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Logarithmic potential
and generalized analytic functions

V. Gutlyanskĭı, O. Nesmelova,
V. Ryazanov, A. Yefimushkin

Abstract. The study of the Dirichlet problem in the unit disk D with
arbitrary measurable data for harmonic functions is due to the famous
dissertation of Luzin [31]. Later on, the known monograph of Vekua
[48] has been devoted to boundary value problems (only with Hölder
continuous data) for the generalized analytic functions, i.e., continuous
complex valued functions h(z) of the complex variable z = x + iy with
generalized first partial derivatives by Sobolev satisfying equations of
the form ∂z̄h + ah + bh = c , where it was assumed that the complex
valued functions a, b and c belong to the class Lp with some p > 2 in
smooth enough domains D in C.

The present paper is a natural continuation of our previous articles on
the Riemann, Hilbert, Dirichlet, Poincare and, in particular, Neumann
boundary value problems for quasiconformal, analytic, harmonic and the
so-called A−harmonic functions with boundary data that are measurable
with respect to logarithmic capacity. Here we extend the corresponding
results to the generalized analytic functions h : D → C with the sources
g : ∂z̄h = g ∈ Lp, p > 2 , and to generalized harmonic functions U with
sources G : △U = G ∈ Lp, p > 2 .

This paper contains various theorems on the existence of nonclassical
solutions of the Riemann and Hilbert boundary value problems with
arbitrary measurable (with respect to logarithmic capacity) data for ge-
neralized analytic functions with sources. Our approach is based on
the geometric (theoretic-functional) interpretation of boundary values in
comparison with the classical operator approach in PDE. On this basis,
it is established the corresponding existence theorems for the Poincare
problem on directional derivatives and, in particular, for the Neumann
problem to the Poisson equations △U = G with arbitrary boundary data
that are measurable with respect to logarithmic capacity. These results
can be also applied to semi-linear equations of mathematical physics in
anisotropic and inhomogeneous media.
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1. Introduction

The well–known monograph of Vekua [48] has been devoted to the
theory of the generalized analytic functions, i.e., continuous complex
valued functions h(z) of the complex variable z = x+ iy with generalized
first partial derivatives by Sobolev satisfying equations of the form

∂z̄h + ah + bh = c , ∂z̄ :=
1

2

(
∂

∂x
+ i · ∂

∂y

)
, (1.1)

where it was assumed that the complex valued functions a, b and c belong
to the class Lp with some p > 2 in the corresponding domains D ⊆ C.

The present paper is a natural continuation of the articles [9, 17–22,
40–44, 49] and [50] devoted to the Riemann, Hilbert, Dirichlet, Poincare
and, in particular, Neumann boundary value problems for quasiconfor-
mal, analytic, harmonic and the so–called A−harmonic functions with
arbitrary boundary data that are measurable with respect to logarithmic
capacity, see relevant definitions with history notes and necessary com-
ments on the previous results below. Here we extend the corresponding
results to generalized analytic and harmonic functions.

The first part of the paper is devoted to the proof of existence of
nonclassical solutions of Riemann, Hilbert and Dirichlet boundary-value
problems with arbitrary measurable boundary data with respect to loga-
rithmic capacity for the equations

∂z̄h(z) = g(z) (1.2)

with the real valued functions g in the class Lp, p > 2. We will call
continuous solutions h of the equations (1.2) with the generalized first
partial derivatives by Sobolev generalized analytic functions with
sources g.

The second part of the paper contains the proof of existence of non-
classical solutions to the Poincare problem on the directional derivatives
and, in particular, to the Neumann problem with arbitrary measurable
boundary data with respect to logarithmic capacity for the Poisson equa-
tions

△U(z) = G(z) (1.3)

with real valued functions G of a class Lp(D), p > 2, in the corresponding
domainsD ⊂ C. For short, we will call continuous solutions to (1.3) of the
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14 Logarithmic potential and generalized...

class W 2,p
loc (D) generalized harmonic functions with the sources G.

Note that by the Sobolev embedding theorem, see Theorem I.10.2 in [46],
such functions belong to the class C1.

The research of boundary value problems with arbitrary measur-
able data is due to the famous dissertation of Luzin, see its original
text [31], and its reprint [32] with comments of his pupils Bari and
Men’shov. Namely, he has established that, for each measurable a.e.
finite 2π−periodic function φ(ϑ) : R → R, there is a harmonic function
U in the unit disk D such that U(z) → φ(ϑ) for a.e. ϑ as z → ζ := eiϑ

along all nontangential paths to ∂D. The latter was based on his other
deep result on the antiderivatives stated that, for any measurable func-
tion ψ : [0, 1] → R, there is a continuous function Ψ : [0, 1] → R with
Ψ′ = ψ a.e., see e.g. his papers [30] and [33].

Later on, the Luzin theorem on harmonic functions was strengthened
in the paper [40], Corollary 5.1, see also [42], by the statement that, for
each (Lebesgue) measurable function φ : ∂D → R, the space of all har-
monic functions u : D → R with the angular limits φ(ζ) for a.e. ζ ∈ ∂D
has the infinite dimension. Recall, it is well–known the uniqueness the-
orem to the Dirichlet problem in terms of the angular limits e.g. for
bounded harmonic functions u, see Corollary IX.1.1 and Theorem IX.2.3
in [38]. However, in general there is no uniqueness theorem in the Dirich-
let problem for the Laplace equation even under a.e. zero boundary data,
see e.g. Theorem 2.1 in [42].

