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Abstract. We investigate the Hilbert boundary value problem for Bel-
trami equations ∂f = µ∂f with singularities in generalized quasidisks
D whose Jordan boundary ∂D consists of a countable collection of open
quasiconformal arcs and, in addition, maybe a countable collection of
points. Such generalized quasicircles can be nowhere even locally rectifi-
able but include, for instance, all piecewise smooth as well as all piecewise
Lipschitz Jordan curves.

Generally speaking, generalized quasidisks do not satisfy the stan-
dard (A)−condition in PDE by Ladyzhenskaya–Ural’tseva, in particular,
the outer cone touching condition as well as the quasihyperbolic boun-
dary condition by Gehring–Martio that we assumed in our last paper for
the uniformly elliptic Beltrami equations.

In essence, here we admit any countable collection of singularities of
the Beltrami equations on the boundary and arbitrary singularities inside
of the domain D of a general nature. As usual, a point in D is called
a singularity of the Beltrami equation if the dilatation quotient Kµ :=
(1 + |µ|)/(1− |µ|) is not essentially bounded in all its neighborhoods.

Presupposing that the coefficients of the problem are arbitrary func-
tions of countable bounded variation and the boundary data are ar-
bitrary measurable with respect to the logarithmic capacity, we prove
the existence of regular solutions of the Hilbert boundary value prob-
lem. As a consequence, we derive the existence of nonclassical solutions
of the Dirichlet, Neumann and Poincare boundary value problems for
equations of mathematical physics with singularities in anisotropic and
inhomogeneous media.
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1. Introduction

Let D be a domain in the complex plane C and let µ : D → C be a
measurable function with |µ(z)| < 1 a.e. A Beltrami equation is an
equation of the form

fz̄ = µ(z)fz (1.1)

where fz̄ = ∂̄f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, fx
and fy are partial derivatives of the function f in x and y, respectively.

The equation (1.1) is said to be nondegenerate if ||µ||∞ < 1, see
e.g. the monographs [3,11] and [35]. As usual, a point z0 ∈ D is called a
singularity of the Beltrami equation if the dilatation quotient

Kµ(z) :=
1 + |µ(z)|
1− |µ(z)|

(1.2)

is not bounded in all its neighborhoods.

Recall that Hilbert [25] studied the boundary value problem formu-
lated as follows: To find an analytic function f(z) in a domain D bounded
by a rectifiable Jordan contour C that satisfies the boundary condition

lim
z→ζ

Re {λ(ζ) f(z)} = φ(ζ) ∀ ζ ∈ C , (1.3)

where both the coefficient λ and the boundary date φ of the problem
are continuously differentiable with respect to the natural parameter s
on C.

Moreover, it was assumed by Hilbert that λ ̸= 0 everywhere on C.
The latter allows us, without loss of generality, to consider that |λ| ≡ 1
on C. Note that the quantity Re {λ f} in (1.3) means a projection of f
into the direction λ interpreted as vectors in R2.

We refer the reader to a rather comprehensive treatment of the theory
in the new excellent books [8, 9, 24, 56] and also recommend to make
familiar with the historic surveys contained in the monographs [16,39,57]
on the topic with an exhaustive bibliography and take a look at our recent
papers [20,23,45].

In our last paper [22] we studied the Hilbert boundary value prob-
lem in a wider class of functions than those of analytic. Namely, instead
of analytic functions we considered quasiconformal functions F rep-
resented as a composition of analytic functions A and quasiconformal
mappings f , see [35], Chapter VI. Recall that a quasiconformal map-
ping is a homeomorphic solution f of a nondegenerate equation (1.1)
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in the class W 1,2
loc . It is easy to see that every quasiconformal function

F = A ◦ f satisfies the same Beltrami equation as f.

Recall also that the images of the unit disk D = {z ∈ C : |z| < 1} un-
der quasiconformal mappings of C onto itself are called quasidisks and
their boundaries are called quasicircles or quasiconformal curves.
Similarly, images of open intervals under quasiconformal mappings are
called open quasiconformal arcs. We say that a Jordan curve is a
generalized quasicirle if it consists of a countable collection of open
quasiconformal arcs and, in addition, maybe a countable collection of
points. The corresponding Jordan domains are called generalized qua-
sidisks.

It is known that (piecewise) smooth and Lipschitz Jordan curve is
a (generalized) quasiconformal curve and, at the same time, (genera-
lized) quasiconformal curves can be locally nonrectifiable as it follows
from the known examples, see e.g. the point II.8.10 in [35]. On the other
hand, see Remark 3.2 in [22], quasicircles satisfied (A)–condition by
Ladyzhenskaya–Ural’tseva, which is standard in the theory of boundary
value problems for PDE, see e.g. the monograph [33]. However, genera-
lized quasicircles, generally speaking, have not this property.

Proceeding from the above, the problem under consideration in [22]
was to find quasiconformal functions satisfying both the Beltrami equa-
tion (1.1) in a Jordan domain D and the Hilbert boundary condition
(1.3). There we substantially weakened the regularity conditions both
on the functions λ and φ in the boundary condition (1.3) and on the
boundary C of the domain D.

Namely, we dealt with the coefficients λ of countable bounded
variation and measurable boundary data φ with respect to logarithmic
capacity. The fundamental Becker – Pommerenke result in [7] allowed
us to study the Hilbert boundary value problem in domains D with the
quasihyperbolic boundary condition by Gehring–Martio [17]. Such
domains may fail to satisfy the (A)–condition, see Remark 3.3 in [22].
Moreover, quasidisks had this property, see Remark 3.1 in [22], but ge-
neralized quasicircles, generally speaking, have not it.

