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The one-dimensional 𝑈(2) Lie algebra is employed to calculate the structural and vibrational
properties of C36. The lowest energy configuration of the C36 cage is confirmed to have 𝐷6ℎ

symmetry. The Lie algebraic method is based on the idea of dynamic symmetry, which can be
expressed in terms of 𝑈(2) Lie algebra. By applying the algebraic techniques, a local Hamilto-
nian, which conveniently describes the rovibrational degrees of freedom of the physical system,
can be obtained. In this technique, the Hamiltonian is constructed, by considering the invariant
Casimir and Majorana operators replacing every bond of the molecule by a corresponding Lie
algebra. At the same time, the fundamental stretching vibrational energy levels of the molecule
𝐶36 are calculated. Finally, the calculated results are compared with other theoretical findings.
K e yw o r d s: Lie algebra, Hamiltonian, C36, dynamic symmetry.

1. Introduction

As a matter of keen interest of the research com-
munity, to unfold the different properties of atoms
and molecules, the spectroscopy is considered nowa-
days as an active dependable arena. The spectroscopy
deals with the interaction between electromagnetic
radiation and matter. This interaction results in the
spectra characterized by wavelengths or frequen-
cies. The spectroscopic data are considered as a
measure of the radiation intensity as a function
of the wavelength. Electromagnetic radiation propa-
gates through the free space or through a material
medium in the form of electromagnetic waves. The
electric field varying in time can induce a magnetic
field which induces, in turn, an electric field. They os-
cillate in mutually perpendicular directions and take
the form of an electromagnetic wave.

For the calculations of the frequencies of the vibra-
tional modes of polyatomic molecules, there are many
theoretical approaches like the tight-binding molecu-
lar dynamics [1], first principles calculation [2], force
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field model [3], modified neglect of diatomic over-
lap (MNDO) model [4], quantum-mechanical con-
sistent force field method for pi-electron systems
(QCFF/PI) [5], Austin model 1 (AM1) [6], density
functional theory (DFT) [7], etc. has been reported
so far. Besides these, the Lie algebraic approach has
also been successfully analyze the vibrational spectra
of many medium and large-sized molecules. A brief
review work of Iachello et al. reflects the scenario of
the field up to 2002 along with the perspectives for
the algebraic method in the first decade of the 21st
century [8].

In this study, we consider the vibrational spectra of
a small carbon cluster, being a very interesting mo-
mentous element. Most of the results regarding the
study of the vibrational modes of small- and medium-
sized carbon clusters are based on experiments. In re-
cent years, researchers have performed many experi-
mental observations in this relevant field. Though the
experimental observations are good enough and sig-
nify an important role in interpreting the results on
the basis of the analysis of data, the theoretical ap-
proaches are also indispensible to unfold the endless



M.D. Choudhury, R. Sen, B.I. Sharma

possibilities to study the characteristics of small- and
medium-sized molecules and to predict hitherto un-
known states [9].

Here, our purpose persists to report the vibrational
infrared frequencies of fullerene molecules C36. Our
interest in C36 is driven by the persistent incom-
plete experimental evidence (mainly concerning the
infrared spectrum), as well as by the speculations of
Fowler et al. [10] about the potential role of C36 as
a building block in fullerene compounds and many
solids.

Various properties of C36 molecules have been in-
vestigated experimentally over the last several years
[11–14]. However, the synthesis of solid form C36 was
achieved only recently [15]. Solid-state NMR mea-
surements indicate that the molecule has 𝐷6ℎ symme-
try, and the electron diffraction patterns suggest the
crystal has hexagonal symmetry. The IR absorption
spectrum of the powdered crystal shows a number of
broad features between 400 and 1800 cm−1, and, to
the best of our knowledge, no other measurements of
vibrational frequencies of C36 have been reported.

The most distinctive calculations of the vibrational
frequencies of C36 reported up to now are the tight
binding molecular dynamics of Beu et al. [1] and
first principles calculations of Jishi et al. [2], using
a spin-polarized DFT approach within the local den-
sity approximation (LDA). For the IR spectrum, the
overall agreement of the calculated frequencies with
the experimental data is very good. It is also found
from the approach of density functional tight-binding
(DFTB) level that the molecule C36 forms stronger
intercage bonds than other lager fullerenes, say, C70

and C80.
In such case, we use a mathematical model of

molecular spectra to describe and predict the vibra-
tional modes with high precision and accuracy. The
algebraic approach was first given by Wulfman,
Levine, and co-workers enthused from the interact-
ing boson model of Arima and Iachello. Later on,
Iachello developed this model with the introduction of
the vibron model, where the rotation-vibration spec-
tra of molecules were described by 𝑈(4) algebra. But
this becomes very difficult to use 𝑈(4) algebra, when
the number of atoms increases. This difficulty com-
pels them to apply another algebraic model to the
polyatomic molecules, and, henceforth, the 𝑈(2) al-
gebraic model, in which rotations and vibrations are
completely separated, has been introduced.

