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ON THE WAVE TRANSMISSION
IN A GENTLY PERTURBED WEAKLY
INHOMOGENEOUS NON-LINEAR FORCE CHAIN

We have obtained rigorous analytic and numerical solutions of the equations which govern the
transport of mechanical perturbations in a gently precompressed 1D Hertz chain. Both finite-
length and infinite-length systems have been studied. We examine both discrete and continuous
formulations of the mentioned problem. A few families of analytic solutions of the problem
given in the form of quasinormal waves and specific resonance modes have been obtained
in the linear approximation for weakly perturbed inhomogeneous systems. Resonance modes
are proposed to be interpreted as the Ramsauer—Townsend effect which happens due to the
inhomogeneity. The obtained analytic results have been compared with numerical solutions
of the discrete equations. We observe a multiscaled scenario of the impulse transport in an
inhomogeneous force chain which could happens either asymptotically or at the intermittency
between discrete- and continuous limits of the formulated problem. The role of a disorder has

been also analyzed with the help of the Dyson concept.
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1. Introduction

The study of the wave transport in complex inho-
mogeneous media belongs to traditionally actual and
complex problems of solid state physics, theory of
dynamic systems, and numerical modeling of the
wave processes. In the series of papers, the above-
mentioned problem has been studied in detail [1-
12]. Within the mentioned problems, the non-linear
character of the wave transport is superimposed with
an inhomogeneity of the medium, where this phe-
nomenon has occurred. The particular attention of
the research is paid to low-dimensional media (like,
e.g., 1D chains), where the above-mentioned prob-
lem can be relatively easily solved numerically or
even analytically. It is known after [1-12] that the
linear limit of this problem is characterized by quasi-
normal mode solutions [6, 7, 11]. In the continuous
limit, one has a familiar solitonic solutions [2,4,5]. In
what follows, we focus on the intermittency between
non-linear discrete and linear inhomogeneous contin-
uous form equations of the problem and the governing
equations. As will be shown below, we have specific
wave-modes which approach the familiar solutions in
the relevant limits of the interval under study.
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2. Numerical Solution
of the Discrete Non-Linear
Equation of Motion

Consider the system which is constructed, for in-
stance, as a vertical column of IV identical grains sub-
ject to gravity. Adopt that a current displacement of
the n-th grain z, satisfies the equation of motion

d?z, 5 5

P YH{[d—(zn—2n-1)]" = [d— (zns1—20)] } +9,
1)

where v = % is the force constant, m is the

mass of an individual grain, d is the diameter of an
unloaded particle, E is the Young elastic modulus,
and v is Poisson’s ratio [13]. The exponent ¢ in Eq. (1)
could take various values. The Hertzian contacts be-
tween beads give rise to § = 3/2. In what follows, we
will ignore the role of a dissipation.

We have obtained a numerical solution of the gen-
eral equation (1), by implementing the fourth-order
predictor-corrector method of molecular dynamics. In
Fig. 1, we plot the results of numerical simulations of
the system which is strongly (when differences be-
tween the current displacements of nearest particles
are much higher than their initial penetration) per-
turbed by a mechanical impulse which came from
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highest outmost particle (n = 1). We observe a typ-
ical bell-like form of the developed wave with neg-
ligible decay and almost conserved dispersion corre-
sponding to the soliton mode.

Despite that the excitation amplitude which is
shown in Fig. 1, is relatively small in comparison with
the data of the related experimental paper ([5]), we
call this value as a “strong” one. We take into ac-
count that when the excitation of a nonlinear system
is “weak” (or “gentle”), the resulted governed model
equations should be linearized. In other cases (like
considered), the excitation is “strong” (in the sense
of described above). In the case shown in Fig. 1,
the excitation amplitude exceeds the criterion of lin-
earization by 10 times, and is “strong” in this sense,
i.e. the system feedback cannot be described by a
linear approximation.

3. Analytic Solution
of the Linearized Homogeneous Equation

Let us introduce a function of the displacement ¢,
which describes a deviation of the n-th grain from

the initial position: )

on(t) = zn(t) — [(n —1)d - 5kl (2)

3
|

~
Il

where e, = d — (254+1(0) — 25(0)) is the overlapping
due to the gravity preloading at the point of the k-th
contact. The substitution of (2) into (1) leads to a
nonlinear form of the governing equation in terms of
the shift-function ¢,,.