Let D be a Jordan domain such that it has a tangent at a point
ζ ∈ ∂D. A path in D terminating at ζ is called nontangential if its part
in a neighborhood of ζ lies inside of an angle in D with the vertex at
ζ. The limit along all nontangential paths at ζ is called angular at the
point. The latter notion is a standard tool for the study of the boundary
behavior of analytic and harmonic functions, see e.g. [14], [30] and [42].
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Further, the Hilbert boundary condition (1.3) will be understood precisely
in the sense of the angular limit.

The notion of the logarithmic capacity is the important tool for our
research, see e.g. [12, 40, 41], because the sets of zero logarithmic capac-
ity are transformed under quasiconformal mappings into the sets of zero
logarithmic capacity. Note that, as it follows from the classic Ahlfors–
Beurling example, see [4], the sets of zero length as well as the sets of
zero harmonic measure are not invariant under quasiconformal mappings.
Dealing with measurable boundary date functions φ(ζ) with respect to
the logarithmic capacity, we will use the abbreviation q.e. (quasi-
everywhere) on a set E ⊂ C, if a property holds for all ζ ∈ E except
its subset of zero logarithmic capacity, see e.g. [34] for this term.

We say that a function f : D → C is a regular generalized solu-
tion of the Beltrami equation (1.1) if f is continuous, diskrete and
open, has the first generalized derivatives, satisfies (1.1) a.e. in D and,
moreover, its Jacobian Jf (z) ̸= 0 a.e. in D. We also say that f is a re-
gular generalized solution of the Hilbert boundary value prob-
lem (1.3) for the Beltrami equation (1.1) if f in addition satisfies (1.3)
q.e. on ∂D along nontangential paths in D.

Recall that a mapping f : D → C is called diskrete if the pre-image
f−1(z) consists of isolated points for every z ∈ C, and open if f maps
every open set U ⊆ D onto an open set in C. By the known Stoilow
result, see e.g. [54], every regular generalized solution f of (1.1) has the
representation f = A ◦ g where g is a regular homeomorphic solution of
(1.1) and A is an analytic function.

2. Logarithmic capacity and almost smooth domains

Given a bounded Borel set E in the plane C, a mass distribution
on E is a nonnegative completely additive function ν of a set defined on
its Borel subsets with ν(E) = 1. The function

Uν(z) :=

∫
E

log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dν(ζ) (2.1)

is called a logarithmic potential of the mass distribution ν at a point
z ∈ C. A logarithmic capacity C(E) of the Borel set E is the quantity

C(E) = e−V , V = inf
ν

Vν(E) , Vν(E) = sup
z

Uν(z) . (2.2)
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It is also well-known the following geometric characterization of the
logarithmic capacity, see e.g. the point 110 in [40]:

C(E) = τ(E) := lim
n→∞

V
2

n(n−1)
n (2.3)

where Vn denotes the supremum of the product

V (z1, . . . , zn) =

l=1,...,n∏
k<l

|zk − zl| (2.4)

taken over all collections of points z1, . . . , zn in the set E. Following
Fékete, see [15], the quantity τ(E) is called the transfinite diameter
of the set E.

Remark 2.1. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for
an arbitrary mapping f that is continuous by Hölder and, in particular,
for quasiconformal mappings on compact sets, see e.g. Theorem II.4.3
in [35].

In order to introduce sets that are measurable with respect to log-
arithmic capacity, we define, following [12], inner C∗ and outer C∗

capacities:

C∗(E) : = sup
F⊆E

C(E), C∗(E) : = inf
E⊆O

C(O) (2.5)

where supremum is taken over all compact sets F ⊂ C and infimum is
taken over all open sets O ⊂ C. A set E ⊂ C is called measurable
with respect to the logarithmic capacity if C∗(E) = C∗(E), and
the common value of C∗(E) and C∗(E) is still denoted by C(E).

A function φ : E → C defined on a bounded set E ⊂ C is called
measurable with respect to logarithmic capacity if, for all open
sets O ⊆ C, the sets

Ω = {z ∈ E : φ(z) ∈ O} (2.6)

are measurable with respect to logarithmic capacity. It is clear from the
definition that the set E is itself measurable with respect to logarithmic
capacity.

Note also that sets of logarithmic capacity zero coincide with sets of
the so-called absolute harmonic measure zero introduced by Nevan-
linna, see Chapter V in [40]. Hence a set E is of (Hausdorff) length zero if
C(E) = 0, see Theorem V.6.2 in [40]. However, there exist sets of length
zero having a positive logarithmic capacity, see e.g. Theorem IV.5 in [12].
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Remark 2.2. It is known that Borel sets and, in particular, compact
and open sets are measurable with respect to logarithmic capacity, see
e.g. Lemma I.1 and Theorem III.7 in [12]. Moreover, as it follows from
the definition, any set E ⊂ C of finite logarithmic capacity can be repre-
sented as a union of a sigma-compactum (union of countable collection
of compact sets) and a set of logarithmic capacity zero. It is also known
that the Borel sets and, in particular, compact sets are measurable with
respect to all Hausdorff’s measures and, in particular, with respect to
measure of length, see e.g. Theorem II(7.4) in [53]. Consequently, any
set E ⊂ C of finite logarithmic capacity is measurable with respect to
measure of length. Thus, on such a set any function φ : E → C being
measurable with respect to logarithmic capacity is also measurable with
respect to measure of length on E. However, there exist functions that
are measurable with respect to measure of length but not measurable
with respect to logarithmic capacity, see e.g. Theorem IV.5 in [12].