The Luzin theorem was key to establish the corresponding result on
the Hilbert boundary value problem in [40], Theorems 2.1 and 5.2: for
arbitrary measurable functions λ : ∂D → C, |λ(ζ)| ≡ 1, and φ : ∂D → R,
the space of all analytic functions f : D → C with the angular limits

lim
z→ζ

Re {λ(ζ) · f(z)} = φ(ζ) for a.e. ζ ∈ ∂D (1.4)

has the infinite dimension. Then this theorem was extended to arbi-
trary Jordan domains with rectifiable boundaries in terms of the natural
parameter, see Theorem 3.1 in [40].

In turn, these results have been applied in the paper [43] to the study
of the Poincare problem on directional derivatives and, in particular, of
the Neumann problem for harmonic functions with arbitrary boundary
data that are measurable with respect to natural parameter in arbitrary
Jordan domains with rectifiable boundaries. Similarly, the results on the
Hilbert and Riemann problems for analytic functions along the so–called
Bagemihl–Seidel systems of Jordan arcs terminating at the boundary
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in [41] have been applied to the Poincare and Neumann problems for
harmonic functions.

Moreover, a series of the corresponding results have been formulated
and proved in terms of logarithmic capacity, see its definition and prop-
erties in the next section. The base is the following analog of the Luzin
theorem in [9], see also [50], where the abbreviation q.e. means quasi–
everywhere with respect to logarithmic capacity.

Theorem A. Let φ : [a, b] → R be a measurable function with respect
to logarithmic capacity. Then there is a continuous function Φ : [a, b] →
R with Φ′(x) = φ(x) q.e.

Furthermore, the function Φ can be chosen in such a way that Φ(a) =
Φ(b) = 0 and |Φ(x)| ≤ ε for any prescribed ε > 0 and all x ∈ [a, b].

On the basis of Theorem A, it was proved there the following analog
of the second Luzin theorem:

Theorem B. Let φ : R → R be 2π-periodic, measurable with respect
to logarithmic capacity and finite q.e. Then the space of all harmonic
functions u in D with the angular limits u(z) → φ(ϑ) as z → eiϑ q.e. on
R has the infinite dimension.

In turn, on the basis of Theorem B, it was obtain the result on the
Hilbert boundary value problem:

Theorem C. Let λ : ∂D → C, |λ(ζ)| ≡ 1, be of bounded variation
and φ : ∂D → R be measurable with respect to logarithmic capacity. Then
there is a space of analytic functions f : D → C of the infinite dimension
with the angular limits

lim
z→ζ

Re {λ(ζ) · f(z)} = φ(ζ) q.e. on ∂D . (1.5)

Then this result was extended to domains with the so–called quasicon-
formal boundaries and, in particular, to arbitrary smooth (C1) domains,
see [9] and [50], that was applied to the Poincare and Neumann prob-
lems for harmonic and A−harmonic functions, see [49]. Moreover, it was
proved in [21] the next result:

Theorem D. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., λ : ∂D → C, |λ(ζ)| ≡ 1,
be of countable bounded variation and let φ : ∂D → R be measurable
with respect to logarithmic capacity. Then there is a space of analytic
functions f : D → C of the infinite dimension with the angular limits

lim
z→ζ

Re{λ(ζ)f(z)} = φ(ζ) q.e. on ∂D. (1.6)
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See the further sections for definitions. This theorem on the Hilbert
boundary value problem for analytic functions implied the corresponding
theorems on the Poincare and Neumann problems for harmonic func-
tions in [21]. Finally, notice a wide circle of the corresponding results on
boundary value problems in terms of the Bagemihl–Seidel systems in [22].

2. On the logarithmic potential and capacity

Given a bounded Borel set E in the plane C, a mass distribution
on E is a nonnegative completely additive function ν of a set defined on
its Borel subsets with ν(E) = 1. The function

Uν(z) :=

∫
E

log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dν(ζ) (2.1)

is called a logarithmic potential of the mass distribution ν at a point
z ∈ C. A logarithmic capacity C(E) of the bounded Borel set E is
the quantity

C(E) = e−V , V = inf
ν

Vν(E) , Vν(E) = sup
z

Uν(z) . (2.2)

It is also well-known the following geometric characterization of the
logarithmic capacity, see e.g. the point 110 in [35]:

C(E) = τ(E) := lim
n→∞

V
2

n(n−1)
n (2.3)

where Vn denotes the supremum of the product

V (z1, . . . , zn) =

l=1,...,n∏
k<l

|zk − zl| (2.4)

taken over all collections of points z1, . . . , zn in the set E. Following
Fékete, see [11], the quantity τ(E) is called the transfinite diameter
of the set E.

Remark 1. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for an
arbitrary mapping f that is Hölder continuous.

In order to introduce sets that are measurable with respect to log-
arithmic capacity, we define, following [6], inner C∗ and outer C∗

capacities:

C∗(E) : = sup
F⊆E

C(E), C∗(E) : = inf
E⊆O

C(O) (2.5)
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where supremum is taken over all compact sets F ⊂ C and infimum is
taken over all open sets O ⊂ C. A set E ⊂ C is called measurable
with respect to the logarithmic capacity if C∗(E) = C∗(E), and
the common value of C∗(E) and C∗(E) is still denoted by C(E).

A function φ : E → C defined on a bounded set E ⊂ C is called
measurable with respect to logarithmic capacity if, for all open
sets O ⊆ C, the sets

Ω = {z ∈ E : φ(z) ∈ O} (2.6)

are measurable with respect to logarithmic capacity. It is clear from the
definition that the set E is itself measurable with respect to logarithmic
capacity.

Note also that sets of logarithmic capacity zero coincide with sets of
the so-called absolute harmonic measure zero introduced by Nevan-
linna, see Chapter V in [35]. Hence a set E is of (Hausdorff) length zero if
C(E) = 0, see Theorem V.6.2 in [35]. However, there exist sets of length
zero having a positive logarithmic capacity, see e.g. Theorem IV.5 in [6].