Using the simple algebraic technique, we can easily
find the different fundamental energy levels of con-
cerned molecules. The level of accuracy can be es-
timated by the one-dimensional 𝑈(2) Lie algebraic
method [16].

2. The Algebraic Approach

The algebraic method has been extensively used as a
computational tool for the analysis and interpretation
of the experimental rotational-vibrational spectra of
large- and medium-sized molecules. This method is
purely based on the idea of dynamic symmetry,
which depends, in turn, on the Hamiltonian formal-
ism with the help of Lie algebraic technique, which
conveniently describes the rotational-vibrational de-
grees of freedom of the physical system. In the one-
dimensional 𝑈(2) model, the replacement of the in-
teraction bond co-ordinates by a unitary algebra
provides a specific formulation of the algebraic ex-
pressions of eigenvalues and eigenvectors of complex
Hamiltonian operators, which also includes the in-
termode coupling term and the expectation values
as well. Since the 𝑈(4) algebra is very much com-
plicated, when the number of molecules is more than
four, we need to construct a simple version of the vi-
bron model with 𝑈(2) algebra that can be used for
the vibrational analysis of polyatomic molecules [17].

The main advantages of the 𝑈(2) algebraic ap-
proach over the conventional Dunham-like expansions
are as follows:

1. The algebraic models lead to a local Hamiltonian
formulation of the physical problem.

2. Its expansions are intrinsically anharmonic in
the zero-order approximation.

These two elements significantly reduce the num-
ber of parameters in comparison to the harmonic
series for medium- and small-sized molecules. Hence
the local Hamiltonian formulation can be used in the
analysis of highly excited overtones of the polyatomic
molecules.

The algebraic framework is based on the isomor-
phism of the 𝑈(2) Lie algebra with that of the one-
dimensional Morse oscillator. The Hamiltonian of the
one-dimensional Schrödinger equation with the Morse
potential [18],

ℎ(𝑝.𝑥) =
𝑝2

2𝜇
+𝐷[1− 𝑒(−𝛼𝑥)]2, (1)
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can be put into the one-to-one correspondence with
the representations of 𝑈(2) ⊃ 𝑂(2) characterized by
quantum numbers |𝑁,𝑚⟩ with the provision that one
takes only the positive branch of 𝑚, i.e., 𝑚 = 𝑁 ,
𝑁 − 2, 𝐾, 1 or 0 for 𝑁 = odd or even (𝑁 = inte-
ger). The Morse Hamiltonian in Eq. (1) corresponds
in the 𝑈(2) basis to a simple Hamiltonian [19]

ℎ = 𝜖0 +𝐴𝐶,

where 𝐶 is the invariant operator. The eigenvalues of
ℎ are

𝜖 = 𝜖0 +𝐴(𝑚2 −𝑁2), (2)

where 𝑚 = 𝑁 , 𝑁 − 2, ..., 1 or 0 (𝑁 = integer).
Here, we introduce the vibrational quantum num-

ber, 𝜈 = (𝑁 −𝑚)/2.
Thus, Eq. (2) can be rewritten as

𝜖 = 𝜖0 − 4𝐴(𝑁𝜈 − 𝜈2), (3)

where 𝜈 = 0, 1, ..., 𝑁
2 or 𝑁−1

2 and (𝑁 = even or odd).
The values of 𝜖0, 𝐴, and 𝑁 are given in terms of

𝐷,𝜇, and 𝛼, respectively, by using the relations

𝜖0 = −𝐷, −4𝐴𝑁 = ℎ𝛼

(︂
2𝐷

𝜇

)︂1/2
, 4𝐴 =

−ℎ2𝛼2

2𝜇
, (4)

where 𝐷 is the dissociation energy, and 𝜇 is the re-
duced mass.

In a good approximation, we can write the Hamil-
tonian of a polyatomic molecule in terms of the Morse
anharmonic oscillator, by applying 𝑈(2) algebra for
each coordinate. This leads to the following algebraic
Hamiltonian for the coupled oscillator [20]:

𝐻 = 𝐸0 +

𝑛∑︁
𝑖=1

𝐴𝑖𝐶𝑖 +

𝑛∑︁
𝑖<𝑗

𝐴𝑖𝑗𝐶𝑖𝑗 +

𝑛∑︁
𝑖<𝑗

𝜆𝑖𝑗𝑀𝑖𝑗 . (5)

In the above Hamiltonian, the contributions of the
three different classes are defined in the following
manner: The first term,

∑︀𝑛
𝑖=1 𝐴𝑖𝐶𝑖, contributes to

the description of 𝑛 independent anharmonic se-
quences of vibrational levels (associated with 𝑁 in-
dependent local oscillators) in terms of the opera-
tors 𝐶𝑖. The second one,