Later on, we say that a Jordan curve Γ in C is almost smooth if
Γ has a tangent quasi–everywhere. It is clear that this request is abso-
lutely necessary to have a regular solution of the Hilbert boundary value
problem in the sense of the angular limits in the Jordan domains. Recall
that a straight line L in C is tangent to Γ at a point z0 ∈ Γ if

lim sup
z→z0,z∈Γ

dist (z, L)
|z − z0|

= 0 . (2.7)

3. The Hilbert boundary value problem for analytic func-
tions in the disk

We call λ : ∂D → C a function of bounded variation, write
λ ∈ BV(∂D), if

Vλ(∂D) : = sup

j=k∑
j=1

|λ(ζj+1)− λ(ζj)| < ∞ (3.1)

where the supremum is taken over all finite collections of points ζj ∈ ∂D,
j = 1, . . . , k, with the cyclic order meaning that ζj lies between ζj+1 and
ζj−1 for every j = 1, . . . , k. Here we assume that ζk+1 = ζ1 = ζ0. The
quantity Vλ(∂D) is called the variation of the function λ.

Remark 3.1. It is clear by the triangle inequality that if we add new
intermediate points in the collection ζj , j = 1, . . . , k, then the sum
in (3.1) does not decrease. Thus, the given supremum is attained as
δ = sup

j=1,...k
|ζj+1 − ζj | → 0. Note also that by the definition Vλ(∂D) =
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Vλ◦h(∂D), i.e., the variation is invariant under every homeomorphism
h : ∂D → ∂D and, thus, the definition can be extended in a natural way
to an arbitrary Jordan curve in C.

Now, we call λ : ∂D → C a function of countable bounded varia-
tion, write λ ∈ CBV(∂D), if there is a countable collection of mutually
disjoint arcs γn of ∂D, n = 1, 2, . . . on each of which the restriction of
λ is of bounded variation Vn and the set ∂D \ ∪γn has logarithmic ca-
pacity zero. In particular, the latter holds true if ∂D \ ∪γn is countable.
Choosing smaller γn, we may assume that sup

n
Vn < ∞. It is clear, such

functions can be singular enough, see e.g. [13]. The definition is also
extended in the natural way to an arbitrary Jordan curve Γ in C.

Recently we proved the following significant fact that is a base for
further extensions, see Theorems 5.1 and 8.1 in the paper [22].

Theorem 3.1. Let λ : ∂D → ∂D be in the class CBV(∂D) and φ : ∂D →
R be measurable with respect to the logarithmic capacity. Then there is
an analytic function f : D → C that has the angular limit

lim
z→ζ

Re[λ(ζ)f(z)] = φ(ζ) q.e. on ∂D. (3.2)

Furthermore, the space of all such analytic functions has the infinite
dimension.

4. The main lemma for the Beltrami equations

We start from the following general lemma formulated in terms of
singular functional parameter whose choice, later on, makes possible to
derive many effective criteria for existence of regular generalized solutions
of the Hilbert boundary value problem for a wide circle of the Beltrami
equations.

Given a point z0 in C, we apply here the more refined quantity than
the dilatation quotient Kµ(z) :

KT
µ (z, z0) :=

∣∣∣1− z−z0
z−z0 µ(z)

∣∣∣2
1− |µ(z)|2

(4.1)

that is called the tangent dilatation quotient of the Beltrami equation
(1.1) with respect to z0, see, e.g., [50], cf. the corresponding terms and
notations in [5,19,36] and [43]. The given term was first introduced in [50]



V. Gutlyanskii, V. Ryazanov, E. Yakubov, A. Yefimushkin 491

and its geometric sense was described in [47], see also [37], Section 11.3.
Note that

K−1
µ (z) 6 KT

µ (z, z0) 6 Kµ(z) ∀ z ∈ D ∀ z0 ∈ C (4.2)

and the given estimates are precise. The quantity (4.1) takes into account
not only the modulus of the complex coefficient µ but also its argument.

Lemma 4.1. Let D be a generalized quasidisk, ∂D have a tangent q.e.,
λ : ∂D → C, |λ(ζ)| ≡ 1, be in CBV(∂D) and φ : ∂D → R be measur-
able with respect to the logarithmic capacity. Suppose that µ : D → C,
|µ(z)| < 1 a.e., Kµ ∈ L1(D) and∫
ε<|z−z0|<ε0

KT
µ (z, z0) · ψ2

z0,ε(|z − z0|) dm(z) = o
(
I2z0(ε)

)
∀ z0 ∈ D

(4.3)
as ε → 0 where 0 < ε0 < sup

z∈D
|z − z0| and ψz0,ε(t) : (0,∞) → [0,∞],

ε ∈ (0, ε0), is a two-parametric family of (Lebesgue) measurable functions
such that

0 < Iz0(ε) :=

ε0∫
ε

ψz0,ε(t) dt < ∞ ∀ ε ∈ (0, ε0) . (4.4)

If Beltrami equation (1.1) has not more than countable singularities
on ∂D, then its Hilbert boundary value problem (1.3) has a space of
regular generalized solutions of the infinite dimension.

Here and later on, we set Kµ(z, z0) = 1 for all z outside of the domain
D.

Remark 4.1. In particular, in view of the right inequality in (4.2), the
conclusion of Lemma 4.1 holds if Kµ(z, z0) is replaced by Kµ(z) in (4.3).

Note also that, if ψz0,ε ≡ ψz0 , then the conditions (4.3) and (4.4)
imply that Iz0(ε) → ∞ as ε → 0. In other words, for the regular sol-
vability of the Hilbert boundary value problem it suffices the controlled
divergence of the singular integral from the left in (4.3) in the sense of
the principal value by Cauchy.

