorphisms of the extensions of groups, finite monogenic
semigroups and describe the automorphism groups of extensions of null
semigroups, almost null semigroups, right zero semigroups and left zero
semigroups.
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Introduction

In this paper, we investigate the automorphism groups of the exten-
sions Nk(S) of a semigroup S. The thorough study of various exten-
sions of semigroups was started in [13] and continued in [1–10, 14–19].
The largest among these extensions is the semigroup υ(S) of all upfam-
ilies on S. A family A of non-empty subsets of a set X is called an
upfamily if for each set A ∈ A any subset B ⊃ A of X belongs to
A. Each family B of non-empty subsets of X generates the upfamily
⟨B⟩ := {A ⊂ X : ∃B ∈ B (B ⊂ A)}. An upfamily F that is closed
under taking finite intersections is called a filter. A filter U is called an
ultrafilter if U = F for any filter F containing U . The family β(X) of
all ultrafilters on a set X is called the Stone-Čech compactification of X,
see [20, 24]. An ultrafilter ⟨{x}⟩, generated by a singleton {x}, x ∈ X,
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is called principal. Each point x ∈ X is identified with the principal ul-
trafilter ⟨{x}⟩ generated by the singleton {x}, and hence we can consider
X ⊂ β(X) ⊂ υ(X). It was shown in [13] that any associative binary op-
eration ∗ : S×S → S can be extended to an associative binary operation
∗ : υ(S)× υ(S) → υ(S) by the formula

A ∗ B =
⟨ ∪

a∈A
a ∗Ba : A ∈ A, {Ba}a∈A ⊂ B

⟩
for upfamilies A,B ∈ υ(S). In this case the Stone-Čech compactification
β(S) is a subsemigroup of the semigroup υ(S).

The semigroup υ(S) contains many other important extensions of S.
In particular, it contains the semigroups Nk(S) of k-linked upfamilies for
k ∈ N \ {1}. An upfamily L ∈ υ(S) is called k-linked if

∩
F ≠ ∅ for any

subfamily F ⊂ L of cardinality |F| ≤ k. The space Nk(S) is well-known
in General and Categorial Topology, see [22–25].

For a finite set X the cardinality of the set Nk(X) growth very quickly
as |X| tends to infinity. The calculation of the cardinality of Nk(X)
seems to be a difficult combinatorial problem related to the still unsolved
Dedekind’s problem of calculation of the number M(n) of all monotone
Boolean functions of n Boolean variable, see [11].

We were able to calculate the cardinalities of Nk(X) only for sets X
of cardinality |X| ≤ 5, see [12]. The results of (computer) calculations
are presented in Table 1.

|X| |N2(X)| |N3(X)| |N4(X)|
1 1 1 1

2 3 3 3

3 11 10 10

4 80 54 53

5 2645 762 687

Table 1: The cardinalities of Nk(X) for sets X of cardinality |X| ≤ 5

Each map f : X → Y for each k ∈ N \ {1} induces the map

Nkf : Nk(X) → Nk(Y ), Nkf : M 7→
⟨
f(M) :M ∈ M

⟩
, see [12].

If φ : S → S′ is a homomorphism of semigroups, then for each k ∈
N \ {1}, the map Nkφ : Nk(S) → Nk(S

′) is a homomorphism as well,
see [13].
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Recall that an isomorphism between semigroups S and S′ is bijective
function ψ : S → S′ such that ψ(xy) = ψ(x)ψ(y) for all x, y ∈ S. If
there exist an isomorphism between S and S′, then S and S′ are said to
be isomorphic, denoted S ∼= S′. An isomorphism ψ : S → S is called an
automorphism of a semigroup S. By Aut(S) we denote the automorphism
group of a semigroup S.

A non-empty subset I of a semigroup S is called an ideal if IS∪SI ⊂ I.
An ideal I of a semigroup S is said to be proper if I ̸= S. A proper ideal
M of S is maximal if M coincides with each proper ideal I of S that
contains M . An element z of a semigroup S is called a zero (resp. a left
zero, a right zero) in S if az = za = z (resp. za = z, az = z) for any
a ∈ S. An element e of a semigroup S is called an idempotent if ee = e.
By E(S) we denote the set of all idempotents of a semigroup S.

1. Extending automorphisms from a semigroup
to its extensions

In this section we show that for each k ∈ N \ {1} any automorphism
of a semigroup S can be extended to an automorphism of its extension
Nk(S) and the automorphism group Aut(Nk(S)) of the extension Nk(S)
of a semigroup S contains a subgroup, isomorphic to the group Aut(S).

The following propositions are corollaries of the functoriality of Nk in
the category of semigroups, see [3, 24].

Proposition 1.1. If ψ : S → S is an automorphism of a semigroup
S, then for each k ∈ N \ {1} the map Nkψ : Nk(S) → Nk(S) is an
automorphism of the extension Nk(S).

Proposition 1.2. For each k ∈ N \ {1} the automorphism group
Aut(Nk(S)) of the extension Nk(S) of a semigroup S contains a sub-
group, isomorphic to the automorphism group Aut(S) of S.

2. The automorphism groups of the extensions Nk(G)
of a group G

In this section we shall study automorphisms of extensions Nk(G) of
a group G.

Proposition 2.1. Let G be a group, k ∈ N\{1}. If ψ : Nk(G) → Nk(G)
is an automorphism, then ψ(G) = G.

Proof. It was shown in [8, Proposition 4.2] that Nk(G) \G is an ideal of
Nk(G). Let us prove thatNk(G)\G is the unique maximal ideal ofNk(G).