Remark 2. It is known that Borel sets and, in particular, compact
and open sets are measurable with respect to logarithmic capacity, see
e.g. Lemma I.1 and Theorem III.7 in [6]. Moreover, as it follows from
the definition, any set E ⊂ C of finite logarithmic capacity can be repre-
sented as a union of a sigma-compactum (union of countable collection
of compact sets) and a set of logarithmic capacity zero. It is also known
that the Borel sets and, in particular, compact sets are measurable with
respect to all Hausdorff’s measures and, in particular, with respect to
measure of length, see e.g. Theorem II(7.4) in [45]. Consequently, any
set E ⊂ C of finite logarithmic capacity is measurable with respect to
measure of length. Thus, on such a set any function φ : E → C being
measurable with respect to logarithmic capacity is also measurable with
respect to measure of length on E. However, there exist functions that
are measurable with respect to measure of length but not measurable
with respect to logarithmic capacity, see e.g. Theorem IV.5 in [6].

Later on, we use the abbreviation q.e. (quasi-everywhere) on a
set E ⊂ C if the corresponding property holds only for all ζ ∈ E except
its subset of zero logarithmic capacity, see e.g. [29] for this term.

3. Hilbert problem and angular limits

In this section, we prove the existence of nonclassical solutions of the
Hilbert boundary value problem for generalized analytic functions with
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arbitrary boundary data that are measurable with respect to logarithmic
capacity. The result is formulated in terms of the angular limit that is
a traditional tool of the geometric function theory, see e.g. monographs
[8, 26,32,37] and [38].

Recall that the classic boundary value problem of Hilbert, see [24],
was formulated as follows: To find an analytic function f(z) in a domain
D bounded by a rectifiable Jordan contour C that satisfies the boundary
condition

lim
z→ζ

Re {λ(ζ) f(z)} = φ(ζ) ∀ ζ ∈ C , (3.1)

where the coefficient λ and the boundary date φ of the problem are
continuously differentiable with respect to the natural parameter s and
λ ̸= 0 everywhere on C. The latter allows to consider that |λ| ≡ 1 on C.
Note that the quantity Re {λ f} in (3.1) means a projection of f into the
direction λ interpreted as vectors in R2.

The reader can find a rather comprehensive treatment of the theory
in the new excellent books [3, 4, 23, 47]. We also recommend to make
familiar with the historic surveys contained in the monographs [12,34,48]
on the topic with an exhaustive bibliography and take a look at our recent
papers, see Introduction.

Next, recall that a straight line L is tangent to a curve Γ in C at a
point z0 ∈ Γ if

lim sup
z→z0,z∈Γ

dist (z, L)
|z − z0|

= 0 . (3.2)

Let D be a Jordan domain in C with a tangent at a point ζ ∈ ∂D.
A path in D terminating at ζ is called nontangential if its part in a
neighborhood of ζ lies inside of an angle with the vertex at ζ. The limit
along all nontangential paths at ζ is called angular at the point.

Following [21], we say that a Jordan curve Γ in C is almost smooth
if Γ has a tangent q.e. In particular, Γ is almost smooth if Γ has a tangent
at all its points except a countable collection. The nature of such a Jordan
curve Γ can be complicated enough because this countable collection can
be everywhere dense in Γ, see e.g. [7].

Recall that the quasihyperbolic distance between points z and z0
in a domain D ⊂ C is the quantity

kD(z, z0) := inf
γ

∫
γ

ds/d(ζ, ∂D) ,

where d(ζ, ∂D) denotes the Euclidean distance from the point ζ ∈ D
to ∂D and the infimum is taken over all rectifiable curves γ joining the
points z and z0 in D, see [14].
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Further, it is said that a domain D satisfies the quasihyperbolic
boundary condition if there exist constants a and b and a point z0 ∈ D
such that

kD(z, z0) ≤ a + b ln
d(z0, ∂D)

d(z, ∂D)
∀ z ∈ D . (3.3)

The latter notion was introduced in [13] but, before it, was first implic-
itly applied in [5]. By the discussion in [21], every smooth (or Lipschitz)
domain satisfies the quasihyperbolic boundary condition but such bound-
aries can be nowhere locally rectifiable.

Note that it is well–known the so–called (A)−condition by Ladyzhens-
kaya–Ural’tseva, which is standard in the theory of boundary value prob-
lems for PDE, see e.g. [28]. Recall that a domain D in Rn, n ≥ 2, is
called satisfying (A)-condition if

mes D ∩B(ζ, ρ) ≤ Θ0 mes B(ζ, ρ) ∀ ζ ∈ ∂D , ρ ≤ ρ0 (3.4)

for some Θ0 and ρ0 ∈ (0, 1), where B(ζ, ρ) denotes the ball with the
center ζ ∈ Rn and the radius ρ, see 1.1.3 in [28].

Recall also that a domain D in Rn, n ≥ 2, is said to be satisfying
the outer cone condition if there is a cone that makes possible to be
touched by its top to every boundary point of D from the completion of
D after its suitable rotations and shifts. It is clear that the outer cone
condition implies (A)–condition.

Probably one of the simplest examples of an almost smooth domain D
with the quasihyperbolic boundary condition and without (A)–condition
is the union of 3 open disks with the radius 1 centered at the points 0 and
1± i. It is clear that this domain has zero interior angle at its boundary
point 1.

Given a Jordan domain D in C, we call λ : ∂D → C a function of
bounded variation, write λ ∈ BV(∂D), if

Vλ(∂D) : = sup

k∑
j=1

|λ(ζj+1)− λ(ζj)| < ∞ (3.5)

where the supremum is taken over all finite collections of points ζj ∈ ∂D,
j = 1, . . . , k, with the cyclic order meaning that ζj lies between ζj+1 and
ζj−1 for every j = 1, . . . , k. Here we assume that ζk+1 = ζ1 = ζ0. The
quantity Vλ(∂D) is called the variation of the function λ.