Finally, note that (4.3) holds, in particular, if∫
ε<|z−z0|<ε0

Kµ(z, z0) ·ψ2
z0(|z− z0|) dm(z) < ∞ ∀ z0 ∈ D (4.5)
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where ψz0(t) : (0,∞) → [0,∞] is a locally integrable function with
Iz0(ε) → ∞ as ε → 0. In other words, for the solvability of the Hilbert
boundary value problem it suffices for the singular integrals in (4.5) to be
convergent for some nonnegative function ψz0(t) that is locally integrable
on (0,∞) but that has a non-integrable singularity at zero.

Proof. Let us extend the complex coefficient µ of the Beltrami equation
by zero outside of the domain D. Then Kµ(z, z0) ≡ 1 outside of D.

By Lemma 3 in [49] there is a regular homeomorphic solution fµ :
C → C of the extended Beltrami equation. Let g be a conformal mapping
of the domain D∗ := fµ(D) onto D that exists by the Riemann mapping
theorem, see e.g. Theorem II.2.1 in [18]. Then the mapping G := g ◦
fµ|D : D → D is a regular homeomorphic solution of the same Beltrami
equation in the domain D.

Now, by the Caratheodory theorem, see e.g. Theorem II.3.4 in [18],
g is extended to a homeomorphism g̃ of D∗ onto D and g̃(∂D∗) = ∂D.
Thus, the mappingG is extended to a homeomorphism G̃ ofD onto D and
G̃(∂D) = ∂D. Furthermore, G is extended to a quasiconformal mapping
in a neighborhood of each open quasiconformal arc of the generalized
quasicircle ∂D, see e.g. Theorem II.8.2 in [35].

Next, both functions G∗ := G̃|∂D and G−1
∗ are Hölder continuous on

the corresponding arcs, see [10], Theorem 3.5, and also [35], Theorem
II.4.3. Hence Λ := λ ◦G−1

∗ ∈ CBV(∂D) and Φ := φ ◦G−1
∗ is measurable

with respect to logarithmic capacity by Remarks 2.1. Moreover, by Theo-
rem 3.1 there exist analytic functions A : D → C that have the angular
limit

lim
ω→η

Re {Λ(η)A(ω)} = Φ(η) q.e. on ∂D , (4.6)

furthermore, the space of all such analytic functions has the infinite di-
mension.

Let us consider the function f := A◦G. Since fz = A′ ◦G(z)Gz and
fz̄ = A′ ◦ G(z)Gz̄ a.e. in D, we see that f satisfies the equation (1.1).
On the other hand, the mapping f is continuous, open and discrete, and
therefore f is a regular solution of (1.1). It remains to show that f
satisfies also the boundary condition (1.3) q.e.

Indeed, it is known that the distortion of angles under a quasiconfor-
mal mapping is bounded, see e.g. [1, 2] and [55]. Hence the mapping G̃
and its inverse transform nontangential paths into nontangential paths
and G∗ and G−1

∗ keep sets of logarithmic capacity zero along the arcs
mentioned above. Consequently, G : D → D and G−1 : D → D also
transform nontangential paths into nontangential paths q.e. on ∂D and
∂D, respectively. Thus, (4.6) implies the existence of the angular limit
(1.3) q.e. on ∂D.



V. Gutlyanskii, V. Ryazanov, E. Yakubov, A. Yefimushkin 493

Remark 4.2. As it follows from the given proof, the regular generali-
zed solutions f of the Hilbert boundary value problem for the Beltrami
equation in Lemma 4.1 has the representation f = A ◦ g ◦ fµ|D. Here
fµ : C → C is a regular homeomorphic solution of the Beltrami equation
with µ extended by zero outside of D, g is a conformal mapping of
the domain D∗ := fµ(D) onto D and A are analytic solutions of the
Hilbert boundary value problem with the coefficient Λ = λ ◦ G−1

∗ and
the boundary data Φ = φ ◦ G−1

∗ where G∗ : ∂D → ∂D is the boundary
correspondence under the homeomorphism G := g ◦ fµ.

5. On BMO and FMO functions

Recall that a real-valued function u in a domain D in C is said to be
of bounded mean oscillation in D, abbr. u ∈ BMO(D), if u ∈ L1

loc(D)
and

∥u∥∗ := sup
B

1

|B|

∫
B

|u(z)− uB| dm(z) <∞ , (5.1)

where the supremum is taken over all discs B in D, dm(z) corresponds
to the Lebesgue measure in C and

uB =
1

|B|

∫
B

u(z) dm(z) .

We write u ∈ BMOloc(D) if u ∈ BMO(U) for every relatively compact
subdomain U of D (we also write BMO or BMOloc if it is clear from the
context what D is).

The class BMO was introduced by John and Nirenberg (1961) in the
paper [29] and soon became an important concept in harmonic analysis,
partial differential equations and related areas; see, e.g., [24] and [44].

Following [26], we say that a function φ : D → R has finite mean
oscillation at a point z0 ∈ D, abbr. φ ∈ FMO(z0), if

lim
ε→0

−
∫
B(z0,ε)

|φ(z)− φ̃ε(z0)| dm(z) <∞ , (5.2)

where
φ̃ε(z0) = −

∫
B(z0,ε)

φ(z) dm(z) (5.3)

is the mean value of the function φ(z) over the disk B(z0, ε) := {z ∈
C : |z − z0| < ε}. Note that the condition (5.2) includes the assumption
that φ is integrable in some neighborhood of the point z0. The following
statement is obvious by the triangle inequality.
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Proposition 5.1. If, for a collection of numbers φε ∈ R, ε ∈ (0, ε0],

lim
ε→0

−
∫
B(z0,ε)

|φ(z)− φε| dm(z) <∞ , (5.4)

then φ is of finite mean oscillation at z0.