V. M. Gavrylkiv 499

Indeed, let I be any ideal ofNk(G). If g ∈ G∩I, thenNk(G) = gNk(G) ⊂
I, and hence I = Nk(G). Consequently, Nk(G) \G contains each proper
ideal of Nk(G). Taking into account that the set of maximal ideals of
a semigroup is preserved by isomorphisms and Nk(G) \ G is the unique
maximal ideal of Nk(G), we conclude that ψ(Nk(G) \ G) = Nk(G) \ G.
Therefore, ψ(G) = G.

Corollary 2.2. Each automorphism of Nk(G) is an extension of an
automorphism of a group G.

Next we shall describe the structure of the automorphism groups of
extensions Nk(G) of finite groups G of cardinality |G| ≤ 3.

Before describing the structure of extensions of finite groups, let us
make some remarks concerning the structure of a semigroup S containing
a group G with the identity element which also is a left identity of S. In
this case S can be thought as a G-space endowed with the left action of
the group G. So we can consider the orbit space S/G = {Gs : s ∈ S}
and the projection π : S → S/G. If G lies in the center of the semigroup
S (which means that the elements of G commute with all the elements
of S), then the orbit space S/G admits a unique semigroup operation
turning S/G into a semigroup and the orbit projection π : S → S/G into
a semigroup homomorphism. If s ∈ S is an idempotent, then the orbit Gs
is a group isomorphic to a quotient group of G. A subsemigroup T ⊂ S
will be called a transversal semigroup if the restriction π : T → S/G is an
isomorphism of the semigroups. If S admits a transversal semigroup T ,
then it is a homomorphic image of the product G×T under the semigroup
homomorphism

h : G× T → S, h : (g, t) 7→ gt.

This helps to recover the algebraic structure of S from the structure of a
transversal semigroup.

2.1. The semigroups Nk(C1)

For the cyclic group C1 the semigroups Nk(C1), k ≥ 2, are isomorphic
to C1. Therefore, Aut(Nk(C1)) ∼= Aut(C1) ∼= C1.

2.2. The semigroups Nk(C2)

For the cyclic group C2 the semigroups Nk(C2), k ≥ 2, contain two
principal ultrafilters and the k-linked upfamily {C2} which is the zero
in Nk(C2). The semigroups Nk(C2) are isomorphic to the semigroup
{−1, 0, 1}. Since the zero is preserved by automorphisms of semigroups,
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each automorphism of C2 is extended to the unique automorphism of
Nk(C2) by Corollary 2.2. Therefore, Aut(Nk(C2)) ∼= Aut(C2) ∼= C1.

2.3. The semigroups Nk(C3)

Consider the cyclic group C3 = ⟨a⟩ = {e, a, a2 : a3 = e} generated by
a = e2πi/3 ∈ C.

Let us introduce the notations

|xy = |yx = ⟨{x, y}⟩,
∨x = {F ⊂ C3 : |F | ≥ 2, x ∈ F},
△ = {F ⊂ C3 : |F | ≥ 2},
⃝ = {C3}.

In these notations Nk(C3) = {e, a, a3, |ae , |a
2

e , |a
2

a ,∨e,∨a,∨a2 ,⃝} for
k ≥ 3 and N2(C3) = Nk(C3) ∪ {△}.

∗ a a2 e |a2a |ae |a2e ∨a2 ∨a ∨e ⃝ △

a a2 e a |a2e |a2a |ae ∨e ∨a2 ∨a ⃝ △
a2 e a a2 |ae |a2e |a2a ∨a ∨e ∨a2 ⃝ △
e a a2 e |a2a |ae |a2e ∨a2 ∨a ∨e ⃝ △
|a2a |a2e |ae |a2a ⃝ ⃝ ⃝ |ae |a2e |a2a ⃝ △
|ae |a2a |a2e |ae ⃝ ⃝ ⃝ |a2e |a2a |ae ⃝ △
|a2e |ae |a2a |a2e ⃝ ⃝ ⃝ |a2a |ae |a2e ⃝ △
∨a2 ∨e ∨a ∨a2 ⃝ ⃝ ⃝ ∨a ∨e ∨a2 ⃝ △
∨a ∨a2 ∨e ∨a ⃝ ⃝ ⃝ ∨e ∨a2 ∨a ⃝ △
∨e ∨a ∨a2 ∨e ⃝ ⃝ ⃝ ∨a2 ∨a ∨e ⃝ △
⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ △

△ △ △ △ ⃝ ⃝ ⃝ △ △ △ ⃝ △

Table 2: The Cayley table for the semigroups Nk(C3)

Analyzing the Cayley Table 2 for the semigroups Nk(C3) we can es-
tablish the following properties.

The semigroup N2(C3) contains 11 elements among them there are
4 idempotents: e, ∨e, ⃝, △. Two idempotents are right zeros. The
orbit semigroup N2(C3)/C3 contains 5 elements. The semigroup N2(C3)
contains a transversal semigroup T (N2(C3)) = {e, |ae ,∨e,⃝,△}.
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For k ≥ 3 the semigroups Nk(C3) contain 10 elements among them
there are 3 idempotents e, ∨e, ⃝ which commute. The set E(Nk(C3)) of
idempotents of Nk(C3) is isomorphic to the semilattice 3 = {0, 1, 2} en-
dowed with the operation of minimum. The orbit semigroups Nk(C3)/C3

contain 4 elements. The semigroups Nk(C3) contain transversal semi-
groups T (Nk(C3)) = {e, |ae ,∨e,⃝}.

Therefore, Nk(C3) = {x, x · |ae , x · ∨e,⃝ | x ∈ C3} for k ≥ 3 and
N2(C3) = Nk(C3) ∪ {△}.

We shall prove that the automorphism groups Aut(Nk(C3)) of the
semigroupsNk(C3) are isomorphic to the holomorph Hol(C3) of the group
C3.