Now, we call λ : ∂D → C a function of countable bounded varia-
tion, write λ ∈ CBV(∂D), if there is a countable collection of mutually
disjoint arcs γn of ∂D, n = 1, 2, . . . on each of which the restriction of
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λ is of bounded variation and the set ∂D \ ∪γn has logarithmic capacity
zero. In particular, the latter holds true if the set ∂D \ ∪γn is countable.
It is clear that such functions can be singular enough.

Theorem 1. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., λ : ∂D → C, |λ(ζ)| ≡
1, be in CBV(∂D) and let φ : ∂D → R be measurable with respect to
logarithmic capacity.

Suppose that g : D → R is in Lp(D), p > 2. Then there exist
generalized analytic functions h : D → C with the source g that have the
angular limits

lim
z→ζ

Re
{
λ(ζ) · h(z)

}
= φ(ζ) q.e. on ∂D. (3.6)

Furthermore, the space of such functions h has the infinite dimension.

Later on, we often apply the logarithmic (Newtonian) potential
NG of sources G ∈ Lp(C), p > 2, with compact supports given by the
formula:

NG(z) :=
1

2π

∫
C

ln |z − w|G(w) dm(w) . (3.7)

By Lemma 3 in [19], NG ∈W 2,p
loc (C)∩C

1,α
loc (C), α := (p−2)/p, △NG = G

a.e.

Proof. Extending the function g by zero outside of D and setting
P = NG with G = 2g, U = Px and V = −Py, we have that Ux − Vy = G
and Uy + Vx = 0. Thus, elementary calculations show that H := U + iV
is just a generalized analytic function with the source g. Moreover, the
function

φ∗(ζ) := lim
z→ζ

Re
{
λ(ζ) ·H(z)

}
= Re

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D ,

(3.8)
is measurable with respect to logarithmic capacity because the function
H is continuous in the whole plane C.

By Theorems 5.1 and 6.1 in [21], see Theorem D in Introduction, there
exist analytic functions A in D with the angular limits

lim
z→ζ

Re {λ(ζ) · A(z)} = Φ(ζ) q.e. on ∂D (3.9)

for the function Φ(ζ) := φ(ζ)−φ∗(ζ), ζ ∈ ∂D. The space of such analytic
functions A has the infinite dimension, see e.g. Corollary 8.1 in [21].
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Finally, it is clear that the functions h := A+H are desired generalized
analytic functions with the source g satisfying the Hilbert condition (3.6).
Thus, the space of such functions h has really the infinite dimension. 2

Remark 3. As it follows from the proof of Theorems 1, the gener-
alized analytic functions h with a source g ∈ Lp, p > 2, satisfying the
Hilbert boundary condition (3.6) q.e. in the sense of the angular limits
can be represented in the form of the sums A+H with analytic functions
A satisfying the corresponding Hilbert boundary condition (3.9) and a
generalized analytic function H = U+iV with the same source g, U = Px
and V = −Py, where P is the logarithmic (Newtonian) potential NG with
G = 2g in the class W 2,p

loc (C) ∩ C
1,α
loc (C), α = (p− 2)/p, that satisfies the

equation △P = G.

In particular, for the case λ ≡ 1, we obtain the following consequence
of Theorem 1 on the Dirichlet problem for the generalized analytic func-
tions.

Corollary 1. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., φ : ∂D → R be measurable
with respect to logarithmic capacity and let g : D → R be in Lp(D) for
some p > 2.

Then there exist generalized analytic functions h : D → C with the
source g that have the angular limits

lim
z→ζ

Re h(z) = φ(ζ) q.e. on ∂D . (3.10)

Furthermore, the space of all such functions h has the infinite dimension.

4. Hilbert problem and Bagemihl–Seidel systems

Let D be a domain in C whose boundary consists of a finite collection
of mutually disjoint Jordan curves. A family of mutually disjoint Jordan
arcs Jζ : [0, 1] → D, ζ ∈ ∂D, with Jζ([0, 1)) ⊂ D and Jζ(1) = ζ that is
continuous in the parameter ζ is called a Bagemihl–Seidel system or,
in short, of class BS.

Theorem 2. Let D be a bounded domain in C whose boundary con-
sists of a finite number of mutually disjoint Jordan curves, and let func-
tions λ : ∂D → C, |λ(ζ)| ≡ 1, φ : ∂D → R and ψ : ∂D → R be
measurable with respect to the logarithmic capacity.

Suppose that {γζ}ζ∈∂D is a family of Jordan arcs of class BS in D
and that a function g : D → R is of the class Lp(D) for some p > 2.
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Then there is a generalized analytic function f : D → C with the source
g such that

lim
z→ζ

Re {λ(ζ) · h(z)} = φ(ζ) , (4.1)

lim
z→ζ

Im {λ(ζ) · h(z)} = ψ(ζ) (4.2)

along γζ q.e. on ∂D.

Proof. As in the proof of Theorem 1, the function H = U + iV with
U = Px and V = −Py, where P = NG with G = 2g is a generalized
analytic function with the source g. Moreover, the functions

φ∗(ζ) := lim
z→ζ

Re
{
λ(ζ) ·H(z)

}
= Re

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D ,

(4.3)

ψ∗(ζ) := lim
z→ζ

Im
{
λ(ζ) ·H(z)

}
= Im

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D ,

(4.4)
are measurable with respect to logarithmic capacity because the function
H is continuous in the whole plane C.