The linearized governing equation obtained from
Eq. (1) by using a small parameter |@, — @ni1|/en <
1 can be written in the form
Pon

a2z Kn—1(Pn—-1 = ¥n) = Kn(Pn = Pnt1)- (3)
Here, 7 = t\/ﬁ@)u%, kn = n'~1/9 can be treated
as a new force constant which becomes dependent
on the position (on the number of beads) in the col-
umn due to the precompression by the gravity. Equa-
tion (3) has been obtained, when the simplest equi-
librium condition in each contacts is taken in form

= (@)

Therefore, Eq. (1) turned into the linear homo-
geneous form given by Eq. (3): the gravity has es-
caped from the equation, but remains in the force
constants which are renormalized. This mapping for-
mally transform the vertical problem into a horizon-
tal one. We have chosen the equilibrium condition in
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Fig. 1. Velocity of a displacement which is governed by

Eq. (1) [Setup: N = 120 is a number of particles in the Hertz
chain (6§ = 3/2); vo = 8.57 mm/s is the excitation velocity;
88.4+91.8 pus is a total time interval during which the mode
is developed; At = 0.1 us is a time step; g = 9.81 m/s2 is
the acceleration of gravity; d = 1 mm is a particle diameter;
p = 2426 kg/m? is a density; FE = 62 GPa is the Young modu-
lus of elasticity; and v is Poisson’s ratio|

the simplest form of a balance between the gravity
and Hertzian forces at the point of each contact. The
equations of the type of Eq. (3) belong to the class
of functional-differential equations (called difference-
differential equations).

When k41 = Kn & kp—1 = Kk which can be
(approximately) justified for the internal segments
(n > 1) in a long enough chain, Eq. (3) can be ap-
proximately reduced to

d*pn
T2 = Pn—1— 20, + Pn+1, (4)

where T = 7v/K is a rescaled local time. Although
this rescaling (as we saw) is valid only when n > 1 in
the case of homogeneous , Eq. (4) can be considered
as a relevant model equation with limited application.

Under the given initial conditions {¢,(0)},
{¢p(0)}, the solution of Eq. (4) can be written in
the form [14]:

en(T) = Z ©p(0) Jo(n—p)(2T) +
oo p:_OOT
3 00 / sty (2T)dT, (5)
p=—00 0
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Fig. 2. Displacement ¢, (6 = 3/2) plotted against the depth
n at an arbitrarily chosen moment of time: numerical simula-
tion based on Eq. (3) is denoted by points, and theoretical data
obtained from Eq. (6) are shown by solid lines (both data cor-
respond to the zeroth initial conditions and a static excitation
of the central internal grain, ¢s50(0) = 1)

where Jy(,—,)(27) is the Bessel function of the first
kind, and ¢ = i—f is the velocity of a displacement.
For the simplest initial condition, when ¢,(0) (and
©p(0) = 0), we have

on(T) = ©p(0) Jo(n—p) (2T). (6)

The main maximum of the Bessel function at the
point n (n > 1) at the time ¢; satisfies the condition
wty1 = 2n. The velocity of motion of this maximum is
na = %wa and coincides with the sound propagation
velocity in a 1D crystal.

In Fig. 2, the solution of Eq. (6) is plotted in case
where the discrete chain has been excited from the
middle. Because of the rescaled character of the ar-
gument 27, Eq. (6) can be applied in a wide interval
of the real times t (see Eq. (8), as well as Eq. (9) and
the data presented in Fig. 2). In general, the solutions
which are taken in the form of a linear combination
of functions like (6) can formally satisfy appropriate
initial conditions.

Coming back in Eq. (6) to the dimensional argu-
ment, we obtain

1/26
en(t) = @0 Jan <2 ngo (Zq) t). (7)
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Passing to the asymptotic limit as t — oo, we get
from Eq. (7) ([15]):

eult) ~ <= (ng) 12
X COS (2%(ng)1/6 —7n — %), (8)

where 7 = \/g'yl/ 3t. The amplitude of ¢, (t) given

by Eq. (8) is A, ~ (ng)~'/'2, and the phase velocity
behaves itself as

ogn = 5 ~ (ng)/°. ©)

Similar results (i.e. A(h) ~h~/12 and vy, ~ h!/6)
were obtained in [6], in the continuous limit of the
governing equation (3). The wave-front of the displa-
cement vy, 7 follows from (9) and satisfies n ~ 75/5.
A similar law for the wave front velocity was obtained
in [11], where the continuous form of Eq. (3) was
used. It is easy to show that both mentioned results
in the limit of a homogeneous chain become similar
to each other.