We recall that the holomorph Hol(G) of a group G (see [23]) is the
semi-direct product GoAut(G) := (G×Aut(G), ⋆) of the group G with
its automorphism group Aut(G), endowed with the group operation

(x, f) ⋆ (y, g) = (x · f(y), f ◦ g).

It is known1 that for the cyclic group C3 its holomorph Hol(C3) is iso-
morphic to the symmetric group S3.

Proposition 2.3. For each k ∈ N \ {1}, the automorphism group
Aut(Nk(C3)) is isomorphic to the holomorph Hol(C3) of the cyclic group
C3 and hence is isomorphic to the symmetric group S3.

Proof. Let ψ : Nk(C3) → Nk(C3) be an automorphism. Then the re-
striction of ψ to C3 is an automorphism of C3 by Proposition 2.1, and
hence ψ(e) = e.

Since the semigroup N2(C3) contains two right zeros and the set of
right zeros is preserved by automorphisms of semigroups, ψ({△,⃝}) =
{△,⃝} for any automorphism ψ : N2(C3) → N2(C3). Assume that
ψ(△) = ⃝ and ψ(⃝) = △, then ψ(△·|ae) = ψ(⃝) = △ but ψ(△)·ψ(|ae) =
⃝·ψ(|ae) ∈ ⃝·(N2(C3)\{△,⃝}) = {⃝}. So we arrive to a contradiction
with ψ ∈ Aut(N2(C3)). Therefore, ψ(△) = △ and ψ(⃝) = ⃝ for each
automorphism ψ : N2(C3) → N2(C3).

The k-linked upfamily ⃝ is the zero of semigroups Nk(C3) for k ≥ 3.
Since the zero is preserved by automorphisms of semigroups, ψ(⃝) = ⃝
for any automorphism ψ : Nk(C3) → Nk(C3), k ≥ 3.

Taking into account that ψ(E(Nk(C3))) = E(Nk(C3)), we conclude
that ψ(∨e) = ∨e for each ψ ∈ Aut(Nk(C3)), k ≥ 2. Therefore, ψ(x·∨e) =
ψ(x) · ψ(∨e) = ψ(x) · ∨e for any x ∈ C3.

Let ψ(|ae) = c · |ae for some c ∈ C3. Then ψ(x · |ae) = ψ(x) · c · |ae
for any x ∈ C3. It follows that an element c can be chosen from C3 in

1https://groupprops.subwiki.org/wiki/Holomorph of a group
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one of three ways and hence analyzing the Cayley Table 2 one can check
that each automorphism of C3 can be extended to an automorphism of
Nk(C3) exactly in three different ways.

For any pair (c, f) ∈ C3×Aut(C3) consider the automorphism ψ(c,f)

of Nk(C3) defined by

ψc,f (x) = f(x), ψc,f (x · ∨e) = f(x) · ∨e, ψc,f (x · |ae) = f(x) · c · |ae

for x ∈ C3, ψc,f (⃝) = ⃝,

and ψc,f (△) = △ for the semigroup N2(C3).

It follows that each automorphism of Nk(C3) is of the form ψc,f for
some (c, f) ∈ C3 ×Aut(C3).

Observe that for any (b, f), (c, g) ∈ C3×Aut(C3) and x ∈ C3 we get:

ψb,f ◦ ψc,g(x) = ψb,f (g(x)) = f ◦ g(x),
ψb,f ◦ ψc,g(x · ∨e) = ψb,f (g(x) · ∨e) = f ◦ g(x) · ∨e,

ψb,f ◦ ψc,g(x · |ae) = ψb,f (g(x) · c · |ae) = f ◦ g(x) · f(c) · b · |ae ,
ψb,f ◦ ψc,g(⃝) = ψb,f (⃝) = ⃝,

ψb,f ◦ ψc,g(△) = ψb,f (△) = △.

Consequently, ψb,f ◦ ψc,g = ψb·f(c),f◦g and hence for each k ∈ N \ {1}
the group Aut(Nk(C3)) is isomorphic to the holomorph Hol(C3) = C3 o
Aut(C3) ∼= C3 o C2 of the group C3, which is known to be isomorphic
to the symmetric group S3.

3. The automorphism groups of the extensions of finite
monogenic semigroups

A semigroup ⟨a⟩ = {an}n∈N generated by a single element a is called
monogenic or cyclic. If a monogenic semigroup is infinite, then it is
isomorphic to the additive semigroup N. A finite monogenic semigroup
S = ⟨a⟩ also has the simple structure, see [21]. There are positive integer
numbers r and m called the index and the period of S such that

• S = {a, a2, . . . , ar+m−1} and r +m− 1 = |S|;

• ar+m = ar;

• {ar, ar+1, . . . , ar+m−1} is a cyclic and the maximal subgroup of S
with the identity element e = an and generator an+1, where n ∈
m · N ∩ {r, . . . , r +m− 1}.
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From now on we denote by Mr,m a finite monogenic semigroup of
index r and period m, and the maximal subgroup of Mr,m is denoted by
Cm. Note that |Mr,m| = r +m− 1.

A homomorphism φ : S → I from a semigroup S into an ideal I ⊂ S
is called a homomorphic retraction if φ(a) = a for any element a ∈ I.

Let e be the identity element of the maximal subgroup Cm of a
monogenic semigroup Mr,m. The following lemma was proved in [15,
Lemma 1.3].

Lemma 3.1. The map φ : Mr,m → Cm, φ(x) = ex, is a homomorphic
retraction and φ(x)y = xy for any x ∈ Mr,m and y ∈ Cm.

Proposition 3.2. Let Mr,m be a monogenic semigroup of index r ≥ 3.
If ψ : Nk(Mr,m) → Nk(Mr,m) is an automorphism, then ψ(s) = s for
any s ∈ Mr,m.