Next, by Theorem 3 in [22] there is an analytic function A in D that
has along γζ q.e. on ∂D the limits

lim
z→ζ

Re {λ(ζ) · A(z)} = Φ(ζ) , (4.5)

lim
z→ζ

Im {λ(ζ) · A(z)} = Ψ(ζ) (4.6)

for the functions Φ(ζ) := φ(ζ)−φ∗(ζ) and Ψ(ζ) := ψ(ζ)−ψ∗(ζ), ζ ∈ ∂D.
Thus, the function h := A+H is a desired generalized analytic function
with the source g. 2

Remark 4. As it follows from the proof of Theorems 2, the gener-
alized analytic functions h with a source g ∈ Lp, p > 2, satisfying the
Hilbert boundary condition (4.1) q.e. in the sense of the limits along γζ
can be represented in the form of the sums A+H with analytic functions
A satisfying the corresponding Hilbert boundary condition (4.5) and a
generalized analytic function H = U+iV with the same source g, U = Px
and V = −Py, where P is the logarithmic (Newtonian) potential NG with
G = 2g in the class W 2,p

loc (C) ∩ C
1,α
loc (C), α = (p− 2)/p, that satisfies the

equation △P = G.
The space of all solutions h of the Hilbert problem (4.1) in the given

sense has the infinite dimension for any such prescribed φ, λ and {γζ}ζ∈D
because the space of all functions ψ : ∂D → R which are measurable with
respect to the logarithmic capacity has the infinite dimension.
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The latter is valid even for its subspace of continuous functions ψ :
∂D → R. Indeed, by the Riemann theorem every Jordan domain Ω can
be mapped with a conformal mapping c onto the unit disk D and by
the Caratheodory theorem c can be extended to a homeomorphism of G
onto D. By the Fourier theory, the space of all continuous functions ψ̃ :
∂D → R, equivalently, the space of all continuous 2π-periodic functions
ψ∗ : R → R, has the infinite dimension.

Corollary 2. Let D be a bounded domain in C whose boundary
consists of a finite number of mutually disjoint Jordan curves, and λ :
∂D → C, |λ(ζ)| ≡ 1, and φ : ∂D → R be measurable functions with
respect to the logarithmic capacity.

Suppose also that {γζ}ζ∈∂D is a family of Jordan arcs of class BS in
D and that a function g : D → R is of the class Lp(D), p > 2.

Then there exist generalized analytic functions h : D → C with the
source g that have the limits (4.1) along γζ q.e. on ∂D. Furthermore,
the space of such functions h has the infinite dimension.

In particular, for the case λ ≡ 1, we obtain the corresponding con-
sequence on the Dirichlet problem for the generalized analytic functions
with the source g along any prescribed Bagemihl–Seidel system:

Corollary 3. Let D be a bounded domain in C whose boundary con-
sists of a finite number of mutually disjoint Jordan curves and φ : ∂D →
R be a measurable function with respect to the logarithmic capacity.

Suppose also that {γζ}ζ∈∂D is a family of Jordan arcs of class BS in
D and that a function g : D → R is of the class Lp(D), p > 2.

Then there exist generalized analytic functions h : D → C with the
source g such that

lim
z→ζ

Re h(z) = φ(ζ) along γζ q.e. on ∂D . (4.7)

Furthermore, the space of such functions h has the infinite dimension.

5. Riemann problem and Bagemihl–Seidel systems

Recall that the classical setting of the Riemann problem in a
smooth Jordan domain D of the complex plane C is to find analytic
functions f+ : D → C and f− : C \ D → C that admit continuous
extensions to ∂D and satisfy the boundary condition

f+(ζ) = A(ζ) · f−(ζ) + B(ζ) ∀ ζ ∈ ∂D (5.1)

with prescribed Hölder continuous functions A : ∂D → C and B : ∂D →
C.
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Recall also that the Riemann problem with shift in D is to find
analytic functions f+ : D → C and f− : C \ D → C satisfying the
condition

f+(α(ζ)) = A(ζ) · f−(ζ) + B(ζ) ∀ ζ ∈ ∂D (5.2)

where α : ∂D → ∂D was a one-to-one sense preserving correspondence
having the non-vanishing Hölder continuous derivative with respect to
the natural parameter on ∂D. The function α is called a shift function.
The special case A ≡ 1 gives the so–called jump problem and B ≡ 0
gives the problem on gluing of analytic functions.

Arguing similarly to the proof of Theorem 1, we obtain by Theorem
8 in [22] on the Riemann problem for analytic functions the following
statement.

Theorem 3. Let D be a domain in C whose boundary consists of a
finite number of mutually disjoint Jordan curves, A : ∂D → C and B :
∂D → C be functions that are measurable with respect to the logarithmic
capacity and let {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D be families of Jordan arcs of

class BS in D and C \D, correspondingly.
Suppose that g : C → R is a function with compact support in the class

Lp(C) with some p > 2. Then there exist generalized analytic functions
f+ : D → C and f− : C \ D → C with the source g that satisfy (5.1)
q.e. on ζ ∈ ∂D, where f+(ζ) and f−(ζ) are limits of f+(z) and f−(z)
az z → ζ along γ+ζ and γ−ζ , correspondingly.

Furthermore, the space of all such couples (f+, f−) has the infinite
dimension for every couple (A,B) and any collections γ+ζ and γ−ζ , ζ ∈
∂D.

Theorem 3 is a special case of the following lemma based on Lemma 3
in [22] on the Riemann problem with shift that may have of independent
interest.

Lemma 1. Under the hypotheses of Theorem 3, let in addition α :
∂D → ∂D be a homeomorphism keeping components of ∂D such that α
and α−1 have the (N)−property of Luzin with respect to the logarithmic
capacity.