In particular choosing here φε ≡ 0, ε ∈ (0, ε0], we obtain the following.

Corollary 5.1. If, for a point z0 ∈ D,

lim
ε→0

−
∫
B(z0,ε)

|φ(z)| dm(z) <∞ , (5.5)

then φ has finite mean oscillation at z0.

Recall that a point z0 ∈ D is called a Lebesgue point of a function
φ : D → R if φ is integrable in a neighborhood of z0 and

lim
ε→0

−
∫
B(z0,ε)

|φ(z)− φ(z0)| dm(z) = 0 . (5.6)

It is known that, almost every point in D is a Lebesgue point for every
function φ ∈ L1(D). Thus we have by Proposition 5.1 the following
corollary.

Corollary 5.2. Every locally integrable function φ : D → R has a finite
mean oscillation at almost every point in D.

The following lemma plays a key role in many investigations, see e.g.
Lemma 5.3 in the monograph [21]. Here we use the standard notation of
the ring:

A(z0, ε, ε0) := {z ∈ C : ε < |z − z0| < ε0} . (5.7)

Lemma 5.1. Let φ : D → R be a nonnegative function with finite mean
oscillation at z0 ∈ D. Then∫

A(z0,ε,ε0)

φ(z) dm(z)(
|z − z0| log 1

|z−z0|

)2 = O

(
log log

1

ε

)
. (5.8)

Versions of this lemma were first established for BMO functions in
[52], Lemma 3.2, and then for FMO functions in [26], Corollary 2.3.

Remark 5.1. Note that the function φ(z) = log (1/|z|) belongs to BMO
in the unit disk ∆, see, e.g., [44], p. 5, and hence also to FMO. However,
φ̃ε(0) → ∞ as ε → 0, showing that condition (5.5) is only sufficient
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but not necessary for a function φ to be of finite mean oscillation at
z0. Clearly, BMO(D) ⊂ BMOloc(D) ⊂ FMO(D) and as well-known
BMOloc ⊂ Lploc for all p ∈ [1,∞), see, e.g., [29] or [44]. However, FMO is
not a subclass of Lploc for any p > 1 but only of L1

loc, see the corresponding
example in the monograph [21]. Thus, the class FMO is much more wide
than BMOloc.

6. Criteria of regular solvability for Beltrami equations

In this section we demonstrate that Lemma 4.1 leads to a series of nice
integral criteria of the type of Lavrentiev-Lehto-Zorich, Orlicz, Calderon–
Zygmund, John-Nierenberg and many others for solvability of the Hilbert
boundary value problems to the Beltrami equations with singularities.

For instance, choosing in Lemma 4.1 ψ(t) = 1/ (t log (1/t)), see also
Lemma 5.1, we obtain the following result.

Theorem 6.1. Let D be a generalized quasidisk, ∂D have a tangent q.e.,
λ : ∂D → C, |λ(ζ)| ≡ 1, be in CBV(∂D) and φ : ∂D → R be measurable
with respect to the logarithmic capacity.

Suppose µ : D → C, |µ(z)| < 1 a.e., Kµ ∈ L1(D) and KT
µ (z, z0) 6

Qz0(z) a.e. in a neighborhood Uz0 of every point z0 ∈ D with a function
Qz0 : Uz0 → [0,∞] in the class FMO(z0).

If Beltrami equation (1.1) has not more than countable singularities
on ∂D, then its Hilbert boundary value problem (1.3) has a space of
regular generalized solutions of the infinite dimension.

By Proposition 5.1 and Corollaries 5.1 and 5.2 we have the next con-
sequences of Theorem 6.1.

Corollary 6.1. In particular, the conclusion of Theorem 6.1 holds if
every point z0 ∈ D is the Lebesgue point of a function Qz0 : C → [0,∞]
which is integrable in a neighborhood Uz0 of z0 and KT

µ (z, z0) 6 Qz0(z)
a.e. in Uz0.

Corollary 6.2. In particular, the conclusion of Theorem 6.1 holds if

lim
ε→0

−
∫
B(z0,ε)

KT
µ (z, z0) dm(z) <∞ ∀ z0 ∈ D . (6.1)

Similarly, choosing in Lemma 4.1 the function ψ(t) = 1/t, we come
to the following statement.

Theorem 6.2. Let D be a generalized quasidisk, ∂D have a tangent q.e.,
λ : ∂D → C, |λ(ζ)| ≡ 1, be in CBV(∂D) and φ : ∂D → R be measurable
with respect to the logarithmic capacity.
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Suppose that µ : D → C, |µ(z)| < 1 a.e., Kµ ∈ L1(D) and∫
ε<|z−z0|<ε0

KT
µ (z, z0)

dm(z)

|z − z0|2
= o

([
log

1

ε

]2)
∀ z0 ∈ D (6.2)

as ε→ 0 for some ε0 = δ(z0) ∈ (0, d(z0)) where d(z0) = supz∈D |z − z0|.
If Beltrami equation (1.1) has not more than countable singularities

on ∂D, then its Hilbert boundary value problem (1.3) has a space of
regular generalized solutions of the infinite dimension.

Next, choosing in Lemma 4.1 ψ(t) = 1/ (t kz0(t)) where kz0(t) is the
average of KT

µ (z, z0) over the circle |z − z0| = t, we obtain the following
conclusion.

Theorem 6.3. Let D be a generalized quasidisk, ∂D have a tangent q.e.,
λ : ∂D → C, |λ(ζ)| ≡ 1, be in CBV(∂D) and φ : ∂D → R be measurable
with respect to the logarithmic capacity.