Proof. Let Mr,m = ⟨a⟩ = {a, . . . , ar, . . . , ar+m−1} and assume that ψ(a) =
A ∈ Nk(Mr,m) \ {a}. Since ψ is an automorphism of Nk(Mr,m), ψ(a ∗
Nk(Mr,m)) = ψ(a) ∗ ψ(Nk(Mr,m)) = ψ(a) ∗ Nk(Mr,m). Hence the semi-
groups a ∗Nk(Mr,m) and A ∗Nk(Mr,m) are isomorphic. It is easy to see
that A ∗Nk(Mr,m) ⊂ a ∗Nk(Mr,m). Taking into account that in the ex-
tensions Nk(Mr,m) of a monogenic semigroup of index r ≥ 3 the equality
L ∗M = a2 implies L = M = a, we conclude that a2 ∈ a ∗Nk(Mr,m) \
A ∗ Nk(Mr,m), and hence |A ∗ Nk(Mr,m)| < |a ∗ Nk(Mr,m)|. This con-
tradiction proves that ψ(a) = a, and therefore, ψ(ai) = (ψ(a))i = ai for
any i ∈ {2, . . . , r +m− 1}.

Proposition 3.3. If ψ : Nk(M1,m) → Nk(M1,m) is an automorphism,
then ψ(M1,m) = M1,m.

Proof. Since a monogenic semigroup M1,m is isomorphic to the cyclic
group Cm, we conclude that ψ(M1,m) = M1,m according to Proposi-
tion 2.1.

The following theorem shows that there are exist automorphisms of
the semigroups Nk(S) that are not extensions of automorphisms of a
semigroup S.

Consider the monogenic semigroup M2,m =⟨a⟩= {a, . . . , am+1 | am+2 =
a2} and let

X = {M ∈ Nk(M2,m) | {a, am+1} ∈ M} \ {am+1}.

Theorem 3.4. A homomorphism ψ : M2,m → Nk(M2,m), ψ(a) = A,
can be extended to an automorphism ψ : Nk(M2,m) → Nk(M2,m) if and
only if A ∈ X. The automorphism group Aut(Nk(M2,m)) contains as a
subgroup the symmetric group SX.
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Proof. Let A ∈ X. Since for m ≥ 2, am is the identity of the cyclic group
Cm = {a2, . . . , am+1} and ay ∈ Cm, then ay = φ(ay) = am(ay) = am+1y
for any y ∈ M2,m according to Lemma 3.1. The monogenic semigroup
M2,1 = {a, a2} is a null semigroup with the zero a2 and hence ay = a2 =
a2y for any y ∈ M2,1. This implies that a∗M = A∗M andM∗a = M∗A
for any M ∈ Nk(M2,m), m ∈ N. Indeed, aM = {a, am+1}M ∈ A ∗ M
and Ma = M{a, am+1} ∈ M ∗ A for any M ∈ M, and hence a ∗M ⊂
A ∗ M and M ∗ a ⊂ M ∗ A. Since A ∋ {a, am+1} is k-linked, a ∈ A
or am+1 ∈ A for any A ∈ A. Taking into account that

∪
s∈A sMs ⊃

aMa ∈ a ∗ M or
∪

s∈A sMs ⊃ am+1Mam+1 = aMam+1 ∈ a ∗ M for any
basic set

∪
s∈A sMs ∈ A ∗ M, we conclude that A ∗ M ⊂ a ∗ M. Let∪

s∈M sAs ∈ M ∗ A. Since
∪

s∈M sAs ⊃
∪

s∈M (s{a} = s{am+1}) = Ma,
M∗A ⊂ M∗ a. Therefore, M∗A = M∗ a and A ∗M = a ∗M.

Note that {a2} = {a, am+1}{a, am+1} ∈ A∗A. Then the linkedness of
A∗A implies that A∗A = a2. By the same arguments a∗A = A∗a = a2.
Therefore, ψ(ai) = Ai = ai for any i ≥ 2.

Let us put ψ(A) = a and ψ(M) = M for anyM ∈ Nk(M2,m)\{a,A}.
Then above proved equalities imply that M∗L = ψ(M) ∗ ψ(L) for any
L,M ∈ Nk(M2,m). Since M ∗ L ∈ Nk(M2,m) \ {a,A} for any L,M ∈
Nk(M2,m), we have ψ(M∗L) = M∗L = ψ(M) ∗ ψ(L), and hence ψ is
an automorphism of M2,m.

Let A /∈ X. If ψ(a) = ai for some i ∈ {2, . . . ,m+1}, then ψ(M2,m) =
M2,m \ {a}, and thus ψ is not one-to-one. Therefore, A /∈ X∪M2,m, and
thus M2,m ⊂ a∗Nk(M2,m)\A∗Nk(M2,m). Consequently, |a∗Nk(M2,m)| >
|A ∗Nk(M2,m)|, and hence ψ can not be a bijection.

Let us prove that the automorphism group Aut(Nk(M2,m)) contains
as a subgroup the symmetric group SX. Let us extend any bijection ψ of
a set X to Nk(M2,m) putting ψ(L) = L for any L ∈ Nk(M2,m)\X. As we
have shown aboveM∗A = M∗a = M∗B and A∗M = a∗M = B∗M for
any A,B ∈ X, M ∈ Nk(M2,m). Also A∗B ∋ {a, am+1}{a, am+1} = {a2},
and the linkedness of A ∗ B implies that A ∗ B = a2 for any A,B ∈ X.
Taking into account that M ∗ L ∈ Nk(M2,m) \ {a,A} for any L,M ∈
Nk(M2,m), we conclude that ψ(M∗L) = M∗L. Therefore, ψ(M∗L) =
M ∗ L = ψ(M) ∗ ψ(L) for any L,M ∈ Nk(M2,m), and hence ψ is an
automorphism of Nk(M2,m).