Consider now the obtained upper solutions in more
details.

The linear combinations of solutions like (6) can
satisfy appropriate initial conditions. For instance,
the “static” boundary conditions (which can be ap-
proached by means of a shift of the outmost particle)
look as

le(o) =0,

and correspond to a solution in the form of a linear
combinations of Bessel functions (see Eq. (5)):

¢1(0) = o, (10)

Here, xq is the initial value of a static deformation of
the outmost particle.

The “dynamic” boundary conditions (which corre-
spond to the excitation generated by an external im-
pulse) take the form

©1(0) =0, ¢1(0) = vo, (12)
and correspond to the solution
T
on(@) =0 [ Vanea(2D) 4 Bu@D)dT. (13)
0
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In Fig. 3, we give the results of numerical simula-
tion performed with help of Eq. (11) and Eq. (13).
One can see a good enough agreement between the
analytic solutions given by Eq. (11) and Eq. (13) and
the results of direct numerical simulations made with
help of Eq. (4).

4. Analytic Solution
of the Inhomogeneous Form
of the Governing Equation

Consider now an analytic approach to the solution
of the linear inhomogeneous equation (3) (in what
follow, we will follow [14, 16]).

Consider the probe function for a displacement

on(T) = X, cos wr,

where X, satisfy the differential-difference equation
Han+1 — (lin + Kp—1+ )\)Xn + Hn—an—l =0. (14)

The solution of Eq. (14) can be obtained in follow-
ing form [14, 16]:

(1) = 3 e XaW) i (hy) coshy)r

p=1"""F

(15)

where k is the number of a selected particle, which
has been initially excited (¢ (0) = 1); K, is a factor
which satisfies the equation

N-1
3 X)) Xn(Ag) = Kpdya, (16)

where §,, is the Kronecker function. Note that, in
the case where the outmost particle has been initially
moved, k become equal to unity.

For example, in the case of a finite-length chain
with N =2, Eq. (15) and Eq. (16) give, respectively,
the following result:

©1(T) = cosT. (17)

The above-described algorithm can be repeated with-
out principal difficulties for an appropriate chain
length.

In view of the expansion [15]
cos (tsin ¢) =
= Jo(t) + 2J2(t) cos (2¢) + 2J4(t) cos (4¢) + ..., (18)
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Fig. 3. Displacement ¢, (6§ = 1) plotted vs. the depth n at
an arbitrarily chosen moment of time: the resuts of numeri-
cal simulation based on Eq. (4) are shown by solid lines, and
theoretical data obtained from Eq. (11) and Eq. (13) are pre-
sented by circles for static (a) and dynamic (b) excitations,
respectively

(where J, is the Bessel function of the first kind, and
¢ is a constant phase which can be determined from
Eq. (21)), we can present a solution of the inhomoge-
neous equation (3) in the form

o0

on(T) =Y Aj(n) Joj2 (2y/ENT),

Jj=1

(19)

where Aj(n) and ¢ [obtained from Eq. (15) and
Eq. (18)] are given by

1, i=1,
X
{2 cos[(2j — 2)¢i], i > 1,

2@ (21)

In the simplest case (x,, = 1), we have form ¢; =  x
X 22](',7_11 (e.g., if N =3, we have: ¢ = 18°, ¢po = 54°,
¢3 = 90°).

When k, = 1, the rigorous solution of Eq. (19)
can be simplified (e.g., if j < N, we have A,(n) =
=Ap11(n) =1,Aj4p nt1(n) = 0) and return to the
results given by Eq. (11).

¢; = arcsin
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Fig. 4. Displacement ¢, (6 = 3/2) plotted vs. the depth n at
an arbitrarily chosen moment of time: numerical evaluation of
Eq. (3) is denoted by solid lines, and theoretical data obtained
from Eq. (19) are shown by circles for static (a) and dynamic
(b) excitations, respectively

Therefore, the rigorous solution of the linearized
equations of motion which govern the impulse prop-
agation in an inhomogeneous granular chain shows
the oscillation behavior as a function either of the
rescaled time 7 or the number of position n.