Suppose that µ : D → C, |µ(z)| < 1 a.e., Kµ ∈ L1(D) and

δ(z0)∫
0

dr

||KT
µ ||1(z0, r)

= ∞ ∀ z0 ∈ D (6.3)

for some δ(z0) ∈ (0, d(z0)) where d(z0) = sup
z∈D

|z − z0| and

||KT
µ ||1(z0, r) : =

∫
|z−z0|=r)

KT
µ (z, z0) |dz| . (6.4)

If Beltrami equation (1.1) has not more than countable singularities
on ∂D, then its Hilbert boundary value problem (1.3) has a space of
regular generalized solutions of the infinite dimension.

Corollary 6.3. In particular, the conclusion of Theorem 6.3 holds if

kz0(ε) = O

(
log

1

ε

)
as ε→ 0 ∀ z0 ∈ D (6.5)

where kz0(ε) is the average of the function KT
µ (z, z0) over the circle |z−

z0| = ε.

Remark 6.1. For instance, the conclusion of Corollary 6.3 holds if

KT
µ (z, z0) = O

(
log

1

|z − z0|

)
as z → z0 ∀ z0 ∈ D . (6.6)
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Finally, combining Theorems 6.3 above and Theorem 3.2 in [48], see
also Theorem 2.4 in [21], we obtain the following.

Theorem 6.4. Let D be a generalized quasidisk, ∂D have a tangent q.e.,
λ : ∂D → C, |λ(ζ)| ≡ 1, be in CBV(∂D) and φ : ∂D → R be measurable
with respect to the logarithmic capacity.

Suppose that µ : D → C, |µ(z)| < 1 a.e., and∫
D

Φ(Kµ(z)) dm(z) < ∞ (6.7)

for a convex non-decreasing function Φ : [0,∞] → [0,∞] such that

∞∫
δ

dτ

τΦ−1(τ)
= ∞ for some δ > Φ(0) . (6.8)

If Beltrami equation (1.1) has not more than countable singularities
on ∂D, then its Hilbert boundary value problem (1.3) has a space of
regular generalized solutions of the infinite dimension.

Remark 6.2. By the Stoilow theorem on factorization, see e.g. [54], any
regular generalized solution f of the Hilbert boundary value problem
(1.3) for the Beltrami equation (1.1) can be represented in the form
of the composition f = A ◦ F where A is an analytic function and F
is a regular homeomorphic solution of (1.1). Thus, by Theorem 5.1
in [48], the condition (6.8) is not only sufficient but also necessary for
the existence of regular generalized solutions of the Hilbert boundary
value problems (1.3) to any Beltrami equation (1.1) with the integral
restriction (6.7).

Note also that by Theorem 2.1 in [49] the condition (6.8) is equivalent
to the following condition:

∞∫
∆

log Φ(t)
dt

t2
= ∞ for some ∆ > 0 . (6.9)

Corollary 6.4. In particular, the conclusion of Theorem 6.4 holds if∫
D

eαKµ(z) dm(z) < ∞ for some α > 0 . (6.10)
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7. On Dirichlet, Neumann and Poincare problems

We reduce the given boundary value problems to suitable Hilbert
boundary value problems studied above and start with the Laplace equa-
tion. For instance, choosing µ ≡ 0 and λ ≡ 1 in Theorem 6.3, we im-
mediately obtain the following consequence on solutions of the Dirichlet
boundary value problem.

Corollary 7.1. Let D be a generalized quasidisk and ∂D have a tangent
q.e. Suppose φ : ∂D → R is measurable with respect to the logarithmic
capacity. Then there exists a harmonic function u : D → C that has the
angular limit

lim
z→ζ

u(z) = φ(ζ) q.e. on ∂D. (7.1)

The space of such harmonic functions has the infinite dimension.

We proceed to the study of nonclassical solutions of the Neumann
boundary value problem. For this goal, we will study the more general
problem on directional derivatives that is due to Poincare.

First of all, let us recall the classical setting of the problem on direc-
tional derivatives for the Laplace equation in the unit disk D : To find
a twice continuously differentiable function u : D → R that admits a
continuous extension to the boundary ∂D together with its first partial
derivatives, satisfies the Laplace equation

∆u :=
∂2u

∂x2
+

∂2u

∂y2
= 0 ∀ z ∈ D (7.2)

and the boundary condition

∂u

∂ν
= φ(ζ) ∀ ζ ∈ ∂D. (7.3)

Here φ : ∂D → R stands for a prescribed continuous function and ∂u
∂ν

denotes the derivative of u at the point ζ in the direction ν = ν(ζ),
|ν(ζ)| = 1, i.e.,

∂u

∂ν
:= lim

t→0

u(ζ + t ν)− u(ζ)

t
. (7.4)

The Neumann boundary value problem for the Laplace equation is a
special case of the above problem with the following boundary condition

∂u

∂n
= φ(ζ) ∀ ζ ∈ ∂D , (7.5)
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where n denotes the unit interior normal to ∂D at the point ζ.

It is well known, that the Neumann problem, in general, has no clas-
sical solution. The necessary condition for the solvability is that the
integral of the function φ over ∂D is equal zero, see e.g. [38]. Recently,
it was established the existence of nonclassical solutions of the Neumann
problem for the Laplace equation in rectifiable Jordan domains for ar-
bitrary measurable data with respect to the natural parameter, see [46].
Then the results have been extended to linear divergence equations in
Lipschitz domains with arbitrary measurable data with respect to the
logarithmic capacity in [58] and then to domains with the quasihyper-
bolic boundary condition. By the results of the last section, we obtain,
in particular, the following simple consequences.