Now we shall describe the structure of the automorphism groups of
semigroups of k-linked upfamilies on monogenic semigroups Mr,m of order
|Mr,m| ≤ 3.

It is well-known that Aut(Mr,m) ∼= C1 for r ≥ 2 and Aut(M1,m) ∼=
Aut(Cm) ∼= Cφ(m), where φ(m) is the value of Euler’s function for m ∈ N.
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3.1. The semigroups Nk(M1,1), Nk(M1,2) and Nk(M2,1)

For the trivial monogenic semigroup M1,1 the semigroups Nk(M1,1)
are trivial as well. Therefore, Aut(Nk(M1,1)) ∼= Aut(M1,1) ∼= Aut(C1) ∼=
C1.

For a semigroup Mr,m = ⟨a⟩ with m+r = 3 the semigroups Nk(Mr,m)
contain the two principal ultrafilters a, a2 and the k-linked upfamily
{Mr,m}.

Taking into account that M1,2 is isomorphic to C2, we conclude that
Aut(Nk(M1,2)) ∼= Aut(Nk(C2)) ∼= C1.

Consider the semigroup Nk(M2,1). The proof of Theorem 3.4 im-
plies that ψ(a2) = a2 for any ψ ∈ Aut(Nk(M2,1)). Then except for the
identity automorphism the group Aut(Nk(M2,1)) contains the automor-
phism ψ with ψ(a) = {M2,1}, ψ({M2,1}) = a according to Theorem 3.4.
Consequently, Aut(Nk(M2,1)) ∼= C2.

3.2. The semigroups Nk(M1,3)

The semigroup M1,3 is isomorphic to the cyclic group C3. Therefore,

Aut(Nk(M1,3)) ∼= Aut(Nk(C3)) ∼= S3.

3.3. The semigroups Nk(M2,2)

Consider the semigroup M2,2 = {a, a2, a3 | a4 = a2}. The semigroup
N2(M2,2) contains 11 elements while the semigroups Nk(M2,2) for k ≥ 3
have 10 elements.

In the Cayley Table 3 for Nk(M2,2) we denote by ai the principal
ultrafilter generated by {ai} and introduce the notations

|xy = |yx = ⟨{ax, ay}⟩, ∨x = {F ⊂ M2,2 : |F | ≥ 2, ax ∈ F}, ⃝ = {M2,2}.

In these notations

Nk(M2,2) = {a, a2, a3, |21, |31, |32,∨1,∨2,∨3,⃝}

for k ≥ 3 and N2(M2,2) = Nk(M2,2) ∪ {△}.
Let ψ ∈ Aut(Nk(M2,2)). Then ψ(ai) = ai for i ∈ {2, 3} according to

proof of Theorem 3.4. Since |32 is the unique idempotent in Nk(M2,2) \
M2,2, we conclude that ψ(|32) = |32.

Consider the semigroupsNk(M2,2) = {a, a2, a3, |21, |31, |32,∨1,∨2,∨3,⃝}
for k ≥ 3. Let X = {a, |31,∨1,∨3}, Y = {|21,∨2,⃝} and x ∈ X, y ∈ Y. As-
sume that ψ(y) = x ∈ X. Then ψ(y ∗ y) = ψ(|32) = |32 and ψ(y) ∗ ψ(y) =
x ∗ x = a2 which contradicts that ψ is an automorphism. Therefore,
ψ(x) ∈ X and ψ(y) ∈ Y for any x ∈ X, y ∈ Y.
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∗ a a2 a3 |21 |31 |32 ∨1 ∨2 ∨3 ⃝ △

a a2 a3 a2 |32 a2 |32 a2 |32 a2 |32 a2

a2 a3 a2 a3 |32 a3 |32 a3 |32 a3 |32 a3

a3 a2 a3 a2 |32 a2 |32 a2 |32 a2 |32 a2

|21 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32
|31 a2 a3 a2 |32 a2 |32 a2 |32 a2 |32 a2

|32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32
∨1 a2 a3 a2 |32 a2 |32 a2 |32 a2 |32 a2

∨2 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32
∨3 a2 a3 a2 |32 a2 |32 a2 |32 a2 |32 a2

⃝ |32 |32 |32 |32 |32 |32 |32 |32 |32 |32 |32
△ a2 a3 a2 |32 a2 |32 a2 |32 a2 |32 a2

Table 3: The Cayley table for the semigroups Nk(M2,2)

Analyzing the Cayley Table 3 for the semigroups Nk(M2,2) one can
establish that the semigroups Nk(M2,2) are commutative and x1 ∗ s =
x2 ∗ s, y1 ∗ s = y2 ∗ s, x1 ∗ y1 = x2 ∗ y2, x1 ∗ x2 = a2, y1 ∗ y2 = |32 for
any x1, x2 ∈ X, y1, y2 ∈ Y, s ∈ M2,2. Consequently, each permutation of
X and each permutation of Y define the automorphism of the semigroup
Nk(M2,2). Therefore, Aut(Nk(M2,2)) ∼= SX × SY ∼= S4 × S3 for k ≥ 3.

Consider the semigroup N2(M2,2) = Nk(M2,2) ∪ {△}. Let X′ = X ∪
{△}. By the same arguments Aut(N2(M2,2)) ∼= SX′ × SY ∼= S5 × S3.

3.4. The semigroups Nk(M3,1)

Consider the semigroup M3,1 = {a, a2, a3 | a4 = a3}. In Cayley
Table 4 for the semigroups Nk(M3,1) we use the similar notations as for
the semigroups Nk(M2,2).

Let ψ ∈ Aut(Nk(M3,1)). Then ψ(ai) = ai for i ∈ {1, 2, 3} according
to Proposition 3.2.