Then there exist generalized analytic functions f+ : D → C and
f− : C \D → C with the source g that satisfy (5.2) for a.e. ζ ∈ ∂D with
respect to the logarithmic capacity, where f+(ζ) and f−(ζ) are limits of
f+(z) and f−(z) az z → ζ along γ+ζ and γ−ζ , correspondingly.

Furthermore, the space of all such couples (f+, f−) has the infinite
dimension for every couple (A,B) and any collections γ+ζ and γ−ζ , ζ ∈
∂D.



V. Gutlyanskĭı, O. Nesmelova, V. Ryazanov, A. Yefimushkin 25

Remark 5. Some investigations were devoted also to the nonlinear
Riemann problems with boundary conditions of the form

Φ( ζ, f+(ζ), f−(ζ) ) = 0 ∀ ζ ∈ ∂D . (5.3)

It is natural as above to weaken such conditions to the following

Φ( ζ, f+(ζ), f−(ζ) ) = 0 q.e. on ζ ∈ ∂D . (5.4)

It is easy to see that the proposed approach makes possible also to reduce
such problems to the algebraic measurable solvability of the relations

Φ( ζ, v, w ) = 0 (5.5)

with respect to complex-valued functions v(ζ) and w(ζ), cf. e.g. [16].

Later on, we sometimes say in short “C−measurable” instead of the
expression “measurable with respect to the logarithmic capacity”.

Example 1. For instance, correspondingly to the scheme given
above, special nonlinear problems of the form

f+(ζ) = φ( ζ, f−(ζ) ) q.e. on ζ ∈ ∂D (5.6)

are always solved if the function φ : ∂D × C → C satisfies the Cara-
theodory conditions with respect to the logarithmic capacity, that is
if φ(ζ, w) is continuous in the variable w ∈ C for a.e. ζ ∈ ∂D with respect
to the logarithmic capacity and it is C−measurable in the variable ζ ∈ ∂D
for all w ∈ C.

The spaces of solutions of such problems always have the infinite
dimension. Indeed, by the Egorov theorem, see e.g. Theorem 2.3.7 in [10],
see also Section 17.1 in [27], the function φ(ζ, ψ(ζ)) is C−measurable in
ζ ∈ ∂D for every C−measurable function ψ : ∂D → C if the function φ
satisfies the Caratheodory conditions, and the space of all C−measurable
functions ψ : ∂D → C has the infinite dimension, see e.g. arguments in
Remark 4 above.

Furthermore, applying Lemma 1 with A ≡ 0 in (5.2), we able to
resolve nonlinear boundary-value problems with shifts of the type (even
with arbitrary measurable f−(ζ) with respect to the logarithmic capacity)

f+(α(ζ)) = φ( ζ, f−(ζ) ) q.e. on ζ ∈ ∂D . (5.7)
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6. On mixed boundary-value problems

Remark 5 makes possible to formulate a series of nonlinear boundary-
value problems in terms of Bagemihl–Seidel systems for generalized an-
alytic functions including mixed boundary value problems. In order to
demonstrate the potentiality of our approach, we give here a couple of
results.

Namely, arguing similarly to the proof of Theorem 1, see also Theorem
1.10 in [48], we obtain for instance by Theorem 10 and Lemma 5 in [22]
the following statement on mixed boundary value problems.

Theorem 4. Let D be a domain in C whose boundary consists of a
finite number of mutually disjoint Jordan curves, φ : ∂D×C → C satisfy
the Caratheodory conditions and ν : ∂D → C, |ν(ζ)| ≡ 1, be measurable
with respect to the logarithmic capacity. Suppose also that g : C → R
is in Cα(C), α ∈ (0, 1), with compact support, {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D
are families of Jordan arcs of class BS in D and C \D, correspondingly.

Then there exist generalized analytic functions f+ : D → C and
f− : C \D → C with the source g such that

f+(ζ) = φ

(
ζ,

[
∂f

∂ν

]−
(ζ)

)
q.e. on ∂D , (6.1)

where f+(ζ) and
[
∂f
∂ν

]−
(ζ) are limits of the functions f+(z) and ∂f−

∂ ν (z)

as z → ζ along γ+ζ and γ−ζ , correspondingly.

Furthermore, the space of all such couples (f+, f−) has the infinite
dimension for any such prescribed functions g, φ, ν and collections γ+ζ
and γ−ζ , ζ ∈ ∂D.

Theorem 4 is a special case of the following lemma on the mixed
problem with shift.

Lemma 2. Under the hypotheses of Theorem 4, let in addition β :
∂D → ∂D be a homeomorphism keeping components of ∂D such that β
and β−1 have the (N)−property of Luzin with respect to the logarithmic
capacity.

Then there exist generalized analytic functions f+ : D → C and
f− : C \D → C with the source g such that

f+(β(ζ)) = φ

(
ζ,

[
∂f

∂ν

]−
(ζ)

)
q.e. on ∂D , (6.2)

where f+(ζ) and
[
∂f
∂ν

]−
(ζ) are limits of the functions f+(z) and ∂f−

∂ ν (z)

as z → ζ along γ+ζ and γ−ζ , correspondingly.
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Furthermore, the space of all such couples (f+, f−) has the infinite
dimension for any such prescribed g, φ, ν, β and collections {γ+ζ }ζ∈∂D
and {γ−ζ }ζ∈∂D.

Proof. Indeed, by relations (2.21) in [18] and Theorem 1.10 in [48] the
logarithmic (Newtonian) potential NG with the source G = 2g, see (3.7),
is in C2,α(C). Setting P := NG, we conclude by elementary calculations
that the function

H(z) := ∇P (z) , z ∈ C , ∇P := Px + iPy , z = x+ iy , (6.3)

is a generalized analytic function in the class C1,α(C) with the source g.
Hence the function

h(ζ) :=
∂H

∂ ν
(ζ) , ζ ∈ ∂D , (6.4)

belongs to the class Cα(∂D) is correctly definite and measurable with
respect to the logarithmic capacity.