Theorem 7.1. Let D be a generalized quasidisk and ∂D have a tangent
q.e. Suppose that ν : ∂D → C, |ν(ζ)| ≡ 1, is in the class CBV and
φ : ∂D → R is measurable with respect to the logarithmic capacity. Then
there exist harmonic functions u : D → R that have the angular limits

lim
z→ζ

∂u

∂ν
= φ(ζ) q.e. on ∂D. (7.6)

Furthermore, the space of such harmonic functions has the infinite di-
mension.

Proof. For instance, by Theorem 6.3 there exist the space of analytic
functions f : D → C of the infinite dimension that have the angular
limits

lim
z→ζ

Re [ν(ζ) f(z)] = φ(ζ) q.e. on ∂D . (7.7)

Note that an indefinite integral F of f in D is also an analytic function
and, correspondingly, the harmonic functions u = ReF and v = ImF
satisfy the Cauchy-Riemann system vx = −uy and vy = ux. Hence

f = F ′ = Fx = ux + i vx = ux − i uy = ∇u

where ∇u = ux + i uy is the gradient of the function u in the complex
form. Thus, (7.6) follows from (7.7), i.e. u is the desired harmonic
function, because its directional derivative

∂u

∂ν
= Re ν∇u = Re ν∇u = ⟨ν,∇u⟩

is the scalar product of ν and the gradient ∇u.
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Remark 7.1. We are able to say more in the case Re[nν] > 0 where
n = n(ζ) is the unit interior normal at the point ζ ∈ ∂D. In view of
(7.6), since the limit φ(ζ) is finite, there is a finite limit u(ζ) of u(z) as
z → ζ in D along the straight line passing through the point ζ and being
parallel to the vector ν(ζ). Indeed, along this line, for z and z0 that are
close enough to ζ,

u(z) = u(z0) −
1∫

0

∂u

∂ν
(z0 + τ(z − z0)) dτ .

Thus, at each point with the condition (7.6), there is the directional
derivative

∂u

∂ν
(ζ) := lim

t→0

u(ζ + t ν)− u(ζ)

t
= φ(ζ) .

In particular, Re[nν] = 1 in the case of the Neumann problem and,
thus, we arrive, by Theorem 7.1 and Remark 7.1, at the following result.

Corollary 7.2. Let D be a generalized quasidisk and the unit interior
normal n(ζ) to the boundary ∂D be in the class CBV. Suppose that
φ : ∂D → R is measurable with respect to the logarithmic capacity. Then
one can find harmonic functions u : D → C such that q.e. on ∂D there
exist:

1) the finite limit along the normal n(ζ)

u(ζ) := lim
z→ζ

u(z) ,

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t n)− u(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ) .

Furthermore, the space of such harmonic functions has the infinite di-
mension.

Now, recall that, see e.g. Theorem 16.1.6 in [6], if f = u + i v is a
regular generalized solution of the Beltrami equation (1.1) in a domain
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D in C, then the function u is a continuous generalized solution of the
divergence type equation

divA(z)∇u = 0 , (7.8)

called A-harmonic function, see [24], i.e., u ∈ C ∩W 1,1
loc (D) and∫

D

⟨A(z)∇u,∇φ⟩ = 0 ∀ φ ∈ C∞
0 (D) ,

where A(z) is the matrix function:

A =

( |1−µ|2
1−|µ|2

−2Imµ
1−|µ|2

−2Imµ
1−|µ|2

|1+µ|2
1−|µ|2

)
. (7.9)

As we see, the matrix function A(z) in (7.9) is symmetric and its entries
aij = aij(z) are dominated by the quantity

Kµ(z) =
1 + |µ(z)|
1 − |µ(z)|

,

and, thus, they are bounded if Beltrami’s equation (1.1) is not degenerate.

Vice verse, uniformly elliptic equations (7.8) with symmetric A(z)
and detA(z) ≡ 1 just correspond to nondegenerate Beltrami equations
(1.1) with the coefficient

µ =
1

det (I +A)
(a22 − a11 − 2ia21) =

a22 − a11 − 2ia21
1 + TrA + detA

. (7.10)

Recall that the equation (7.8) is said to be uniformly elliptic, if aij ∈
L∞ and ⟨A(z)η, η⟩ ≥ ε|η|2 for some ε > 0 and for all η ∈ R2.

Given a domain D in C, denote by M2×2(D) the class of all 2 × 2
symmetric matrix function A(z) = {ajk(z)} with measurable real-valued
entries and detA(z) = 1, satisfying the ellipticity condition (positive
definiteness)

⟨A(z) ξ, ξ ⟩ > 0 a.e. in D ∀ ξ ∈ R2 \ {0} . (7.11)

We call a point z0 ∈ D singularity of the equation (7.8) or A ∈
M2×2(D) if (7.8) is not uniformly elliptic in all neighborhoods of z0.

Given M2×2(D), we say that a continuous function u : D → R is a
regular (A)–harmonic function if u has the first generalized deriva-
tives by Sobolev, satisfies (7.8) a.e. in D and can be represented as a
composition of a harmonic function h and a regular homeomorphic so-
lution of the Beltrami equation (1.1) with the coefficient µ given by
(7.10).
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Corollary 7.3. Let D be a generalized quasidisk and ∂D have a tangent
q.e. and φ : ∂D → R be measurable with respect to the logarithmic
capacity.

Suppose that A ∈M2×2(D) has not more than countable singularities
on ∂D and the corresponding µ in (7.10) satisfies one of the integral
conditions of theorems from Section 6.