Consider the semigroupsNk(M3,1) = {a, a2, a3, |21, |31, |32,∨1,∨2,∨3,⃝}
for k ≥ 3. Let X = {|21, |31,∨1,⃝} and Y = {∨2,∨3}.

We claim that ψ(|32) = |32. Assume that ψ(|32) = x ∈ X. Then ψ(a ∗
|32) = ψ(a3) = a3 and ψ(a) ∗ ψ(|32) = a ∗ x = |32, and we arrive to a
contradiction with ψ ∈ Aut(Nk(M3,1)). In the same way assumming
that ψ(|32) = y ∈ Y we have ψ(a ∗ |21) = ψ(|32) = y but ψ(a) ∗ ψ(|21) =
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∗ a a2 a3 |21 |31 |32 ∨1 ∨2 ∨3 ⃝ △

a a2 a3 a3 |32 |32 a3 |32 a3 a3 |32 a3

a2 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

|21 |32 a3 a3 |32 |32 3 |32 a3 a3 |32 a3

|31 |32 a3 a3 |32 |32 3 |32 a3 a3 |32 a3

|32 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

∨1 |32 a3 a3 |32 |32 3 |32 a3 a3 |32 a3

∨2 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

∨3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

⃝ |32 a3 a3 |32 |32 3 |32 a3 a3 |32 a3

△ a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3

Table 4: The Cayley table for the semigroups Nk(M3,1)

a ∗ ψ(|21) /∈ Y. These contradictions show that ψ(|32) = |32.
Then in the same way as for the semigroups Nk(M2,2) we establish

that Aut(Nk(M3,1)) ∼= SX × SY ∼= S4 × S2 for k ≥ 3.
Consider the semigroup N2(M3,1) = Nk(M3,1) ∪ {△}. Let Y′ = Y ∪

{△}. By the same arguments Aut(N2(M3,1)) ∼= SX × SY′ ∼= S4 × S3.

4. The automorphism groups of the semigroups Nk(OX),
Nk(LOX), Nk(ROX), Nk(AOX) and Nk((OX)

+0)

A semigroup S is said to be a left (right) zero semigroup if ab = a
(ab = b) for any a, b ∈ S. By LOX and ROX we denote the left zero
semigroup and the right zero semigroup on a set X, respectively. If X is
finite of cardinality |X| = n, then instead of LOX and ROX we use LOn

and ROn, respectively.

Proposition 4.1. If S is a left (right) zero semigroup, then for each
k ∈ N \ {1} the extension Nk(S) is a left (right) zero semigroup as well.

Proof. Let S be a left zero semigroup. Then

L∗M =
⟨ ∪

a∈L
a∗Ma : L ∈ L, {Ma}a∈L ⊂ M

⟩
=
⟨ ∪

a∈L
{a} : L ∈ L

⟩
= L

for any L,M ∈ Nk(S). Therefore, Nk(S) is a left zero semigroup as well.
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For a right zero semigroup the proof is similar.

Proposition 4.2. If X is a left zero semigroup or a right zero semigroup,
then for each k ∈ N \ {1}, Aut(Nk(X)) is isomorphic to the symmetric
group SNk(X).

Proof. In Proposition 4.1 it was shown that the extensions Nk(S) of a
left (right) zero semigroup S are left (right) zero semigroups as well.
Each permutation on a left (right) zero semigroup is an automorphism.
Indeed, ψ(x∗ y) = ψ(x) = ψ(x) ∗ψ(y) and ψ(x∗ y) = ψ(y) = ψ(x)∗ψ(y)
for any elements x and y of the left zero semigroup and the right zero
semigroup, respectively. Therefore, Aut(Nk(X)) ∼= SNk(X).

Using the results of Table 1 and Proposition 4.2 in Table 5 we present
the automorphism groups of the semigroups Nk(LOn) and
Nk(ROn) for k ∈ {2, 3, 4} and n ≤ 5.

n Aut(N2(LOn)) Aut(N3(LOn)) Aut(N4(LOn))

1 C1 C1 C1

2 S3 S3 S3

3 S11 S10 S10

4 S80 S54 S53

5 S2645 S762 S687

Table 5: The automorphism groups of the semigroups Nk(LOn) for k ∈
{2, 3, 4} and n ≤ 5

A semigroup S is called a null semigroup if there exists an element
z ∈ S such that xy = z for any x, y ∈ S. In this case the element z is
the zero of S. All null semigroups on the same set are isomorphic. By
OX we denote a null semigroup on a set X. If X is finite of cardinality
|X| = n, then instead of OX we use On.

Proposition 4.3. If S is a null semigroup, then for each k ∈ N \ {1}
the extension Nk(S) is a null semigroup as well.

Proof. Let S be a null semigroup. Then there exists z ∈ S such that
xy = z for all x, y ∈ S. Therefore,

L ∗M =
⟨ ∪

a∈L
a ∗Ma : L ∈ L, {Ma}a∈L ⊂ M

⟩
=
⟨ ∪

a∈L
{z} : L ∈ L, {Ma}a∈L ⊂ M

⟩
= z
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for any L,M ∈ Nk(S). Consequently, Nk(S) is a null semigroup with the
zero z ∈ S ⊂ Nk(S).

Since Nk(O1) ∼= O1, the automorphism groups of the semigroups
Nk(O1) are trivial. In the following proposition we describe the auto-
morphism group of the semigroups Nk(OX) on a set X of cardinality
|X| ≥ 2.

Proposition 4.4. Let z be the zero of the null semigroup OX on a set
X of cardinality |X| ≥ 2. For each k ∈ N \ {1} the automorphism
group of the semigroup Nk(OX) is isomorphic to the symmetric group
SNk(OX)\{z}.