Now, let a : ∂D → C be an arbitrary function that is measurable
with respect to the logarithmic capacity. Then by Theorem 6 in [22]
there exist analytic functions A− : C \D → C such that

lim
z→ζ

∂A−

∂ ν
(z) = a(ζ) q.e. on ∂D . (6.5)

Setting f− = H + A− on C \D and ψ = h + a on ∂D, we see that
the function ψ : ∂D → C can be arbitrary measurable with respect to
the logarithmic capacity, f− is a generalized analytic function with the
source g in C \D and

lim
z→ζ

∂f−

∂ ν
(z) = ψ(ζ) q.e. on ∂D . (6.6)

Next, the function Ψ(ζ) := φ(ζ, ψ(ζ)) is measurable with respect
to the logarithmic capacity on ∂D, see Example 1 to Remark 4. Then the
function Φ = Ψ ◦ β−1 is also measurable with respect to the logarithmic
capacity because the homeomorphism β has the (N)−property by Luzin
with respect to the logarithmic capacity.

Consequently, by Theorem 1 in [22] there exist analytic functions
A+ : D → C such that A+(z) → Φ(ζ)−H(ζ) as z → ζ along γζ q.e. on
∂D. Setting f+ = H+A+ on D, we see that f+ is a generalized analytic
function with the source g in D such that f+(z) → Φ(ζ) as z → ζ along
γζ q.e. on ∂D.
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Thus, f+ and f− are the desired functions because β−1 also has the
(N)−property. It remains to note that the space of all such couples
(f+, f−) has the infinite dimension because the space of all functions ψ :
∂D → C which are measurable with respect to the logarithmic capacity
has the infinite dimension, see arguments in Remark 4.

Remark 6. In the case of Jordan domains D, following the same
scheme, namely, applying once more Theorem 6 in [22] instead of Theo-
rem 1 in [22] in the final stage of the above proof, the similar statement
can be derived for the boundary gluing conditions of the form[

∂f+

∂ν∗

]
(β(ζ)) = φ

(
ζ,

[
∂f−

∂ν

]
(ζ)

)
q.e. on ∂D . (6.7)

7. Poincare and Neumann problems in terms of angular
limits

In this section, we consider the Poincare boundary value problem on
the directional derivatives and, in particular, the Neumann problem for
the Poisson equations

△U(z) = G(z) (7.1)

with real valued functions G of classes Lp(D) with p > 2 in the corre-
sponding domains D ⊂ C. Recall that a continuous solution U of (7.1) in
the class W 2,p

loc is called a generalized harmonic function with the
source G and that by the Sobolev embedding theorem such a solution
belongs to the class C1.

Theorem 5. Let D be a Jordan domain with the quasihyperbolic
boundary condition, ∂D have a tangent q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be
in CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose that G : D → R is in Lp(D), p > 2. Then there exist
generalized harmonic functions U : D → R with the source G that have
the angular limits

lim
z→ζ

∂U

∂ν
(z) = φ(ζ) q.e. on ∂D . (7.2)

Furthermore, the space of such functions U has the infinite dimension.

Proof. Indeed, let us extend the function G by zero outside of D and
let P be the logarithmic potential NG with the source G, see (3.7). Then
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by Lemma 3 in [19] P ∈ W 2,p
loc (C) ∩ C1,α

loc (C) with α = (p − 2)/p and
△P = G a.e. in C. Set

φ∗(ζ) = Re ν(ζ)H(ζ) , ζ ∈ ∂D , (7.3)

where

H(z) := ∇P (z) , z ∈ C , ∇P := Px + iPy , z = x+ iy . (7.4)

Then by Theorem 1 with g = G/2 in D and λ = ν on ∂D, there exist
generalized analytic functions h with the source g that have the angular
limits

lim
z→ζ

Re ν(ζ)h(z) = φ(ζ) q.e. on ∂D (7.5)

and, moreover, by the proof of Theorem 4 the given functions h can be
represented in the form of the sums A+H with analytic functions A in
D that have the angular limits

lim
z→ζ

Re ν(ζ)A(z) = Φ(ζ) q.e. on ∂D (7.6)

with Φ(ζ) := φ(ζ) − φ∗(ζ), ζ ∈ ∂D, and the space of such analytic
functions A has the infinite dimension.

Note that any indefinite integral F of such A in the simply connected
domain D is also a single-valued analytic function and the harmonic
functions u := Re F and v := Im F satisfy the Cauchy-Riemann system
ux = vy and uy = −vx. Hence

A = F ′ = Fx = ux + i · vx = ux − i · uy = ∇u . (7.7)

Consequently, setting U∗ = u+P , we see that U∗ is a generalized harmonic
function with the source G and, moreover, by the construction h = ∇U∗.