Then there exists a space of regular A−harmonic functions u : D →
R of the infinite dimension satisfying the Dirichlet boundary condition
(7.1).

Theorem 7.2. Let D be a generalized quasidisk and ∂D have a tangent
q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be in the class CBV and φ : ∂D → R be
measurable with respect to the logarithmic capacity.

Suppose that A ∈ M2×2(D) is in the class Cα, α ∈ (0, 1) about ∂D
and the corresponding µ in (7.10) satisfies one of the integral conditions
of theorems from Section 6.

Then there exists a space of regular A−harmonic functions u : D → R
of the infinite dimension that have the angular limits

lim
z→ζ

∂u

∂ν
(z) = φ(ζ) q.e. on ∂D . (7.12)

Proof. By the definition, desired regular (A)–harmonic functions u are
real parts of regular solutions f of the Beltrami equation (1.1) with µ
given by the formula (7.10) which belongs to the class Cα, α ∈ (0, 1) in
an open neighborhood U of ∂D inside of D. With no loss of generality,
we may assume that k = max |µ(z)| < 1 in U . By Lemma 1 in [23] µ
is extended to a Hölder continuous function µ∗ : C \ (D \ U) → C of
the class Cα. Then, for every k∗ ∈ (k, 1), there is an open neighborhood
U∗ of ∂D in C \ (D \ U) where |µ∗(z)| ≤ k∗. Let D∗ = D ∪ U∗ where
U∗ is a connected component of U∗ containing ∂D. Note that by the
construction D∗ is a domain in C.

By the existence theorems in [49], there is a regular homeomorphic
solution h : D∗ → C of the Beltrami equation (1.1) with the complex
coefficient µ∗ := µ∗|D∗ in D∗. Note that the mapping h has the Hölder
continuous first partial derivatives in U∗ with the same order of the
Hölder continuity as µ, see e.g. [27] and also [28]. Moreover, its Jacobian

Jh(z) ̸= 0 ∀ z ∈ U∗ , (7.13)

see e.g. Theorem V.7.1 in [35]. Thus, the directional derivative

hω(z) =
∂h

∂ω
(z) := lim

t→0

h(z + t ω) − h(z)

t
̸= 0 ∀ z ∈ U∗ ∀ ω ∈ ∂D
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and it is continuous by the collection of the variables ω ∈ ∂D and z ∈ U∗.
Thus, the functions

ν∗(ζ) :=
|hν(ζ)(ζ)|
hν(ζ)(ζ)

and φ∗(ζ) :=
φ(ζ)

|hν(ζ)(ζ)|

are measurable with respect to the logarithmic capacity, see e.g. conver-
gence arguments in [31], Section 17.1.

The restriction of h onto the domain U∗ is a quasiconformal map-
ping. Hence by Remark 2.1 the mappings h and h−1 transform sets of
logarithmic capacity zero on ∂D into sets of logarithmic capacity zero on
∂D∗, where D∗ := h(D), and vice versa.

Further, the functions N := ν∗ ◦h−1|∂D∗ and Φ := (φ∗/hν) ◦h−1|∂D∗

are measurable with respect to the logarithmic capacity. Indeed, a mea-
surable set with respect to the logarithmic capacity is transformed under
the mappings h and h−1 into measurable sets with respect to the log-
arithmic capacity. Really, such a set can be represented as the union
of a sigma-compactum and a set of logarithmic capacity zero. On the
other hand, the compacta are transformed under continuous mappings
into compacta and the compacta are measurable with respect to the log-
arithmic capacity.

Recall that the distortion of angles under quasiconformal mappings h
and h−1 is bounded, see e.g. [1], [2] and [55]. Thus, nontangential paths
to ∂D are transformed into nontangential paths to ∂D∗ for a.e. ζ ∈ ∂D
with respect to the logarithmic capacity and inversely.

By Theorem 7.1, there is a space of harmonic functions U : D∗ → R
of the infinite dimension that have the angular limits

lim
w→ξ

∂U

∂N
(w) = Φ(ξ) q.e. on ∂D∗ . (7.14)

Moreover, one can find a harmonic function V in the simply connected
domain D∗ such that F = U + iV is an analytic function and, thus,
u := Re f = U ◦ h, where f := F ◦ h, is a desired regular A-harmonic
function in Theorem 7.2 because f is a regular generalized solution of
the corresponding Beltrami equation (1.1) and also

uν = ⟨ ∇U ◦ h , hν ⟩ = ⟨ ν∗∇U ◦ h , ν∗ hν ⟩ =

= ⟨ ∂U
∂N

◦ h , ν∗ hν ⟩ = ∂U

∂N
◦ h Re (ν∗hν).
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The following statement concerning to the Neumann problem for A-
harmonic functions is a partial case of Theorem 7.2.

Corollary 7.4. Let D be a generalized quasidisk and ∂D have a tangent
q.e., the interior unit normal n = n(ζ) to ∂D be in the class CBV and
φ : ∂D → R be measurable with respect to the logarithmic capacity.

Suppose that A ∈ M2×2(D) is in the class Cα, α ∈ (0, 1) about ∂D
and the corresponding µ in (7.10) satisfies one of the integral conditions
of theorems from Section 6.

Then there exists a space of regular A−harmonic functions u : D → R
of the infinite dimension such that q.e. on ∂D there exist:

1) the finite limit along the normal n(ζ)

u(ζ) := lim
z→ζ

u(z)

2) the normal derivative

∂u

∂n
(ζ) := lim

t→0

u(ζ + t n) − u(ζ)

t
= φ(ζ)

3) the angular limit

lim
z→ζ

∂u

∂n
(z) =

∂u

∂n
(ζ) .
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