∑︀𝑛
𝑖<𝑗 𝐴𝑖𝑗𝐶𝑖𝑗 , leads to cross-

anharmonicities between pairs of distinct local oscil-
lators in terms of the operators 𝐶𝑖𝑗 . The third one,∑︀𝑛

𝑖<𝑗 𝜆𝑖𝑗𝑀𝑖𝑗 , depicts anharmonic nondiagonal inter-
actions involving pairs of local oscillators in terms

of the operators 𝑀𝑖𝑗 . The 𝐶𝑖, 𝐶𝑖𝑗 and 𝑀𝑖𝑗 are the
invariant algebraic operators. In the local basis, the
operators 𝐶𝑖 compose a diagonal matrix with eigen-
values [21]

⟨𝑁𝑖, 𝜈𝑖|𝐶𝑖|𝑁𝑖, 𝜈𝑖⟩ = −4(𝑁𝑖𝜈𝑖 − 𝜈2𝑖 ). (6)

The couplings between the bonds are introduced by
the invariant operators 𝐶𝑖𝑗 and 𝑀𝑖𝑗 called Casimir
and Majorana operators, respectively. The Casimir
operator has only the diagonal matrix elements,
whereas the Majorana operators have both diagonal
and off-diagonal matrix elements, which are given by

⟨𝜈|𝐶𝑖|𝜈⟩ = −4𝜈𝑖(𝑁𝑖 − 𝜈𝑖),

⟨𝜈|𝐶𝑖𝑗 |𝜈⟩ = −4(𝜈𝑖 + 𝜈𝑗)(𝑁𝑖 +𝑁𝑗 − 𝜈𝑖 − 𝜈𝑗),
(7)

⟨𝜈′𝑖|𝑀𝑖𝑗 |𝜈⟩ = (𝜈𝑖𝑁𝑖 + 𝜈𝑗𝑁𝑗 − 2𝜈𝑖𝜈𝑗)𝛿𝜈′
𝑖𝜈𝑖

𝛿𝜈′
𝑗𝜈𝑗

,

⟨𝜈′𝑖|𝑀𝑖𝑗 |𝜈⟩ = −[(𝜈𝑖 + 1)(𝑁𝑖 − 𝜈𝑖)×

× 𝜈𝑗(𝑁𝑗 − 𝜈𝑗 + 1)]1/2𝛿𝜈′
𝑖−𝜈𝑖

𝛿𝜈′
𝑗+𝜈𝑗

,

⟨𝜈′𝑖|𝑀𝑖𝑗 |𝜈⟩ = −[(𝜈𝑗 + 1)(𝑁𝑗 − 𝜈𝑗)×

× 𝜈𝑖(𝑁𝑖 − 𝜈𝑖 + 1)]1/2𝛿𝜈′
𝑖+𝜈𝑖

𝛿𝜈′
𝑗−𝜈𝑗

.

(8)

Thus, the eigenvalues of the Hamiltonian can be eas-
ily evaluated and provide a description of 𝑛 coupled
anharmonic vibrations.

3. Results and Discussion

In the algebraic theory, we introduce the vibron num-
ber 𝑁, which is directly related to the anharmonicity
of the local C–C stretching bonds. At first, the value
of vibron number 𝑁 is determined by the relation [22]

𝑁 =
𝑤𝑒

𝑤𝑒𝑥𝑒
− 1, (9)

where 𝑤𝑒 and 𝑤𝑒𝑥𝑒 are the spectroscopic constants
[22, 23] of diatomic molecules with the stretching in-
teraction of the molecules considered. The value of 𝑁
has to be taken as the initial guess depending on the
specific molecular structure. One can expect a change
of 20% of the value of 𝑁 .

Table 1. Fitting algebraic parameters
of C36(𝐴, 𝜆, 𝜆′) (in cm−1), whereas 𝑁

is dimensionless)

Vibron number 𝐴 𝜆 𝜆′

140 –0.776 0.275 0.058
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Table 2. Calculated IR frequencies of C36 (in cm−1)