In Fig. 4, we compare the data of numerical sim-
ulations made for Eq. (3) and the theoretical results
obtained by exactly solving Eq. (19) in the both cases,
either static or dynamic excitations.

Figure 5 shows the results of numerical simulations
of the general nonlinear equation (1) in comparison
with the solution of Eq. (3). We observe a satisfac-
tory correspondence between the solutions of the gen-
eral nonlinear equation and their linearized inhomo-
geneous approximation with certain deviations which
can be described in terms of Bessel functions by the
algorithm given above.

We note that, rigorously speaking, the dynamics of
an inhomogeneous weakly nonlinear granular chain
could not be described in a single wave approxima-
tion, but follows a multimode scenario.

5. Role of Disorder (after Dyson)

In spite of the topological ordering of 1D force chains,
the concept of disorder, in the sense of Dyson [17,18],
can be applied to study the relevant effects in the
wave transport through such a system. As was men-
tioned above, one-dimensional systems are topologi-
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Fig. 5. Relative velocity of a displacement ¢n/¢1(0) plot-
ted vs. the depth n at an arbitrarily chosen moment of time
(taken as t = 100 pus with 6 = 3/2): numerical simulation
of Eq. (1) is denoted by red solid lines; theoretical data ob-
tained from Eq. (19) are shown by circles markers and blue
dash lines (at the dynamic initial excitation of the external
glass grain ¢1(0) = 0.857 mm/s). We use the following consti-
tutive constants for glass: p = 2426 kg/m3, E = 62 x 10° Pa,
v =0.2,d=1mm, and v = 5.3593 x 10'* m/s?. Gravity: 10g
on the top, g on the middle, and 0.1g on the bottom (where
g =9.81 m/s?)
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cally ordered. In order to study the effects of disorder
in such systems, Dyson was proposed an approach in
which the meaning of disorder addressed to a force
constant [17, 18]. Along this way, we adopt a Dyson
distribution of the force constants {x,} in Eq. (3), in
order to estimate (approximately) how this mecha-
nism affects the velocity of a displacement. For those
purposes, we introduce the following characteristic
function ¢, (where the upper line means the aver-
aging after Dyson):

N
where mm -
Dm(“n) = m(”n) € ", (23)

is the Dyson distribution function which characterizes
the degree of disorder; m is a parameter (we have an
ordered state as m — oo and a disordered one as
m — 1).

Equation (22) has been solved numerically. Rele-
vant data are presented in Fig. 6 and Fig. 7. As one
can see, an increase in the Dyson disorder degree
leads to a decrease in the averaged (in the Dyson
sense) velocity of a displacement (we used a solution
of Eq. (3)). When the system tends to an ordered
state, the respective value of the velocity of a displa-
cement increases. Therefore, the system show asymp-
totically the disappearence of the difference between
the ordered and disordered states in terms of the ave-
raged (after Dyson) velocity of a displacement.

6. Continuous Limit
of the Wave Transport Problem

The asymptotic scenario of the wave-transport de-
scribed by Eq. (3) which governs the wave propaga-
tion in a Hertzian chain can be approximated in the
so-called continuous limit which looks as follows. Let
us make transformations from discrete integers to
continuous arguments:

n — h; (24)
which leads, in turn, to
on = @(h),  pny1 = @(h+ Oh); (25)
and to
kn — k(R) = A1/,

(26)

K1 — K(h +0h) = (h+ 0h)1=1/0.
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Fig. 6. Behavior of the characteristic function given by

Eq. (22) which describes the influence of the Dyson disorder
on the transport properties of a Hertzian chain (drosseling-like
effect manipulated by the Dyson disorder)
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Fig. 7. 3D display of the influence of the Dyson disorder on
the wave-transport in a Hertzian chain (§ = 3/2)

Using Eqgs. (24)—(26) and expanding all these ap-
proximations into power-series, in the simplest case
(when we neglect all derivatives whose order is higher
than 2), we obtain

82750 — ﬁ hﬁaﬁ
or2  0h \" on)
where £ =1 — 1/4. Equations like Eq. (27) are linear
and can be solved analytically.