Note also that the directional derivative of U∗ along the unit vector
ν is the projection of its gradient ∇U∗ into ν, i.e., the scalar product of
ν and ∇U∗ interpreted as vectors in R2 and, consequently,

∂U∗
∂ν

= (ν,∇U∗) = Re ν · ∇U∗ = Re ν · h . (7.8)

Thus, (7.5) implies (7.2) and the proof is complete. 2

Remark 7. We are able to say more in the case of Re n(ζ)ν(ζ) > 0,
where n(ζ) is the inner normal to ∂D at the point ζ. Indeed, the latter
magnitude is a scalar product of n = n(ζ) and ν = ν(ζ) interpreted as
vectors in R2 and it has the geometric sense of projection of the vector
ν into n. In view of (7.2), since the limit φ(ζ) is finite, there is a finite
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limit U(ζ) of U(z) as z → ζ in D along the straight line passing through
the point ζ and being parallel to the vector ν because along this line

U(z) = U(z0) −
1∫

0

∂U

∂ν
(z0 + τ(z − z0)) dτ . (7.9)

Thus, at each point with condition (7.2), there is the directional derivative

∂U

∂ν
(ζ) := lim

t→0

U(ζ + t · ν)− U(ζ)

t
= φ(ζ) . (7.10)

In particular, in the case of the Neumann problem, Re n(ζ)ν(ζ) ≡
1 > 0, where n = n(ζ) denotes the unit interior normal to ∂D at the
point ζ, and we have by Theorem 5 the following significant result.

Corollary 4. Let D be a Jordan domain in C with the quasihyperbolic
boundary condition, the unit inner normal n(ζ), ζ ∈ ∂D, belong to the
class CBV(∂D) and φ : ∂D → R be measurable with respect to logarithmic
capacity.

Suppose that G : D → R is in Lp(D), p > 2. Then one can find
generalized harmonic functions U : D → R with the source G such that
q.e. on ∂D there exist:

1) the finite limit along the normal n(ζ)

U(ζ) := lim
z→ζ

U(z) ,

2) the normal derivative

∂U

∂n
(ζ) := lim

t→0

U(ζ + t · n(ζ))− U(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂U

∂n
(z) =

∂U

∂n
(ζ) .

Furthermore, the space of such functions U has the infinite dimen-
sion.
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8. Poincare and Neumann problems and Bagemihl–Seidel
systems

Arguing similarly to the last section, we obtain by Theorem 6 in [22],
as well as Theorem 2 and Remark 4 above, the following statement.

Theorem 6. Let D be a Jordan domain in C, ν : ∂D → C,
|ν(ζ)| ≡ 1, and φ : ∂D → C be measurable functions with respect to
the logarithmic capacity and let {γζ}ζ∈∂D be a family of Jordan arcs of
class BS in D.

Suppose also that G : D → R is in Lp(D), p > 2. Then there exist
generalized harmonic functions U : D → C with the source G that have
the limits along γζ

lim
z→ζ

∂U

∂ν
(z) = φ(ζ) q.e. on ∂D . (8.1)

Furthermore, the space of such functions U has the infinite dimension.

Remark 8. As it follows from the proofs of Theorems 5 and 6, the
generalized harmonic functions U with a source G ∈ Lp, p > 2, satisfying
the Poincare boundary conditions can be represented in the form of the
sums NG + U∗ of the logarithmic (Newtonian) potential NG that is a
generalized harmonic function with the source G and harmonic functions
U∗ satisfying the corresponding Poincare boundary conditions.

9. On the Riemann–Poincare type problems for the Pois-
son equations

Finally, arguing similarly to the proof of Lemma 2 in a much more
simple manner, we obtain by Theorem 6, see also Remark 5 and Example
1, for example, the following consequence.

Corollary 5. Let D be a Jordan domain in C, φ : ∂D × R → R
satisfy the Caratheodory conditions, ν and ν∗ : ∂D → C, |ν(ζ)| ≡ 1,
|ν∗(ζ)| ≡ 1, are measurable with respect to the logarithmic capacity, and
let {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D be families of Jordan arcs of class BS in D

and C \D, correspondingly.
Suppose also that G : C → R is in the class Lp(D), p > 2, with

compact support. Then there exist generalized harmonic functions U+ :
D → R and U− : C \D → R with the source G such that[

∂U

∂ν∗

]+
(ζ) = φ

(
ζ,

[
∂U

∂ν

]−
(ζ)

)
q.e. on ∂D , (9.1)
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where
[
∂U
∂ν∗

]+
(ζ) and

[
∂U
∂ν

]−
(ζ) are limits of the directional derivatives

∂U+

∂ ν∗
(z) and ∂U−

∂ ν (z) as z → ζ along γ+ζ and γ−ζ , correspondingly.

Furthermore, the function
[
∂U
∂ν

]−
(ζ) can be arbitrary measurable with

respect to the logarithmic capacity and, correspondingly, the space of all
such couples (U+, U−) has the infinite dimension for any such prescribed
functions φ, ν, ν∗ and collections γ+ζ and γ−ζ , ζ ∈ ∂D.

10. Conclusions

In this connection, it is necessary to note that all the above results
are valid in terms of the length measure in Jordan domains with rectifi-
able boundaries, see [44]. However, by the well–known Ahlfors-Beurling
example, see [1], the sets of length zero as well as of harmonic measure
zero are not invariant with respect to quasiconformal changes of vari-
ables. The latter circumstance does not make it is possible to apply the
results of the paper [44] in the future for the extension of the statements
to generalizations in anisotropic and inhomogeneous media. Hence we
have preferred here to use logarithmic capacity.

In comparison with the paper [21], here we have considered the bound-
ary value problems of Riemann, Hilbert, Dirichlet, Poincare and Neu-
mann with arbitrary measurable boundary data with respect to loga-
rithmic capacity for the simplest equations with sources describing the
case of the isotropic homogeneous media. The corresponding results on
the boundary value problems for semi–linear equations of mathematical
physics in anisotropic and inhomogeneous media with arbitrary measu-
rable boundary data with respect to logarithmic capacity can be obtained
similarly to the Dirichlet problem in [18] and [20] on the basis of the re-
sults of the present paper and the factorization theorem in the paper [17].
Thus, the present paper creates the basis and opens a whole series of arti-
cles on the corresponding results for nonlinear equations (with nonlinear
sources) that will be published elsewhere.
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