Mode Beu𝑎(𝜈1) Jishi𝑏(𝜈2) This work(𝜈) Δ1 = 𝜈 − 𝜈2 Δ2 = 𝜈 − 𝜈1
|Δ1|
𝜈

|Δ2|
𝜈

𝐸1𝑢(1) 431 459 432 –27 1 0.062 0.002
𝐸1𝑢(2) 480 483 481 –2 1 0.004 0.002
𝐴2𝑢(1) 511 510 509 –1 –2 0.001 0.004
𝐸1𝑢(3) 682 668 675 7 –7 0.011 0.011
𝐸1𝑢(4) 734 727 739 12 5 0.016 0.006
𝐴2𝑢(2) 752 758 751 –7 –1 0.009 0.001
𝐴2𝑢(3) 796 785 789 4 –7 0.005 0.008
𝐸1𝑢(5) 1027 1083 1035 –48 8 0.046 0.007
𝐴2𝑢(4) 1102 1103 1107 4 5 0.003 0.004
𝐸1𝑢(6) 1259 1261 1263 2 4 0.001 0.003
𝐴2𝑢(5) 1385 1340 1347 7 –38 0.005 0.028
𝐸1𝑢(5) 1375 1355 1359 4 –16 0.002 0.012
𝐸1𝑢(9) 1454 1465 1460 –5 6 0.003 0.004

𝑎Reference [1], 𝑏Reference [2].

Second, the value of the parameter 𝐴 can be ob-
tained from the single-oscillator fundamental mode
as

𝐸𝜈=1 = −4𝐴(𝑁 − 1). (10)

Lastly, on the third step, one has to obtain an ini-
tial guess for the parameters 𝜆 and 𝜆′ of the Majo-
rana operators 𝑀𝑖𝑗 , the role of which is to degenerate
the local modes. The value of these parameters can
be calculated by considering the matrix structure of
the molecules. By using a numerical fitting procedure
(in a least-square sense) one can adjust the values of
the parameters 𝑁 , 𝐴, 𝜆, 𝜆′, and 𝐴′ (whose initial
value can be taken as zero) to compare the results of
the tight-binding molecular dynamics [1] and the first
principles calculation [2].

Lastly, one has to obtain an initial guess for the pa-
rameters 𝜆 and 𝜆′ of the Majorana operators, the role
of which is to degenerate the local modes. The values
of the parameters can be calculated by considering
the following matrix structure of the molecules:⎛⎜⎜⎝

−𝐵 −𝜆𝑁 −𝜆𝑁 −𝜆𝑁

−𝜆𝑁 −𝐵 −𝜆𝑁 −𝜆𝑁

−𝜆𝑁 −𝜆𝑁 −𝐵 −𝜆𝑁

−𝜆𝑁 −𝜆𝑁 −𝜆𝑁 −𝐵𝑁

⎞⎟⎟⎠, (11)

where 𝐵 = 4𝐴(𝑁 − 1)− 4𝐴′(2𝑁 − 1) + 3(𝜆+ 𝜆′).
To obtain the initial guesses for the parameters 𝜆

and 𝜆′, we comprise the following relations from the

matrix equation (11):

𝜆 =
𝐸3 − 𝐸1

2𝑁
, (12)

and
𝜆′ =

𝐸2 − 𝐸1

6𝑁
. (13)

The fitting algebraic parameters used in the study
of vibrational spectra of a small carbon cluster C36

are given in Table 1, whereas Table 2 shows the fun-
damental IR frequencies in connection with C36 from
our study and the calculated frequencies from the
tight-binding molecular dynamics [1].

4. Conclusion

The algebraic model presented here is a model of
coupled one-dimensional Morse oscillators describing
the C–C stretching vibrations of C36. Using the one-
dimensional algebraic model, one can avoid the com-
plicated integrations in the solution of coupled dif-
ferential Schrödinger equations. For the C–C stretch-
ing interbond interactions, this model can be used
in a simple and straightforward way, and the reliable
calculation of the stretching bonds can be explained
in terms of the fitting algebraic parameters. In this
work, we have presented the normal modes of vibra-
tions of C36, which are in agreement with the other
theoretical results [1,2]. We hope for that, with a fur-
ther advancement of the 𝑈(2) model, the Raman ac-
tive modes of vibrations of C36 can be also explained
with good accuracy.
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КОЛИВАЛЬНI IЧ-АКТИВНI
ЧАСТОТИ C36: АЛГЕБРАЇЧНИЙ ПIДХIД

Р е з ю м е

Одновимiрна 𝑈(2) алгебра Лi застосована для розрахун-
ку структури i коливань C36. Показано, що нижчий рiвень
енергiї каркаса C36 має 𝐷6ℎ симетрiю. Алгебраїчний ме-
тод Лi заснований на iдеї динамiчної симетрiї, яка може
бути описана 𝑈(2) алгеброю Лi. Iз застосуванням алгебра-
їчної технiки отримано локальний гамiльтонiан, що описує
обертальнi i коливальнi ступенi свободи даної фiзичної си-
стеми. У цьому пiдходi гамiльтонiан побудований з вико-
ристанням iнварiантних операторiв Казимира i Майорана
iз замiною кожного зв’язку молекули, що вiдповiдає алге-
брi Лi. Розрахованi фундаментальнi рiвнi енергiї молекули
C36 для коливань з розтягуванням. Проведено порiвняння
з iншими теоретичними результатами.
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