For instance, the simplest solutions which depend
from one of the variables (h or 7) only take the form

p(h) = Ch'/° + D,

(27)

o(t) = AT + B, (28)

where A, B, C', D are constants.
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Fig. 9. The soliton-like behavior of the displacement obtained

as results of: numerical simulations of Eq. (27) under the dy-

namic excitation (denoted by the blue solid line); rigorous the-

oretical solution given by Eq. (35) (denoted by the red dash

line), where § = 3/2

Equation (27) has also a solution in the form of a
quasinormal mode [6]

o0

o) = [ur(memin
0

(29)

where u) is obtained from an equation of the Bessel
type in the following form [6]:

ux(h) = h(n—&)/4ng1) (2)‘ hn/2>’

o (30)

1008

where H,gl) is a Hankel function of the first order;
v=1/(140); n =14 1/4. Here, X is a parameter
which is defined from the relevant Sturm—Liouville
problem solution.

Consider linear combinations of expressions from
Eq. (29). It follows that the functions given by

o(h,T) = /A()\)uA(h)e”’\d)\, (31)
0

satisfy the basic transport equation (27). The modes
given by Eq. (31) are attenuated quasinormal modes
which can pass the system under the particular am-
plitude modulation providing plenty of scenarios of
the wave dynamics which can be developed in the
long-wave limit in the weakly non-homogeneous Hertz
chain.

Under the particular selected amplitude modula-
tion law, we got the relevant channeling regime.

For example, when A = const and § = 3/2, after
the evaluation of the integral in Eq. (31), we obtain

R{p(h7)} = 2 x

X {(T + /72— X2>2/5— ( - \/72—7X2)2/5}a (32)

where x = ghf’/ﬁ, A=-2 sin {5 (%)Q/BA. According
to Eq. (32) for 7 = $h%/6, o(h,7) is a limited func-
tion. Namely, when i — 1, one has:

45 g5 4 5\ 1/2
li h =_Ar P =— (=] AhTV/=
tim R{p(n )} = 347 = 3 (1) (33)
Eq. (32) and Eq. (33) show the asymptotic behav-
ior (~773/5, ~h=1/2), and decay much rapidly than
solution (35) for § = 3/2.

When we select A oc A™2/% and § = 3/2, the rel-
evant evaluation in Eq. (31) gives us the expression

which has a resonance character, like modes given by
Eq. (35). Namely:

~ —1/10
p(h,) =B (2 —x*) "0
. 1 2 7 =X ~1/2

+ AR (2, 55 2o X2> (7P =x) " (34)
where 2
- 3 tg &
A=-— <) B 5 _0.2085;

5 ()
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N

Solution given by (35) can be interpreted as a trav-
eling shock-wave perturbation, when the channeling
modes can be realized in the case of dispersive im-
pulse input. Therefore, we found that the linear equa-
tion (27) can be satisfied by either quasinormal or
sharp-peaked (localized) wave solutions.

In Fig. 8, we plot the displacement ¢(h, 7) given by
Eq. (29) at a fixed moment of time as a function of
h. As one can see, in the case of periodic perturbation
of the system from outmost particles, we observe a
monotonic decay of the amplitudes of oscillations.

We found that Eq. (27) us also satisfied by the so-
lutions which has a reminiscence of wave-packet (or
soliton-like modes) [19]:

(7 +¢s)? — @2 B

where ¢, ¢o, c3 are constants. Equation (35) under

—&/2n

@(hﬂT) =c1+c ) (35)

the condition (7 + c3)? = (%) h" demonstrates a res-

onance behavior (see Fig. 9).

Therefore, when we start from a numerical solution
of the general nonlinear discrete wave-transport equa-
tion, it gives rise to a somewhat like superposition of
the normal mode and the wave-packet (soliton-like)
of a wave transported through the inhomogeneous
Hertzian chain.

The study of the wave-transport at the inter-
mittency between discrete and continuous scenar-
ios shows the existence of preliminary stages of the
formation of nonlinear-modes.

This complexity invites the multiscaled analysis to
study the diversity of wave-transport scenarios even
in such a simple systems as 1D Hertzian chains.

7. Conclusion

We have shown a diverse multimode character of wave
transport scenarios in an inhomogeneous Hertzian
chain at the intermittency described, from one side,
by general discrete nonlinear governing equations
and, from another side, by its asymptotic long wave
approximations (the continuous limit). We obtain
some new classes of solutions which correspond to
particular conditions of their realization.
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We show that the nonlinearity, size of the sys-
tem, and ordering play significant roles in the selec-
tion of transport scenarios. Naturally, the lineariza-
tion of the equations which govern the mechanical
impulse transport in the inhomogeneous nonlinear
1D Hertzian force chain, did not bring us to a soli-
tonic solution which is typical of that kind of prob-
lems [4].