Proof. In Proposition 4.3 it was proved that the semigroups Nk(OX)
are null semigroups with the zero z. Taking into account that z is the
zero of the semigroups Nk(OX), we conclude that ψ(z) = z for any
ψ ∈ Aut(Nk(OX)). Each permutation on the set Nk(OX) \ {z} defines
an automorphism. Indeed, ψ(x ∗ y) = z = ψ(x) ∗ ψ(y) for any elements
x, y ∈ Nk(OX). Therefore, Aut(Nk(OX)) ∼= SNk(OX)\{z}.

Using the results of Table 1 and Proposition 4.4 in Table 6 we present
the automorphism groups of the semigroups Nk(On) for k ∈ {2, 3, 4} and
n ≤ 5.

n Aut(N2(On)) Aut(N3(On)) Aut(N4(On))

1 C1 C1 C1

2 C2 C2 C2

3 S10 S9 S9

4 S79 S53 S52

5 S2644 S761 S686

Table 6: The automorphism groups of the semigroups Nk(On) for k ∈
{2, 3, 4} and n ≤ 5

A semigroup S is said to be an almost null semigroup if there exist
the distinct elements a, z ∈ S such that aa = a and xy = z for any
(x, y) ∈ S × S \ {(a, a)}. In this case the element z is the zero of S and
a is the unique idempotent in S \ {z}. All almost null semigroups on the
same set are isomorphic. By AOX we denote an almost null semigroup
on a set X. If X is finite of cardinality |X| = n, then instead of AOX we
use AOn.
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It easy to check that the automorphism groups of the semigroups
Nk(AO2) are trivial. In the following theorem we describe the auto-
morphism groups of the semigroups Nk(AOX) on a set X of cardinality
|X| ≥ 3.

Theorem 4.5. Let z be the zero of the almost null semigroup AOX on
a set X of cardinality |X| ≥ 3, A = {L ∈ Nk(OAX) | X \ {a} ∈ L}, B =
Nk(OAX) \ A = {L ∈ Nk(OAX) | a ∈ L for any L ∈ L}, where a is the
idempotent in OAX \ {z}. For each k ∈ N \ {1} the automorphism group
of the semigroup Nk(AOX) is isomorphic to the group SA\{z}×SB\{a,|za}.

Proof. Let A ∈ A, L ∈ Nk(OAX). Then A∗L ∋ (X \{a}) ·L = {z} = L ·
(X\{a}) ∈ L∗A for any L ∈ L, and hence the linkedness ofA∗L and L∗A
implies that A ∗ L = L ∗ A = z for any A ∈ A, L ∈ Nk(OAX). Consider
any (B1,B2) ∈ B × B \ {(a, a)}. Taking into account that a ∈ B1 ∩ B2

and |B1| ≥ 2 or |B2| ≥ 2 for any B1 ∈ B1, B2 ∈ B2, we conclude that

B1 ∗ B2 =
⟨∪

x∈B1
x ∗Bx : B1 ∈ B1, {Bx}x∈B1 ⊂ B2

⟩
= |za.

Consequently, the semigroups Nk(AOX) contain three idempotents:
a, z and |za. Taking into account that z is the zero of Nk(OAX) and
the set of idempotents of a semigroup is preserved by automorphisms,
we conclude that ψ(z) = z, and hence ψ({a, |za}) = {a, |za} for any ψ ∈
Aut(Nk(AOX)). Since ψ(|z0) = ψ(z ∗ |z0) = ψ(z) ∗ ψ(z0) ∈ {z ∗ |z0, |z0 ∗
z} = {|z0}, we conclude ψ(|z0) = |z0, and hence ψ(z) = z for any ψ ∈
Aut(Nk((OX)+0)).

Let us show that ψ(A\{z}) = A\{z} and ψ(B\{a, |za}) = B\{a, |za} for
any ψ ∈ Aut(Nk(AOX)). Assume that ψ(B) = A for some A ∈ A \ {z},
B ∈ B\{a, |za}. Then ψ(B∗B) = ψ(|za) = |za but ψ(B)∗ψ(B) = A∗A = z.
This contradiction show that ψ(A) ∈ A \ {z}, ψ(B) ∈ B \ {a, |za} for any
A ∈ A \ {z}, B ∈ B \ {a, |za} and ψ ∈ Aut(Nk(AOX)).

Each permutation on the set A\{z} and each permutation on the set
B \ {a, |za} define the automorphism ψ : Nk(AOX) → Nk(AOX). Indeed,
ψ(a ∗ a) = ψ(a) = a = a ∗ a = ψ(a) ∗ ψ(a), ψ(A ∗ L) = ψ(z) = z =
ψ(A) ∗ ψ(L), ψ(L ∗ A) = ψ(z) = z = ψ(L) ∗ ψ(A) for any A ∈ A,
L ∈ Nk(OAX), and ψ(B1 ∗ B2) = ψ(|za) = |za = ψ(B1) ∗ψ(B2) for any any
(B1,B2) ∈ B× B \ {(a, a)}.

Therefore, Aut(Nk(OAX)) ∼= SA\{z} × SB\{a,|za}.

Let us note that for a subsemigroup T of a semigroup S the map
i : Nk(T ) → Nk(S), i : A → {L ⊂ S | L ⊃ A ∈ A}, is injective
homomophism, and thus we can identify the semigroup Nk(T ) with the
subsemigroup i(Nk(T )) ⊂ Nk(S). Therefore, the set A from Theorem 4.5
can be identified with the subsemigroup Nk(X \ {a}) of the semigroup
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Nk(X). Consequently, for finite almost null semigroups we have the fol-
lowing corollary.

Corollary 4.6. For each k ≥ 2 and n ≥ 3 the automorphism group
of the semigroup Nk(OAn) is isomorphic to the group S|Nk(n−1)|−1 ×
S|Nk(n)|−|Nk(n−1)|−3.