We show analytically that, in the case of 1D inho-
mogeneous Hertz chain with weakly overlapped beads
in the linear approximation, sharp-peaked modes can
propagate, as well as cylindrical quasinormal modes.
Sharp peaked solutions which have a pronounced
asymmetry show a certain reminiscence with Fano-
type resonances.

In [25], where the dynamics of Hertz chains has
been studied, these modes are called Ramsauer—
Townsend effect.

Singular modes has been also outlined recently af-
ter the numerical analysis [22] and interpreted to oc-
cur due to rare-wave-resonances.

We conclude that the initially weakly nonlinear in-
homogeneous chain even in the linear approximation
still shows some features which are more typical of
the nonlinear behavior (in particular, in the form of
Fano-type modes (resonances)).

Althoug, our consideration does not account for
the dissipation effects, the obtained results could be
practical, when these effect are negligibly small and
contribute just through amplitudes of the considered
wave modes [20, 21].

Therefore, under the appropriate values of the pa-
rameters (nonlinearity, inhomogeneity, signal ampli-
tudes), the linearized inhomogeneous Hertzian chain
allows both soliton-like and normal mode scenarios
of the initial pulse transmission. In another words,
the 1D Hertzian chain with Dyson hierarchy demon-
strates a somewhat like drosseling property which is
manipulated by a disorder with respect to a selected
scenario of the wave transport.

In the perspective, the interplay between the non-
linearity, inhomogeneity, disorder, and dissipation
and their influence on transporting modes dynamics
will be a focus of our research.

We conclude that the multiscale approach can be
an effective tool for studying the wave transport in
anisotropic media at the intermittency between linear
and nonlinear scenarios.
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1010 XBUJIBOBOI'O ITEPEHOCY
VY CJIABKO 3BYPEHOMY TA HEOJIHOPITHOMY
HEJITHIMTHOMY CUJIOBOMY JIAHITIOXKKY

Pesmowme

OTpuMaHO aHAJITUYHI Ta YUCJIOBI PO3B’SI3KU PIBHSHb, sIKi OIU-
CYIOTb IIEPEHOC MEeXaHiYHOro 30ypeHHSI B OJHOBUMIPDHOMY IIO-
IepeHbO CJIa0KO CTHUCHYTOMY TIePI[iBCBKOMY JIAHINIOXKKY. Jlo-
CJIJPKEHO CUCTEMHU SIK OOMEXKEHOI, TaK 1 HECKIHYEHHOI JIOBXKU-
HU. 3a/1a9a PO3B’A3YETHCS K y JUCKPETHOMY, TaK 1 y KOHTHU-
HyaJbHOMY dopmysroBanHi. Jlekisibka ciMeicTB aHaJITHIHUX
pPO3B’sI3KiB y BHIVIAAI KBa3iHOpMAa/bHUX XBHIJIb 1 XapaKTep-
HUX PE30HAHCHUX MOJI OTPUMAHO B JIHIAHOMY HabOIMKEHHL
IJIsT CJIA0KO 30ypEeHMX HEOZHOPINHWX CHCTeM. JHaiimeHi peso-
HAHCHI MOJIM IIPOIIOHYETHCSH TIYMadUTH SK DPE30HAHCHU THUILY
Pamzayepa—Tayncenzga (a6o ®@aHo), sKi 3’ SIBIAIOTHCS 3aBAIKH
HeogHOpigHOCTI. OTpuMaHi aHaJITUYH]I pPE3yJIBTATU IIOPIBHIO-
IOTHCSI 3 YHUCJIOBUMH PO3B’SI3KAMH JUCKPETHUX PiBHAHBL. Cro-
cTepiraeTncs cueHapiil pizHoro macmraby IEepeHOCy IMITYIbCy
30ypEHHsI Y HEOJHOPITHO HABAHTAaXKEHOMY JIAHIIIOXKKY, SIKUI
Mir 6u peasidyBaTncs abo B acHMIITOTHIN, abo MiXK IHUCKpe-
THOIO UM HEIIEPEPBHOIO I'DAHUIAMH CHOPMYIHOBAHOI 3aadi.
TakoK poaHaJsi30BaHO POJIb PO3YIIOPSIKOBAHOCTI 3a JIOIIOMO-
roro mozeni [aiicona.
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