Using the results of Table 1 and Corollary 4.6 in Table 7 we present
the automorphism groups of the semigroups Nk(AOn) for k ∈ {2, 3, 4}
and n ∈ {2, 3, 4, 5}.

n Aut(N2(AOn)) Aut(N3(AOn)) Aut(N4(AOn))

2 C1 C1 C1

3 C2 × S5 C2 × S4 C2 × S4

4 S10 × S66 S9 × S41 S9 × S40

5 S79 × S2562 S53 × S705 S52 × S631

Table 7: The automorphism groups of the semigroups Nk(AOn) for k ∈
{2, 3, 4} and n ∈ {2, 3, 4, 5}

Let S be a semigroup and 0 /∈ S. The binary operation defined on S
can be extended to S ∪ {0} putting 0s = s0 = 0 for all s ∈ S ∪ {0}. The
notation S+0 denotes a semigroup S ∪ {0} obtained from S by adjoining
the extra zero 0 (regardless of whether S has or has not the zero).

Theorem 4.7. Let z be the zero of the null semigroup OX on a set X of
cardinality |X| ≥ 2, A = {L ∈ Nk((OX)+0) | X ∈ L}, B = Nk((OX)+0)\
A = {L ∈ Nk((OX)+0) | 0 ∈ L for any L ∈ L}, where 0 is the extra
zero adjointed to OX . For each k ≥ 2 the automorphism group of the
semigroup Nk((OX)+0) is isomorphic to the group SA\{z} × SB\{0,|z0}.

Proof. It is easy to see that 0 is the zero of Nk((OX)+0).

Let A1,A2 ∈ A. Then A1 ∗ A2 ∋ X · X = {z}. The linkedness
of A1 ∗ A2 implies that A1 ∗ A2 = z for any A1,A2 ∈ A. Consider
any B ∈ B \ {0}, L ∈ Nk((OX)+0) \ {0}. Taking into account that
0 ∈ B and |B| ≥ 2, |L| ≥ 2 for any B ∈ B, L ∈ L, we conclude that

B ∗ L =
⟨∪

x∈B x ∗ Lx : B ∈ B, {Lx}x∈B ⊂ L
⟩

= |z0 and L ∗ B =⟨∪
x∈L x ∗Bx : L ∈ L, {Bx}x∈L ⊂ B

⟩
= |z0.

Consequently, the semigroup Nk((OX)+0) contains three idempo-
tents: 0, z and |z0. Taking into account that 0 is the zero of Nk((OX)+0)
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and the set of idempotents of a semigroup is preserved by automor-
phisms, we conclude that ψ(0) = 0, and hence ψ({z, |z0}) = {z, |z0} for
any ψ ∈ Aut(Nk((OX)+0)). Since ψ(|z0) = ψ(z ∗ |z0) = ψ(z) ∗ ψ(|z0) ∈
{z ∗ |z0, |z0 ∗ z} = {|z0}, we conclude ψ(|z0) = |z0, and hence ψ(z) = z for any
ψ ∈ Aut(Nk((OX)+0)).

Let us show that ψ(A\{z}) = A\{z} and ψ(B\{0, |z0}) = B\{0, |z0} for
any ψ ∈ Aut(Nk((OX)+0)). Assume that ψ(A) = B for someA ∈ A\{z},
B ∈ B\{0, |z0}. Then ψ(A∗A) = ψ(z) = z but ψ(A)∗ψ(A) = B∗B = |z0.
This contradiction show that ψ(A) ∈ A \ {z}, ψ(B) ∈ B \ {0, |z0} for any
A ∈ A \ {z}, B ∈ B \ {0, |z0} and ψ ∈ Aut(Nk((OX)+0)).

Each permutation on the set A \ {z} and each permutation on the
set B \ {0, |z0} define the automorphism ψ : Nk((OX)+0) → Nk((OX)+0).
Indeed, ψ(0∗L) = ψ(0) = 0 = 0∗ψ(L) = ψ(0)∗ψ(L), ψ(L∗0) = ψ(0) =
0 = ψ(L) ∗ 0 = ψ(L) ∗ ψ(0), ψ(A1 ∗ A2) = ψ(z) = z = ψ(A1) ∗ ψ(A2)
for any L ∈ Nk((OX)+0), A1,A2 ∈ A, and ψ(B ∗ L) = ψ(|z0) = |z0 =
ψ(B) ∗ ψ(L), ψ(L ∗ B) = ψ(|z0) = |z0 = ψ(L) ∗ ψ(B) for any B ∈ B \ {0},
L ∈ Nk((OX)+0) \ {0}.

Therefore, Aut(Nk((OX)+0)) ∼= SA\{z} × SB\{0,|z0}.

The set A from Theorem 4.7 can be identified with the subsemigroup
Nk(OX) of the semigroupNk((OX)+0). Consequently, for finite null semi-
groups On we have the following corollary.

Corollary 4.8. For each k ≥ 2 and n ≥ 2 the automorphism group
of the semigroup Nk((On)

+0) is isomorphic to the group S|Nk(On)|−1 ×
S|Nk((On)+0)|−|Nk(On)|−3.

Using the results of Table 1 and Corollary 4.8 in Table 8 we present
the automorphism groups of the semigroups Nk((On)

+0)) for k ∈ {2, 3, 4}
and n ≤ 4.

n Aut(N2((On)
+0)) Aut(N3((On)

+0)) Aut(N4((On)
+0))

1 C1 C1 C1

2 C2 × S5 C2 × S4 C2 × S4

3 S10 × S66 S9 × S41 S9 × S40

4 S79 × S2562 S53 × S705 S52 × S631

Table 8: The automorphism groups of the semigroups Nk((On)
+0)) for

k ∈ {2, 3, 4} and n ≤ 4
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