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ENERGY SPECTRA OF ELECTRON
EXCITATIONS IN GRAPHITE AND GRAPHENE
AND THEIR DISPERSION MAKING
ALLOWANCE FOR THE ELECTRON SPIN

AND THE TIME-REVERSAL SYMMETRY

The dispersion dependences of electron excitations in crystalline graphite and single-layer
graphene have been studied taking the electron spin into consideration. The correlations of
the energy spectra of electron excitations and, for the first time, the compatibility conditions
for two-valued irreducible projective representations characterizing the symmetry of spinor ex-
citations in the indicated structures are determined, as well as the distributions of spinor quan-
tum states over the projective classes and irreducible projective representations for all high-
symmetry points in the corresponding Brillouin zones. With the help of theoretical symmetry-
group methods for the spatial symmetry groups of crystalline graphite and single-layer graphene
(in particular, the splitting of w-bands at the Dirac points), the spin-dependent splittings in
their electron energy spectra are found. The splitting magnitude can be considerable, e.g., for
dichalcogenides of transition metals belonging to the same spatial symmetry group. But it is
found to be small for crystalline graphite and single-layer graphene because of a low spin-orbit
interaction energy for carbon atoms and, as a consequence, carbon structures.

Keywords: crystalline graphite, single-layer graphene, spinor representations, factor-
systems, dispersion of electron excitations, projective classes, two-valued irreducible projective
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1. Introduction

In work [1], a theoretical symmetry-group descrip-
tion was presented for the dispersion of vibrational
and electron excitations in crystalline graphite. The
analysis was carried out on the basis of projective
classes of representations following from the spatial
symmetry of crystalline graphite structure and deter-
mined at various points of the corresponding Bril-
louin zone. For high-symmetry points in the Bril-
louin zone of crystalline graphite, irreducible pro-
jective representations were constructed according to
which the wave functions of elementary excitations
in this substance are transformed. In work [1], cor-
relations between phonon and electron excitations in
graphite and single-layer graphene were also demon-
strated. For both structures, only m-bands — i.e. the
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electron bands of w-orbitals producing m-electrons
and m-holes, whose wave functions are orthogonal to
the functions of o-zones of sp?-hybridized o-orbitals —
were considered as electron ones. In so doing, we did
not consider the spin-orbit interaction for electron
states, because it is insignificant for m-bands in car-
bon structures [2].

The symmetry of the crystal lattice of Bernal
graphite [3] is described by the spatial group
P63/mmc (Dg,), which is also the spatial symmetry
group of the crystal lattices of hexagonal boron ni-
tride (BN) and hexagonal polytypes 2H, and 2H.
of the dichalcogenides of transition metals (MoSs,
MoSes, WSy, WSey, TeSy, and TeSey). Therefore,
it was important for us to determine the qualita-
tive character of the influence of an electron spin on
the structure of m-bands in graphite and other com-
pounds, whose crystal lattice is described by the spa-
tial symmetry group P63/mmec (Dg;). Another issue,
also important for us, was to consider the influence of
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Fig. 1. Structure of a standard unit cell of graphite crystals v-C' (a) and arrangement and orientation of the elements of the
point symmetry group 6/mmm (Dgp,) (b). Circles indicate the positions of carbon atoms (reproduced from work [1])

the time-reversal symmetry on elementary excitations
in lattices with the indicated spatial symmetry.

2. Standard Unit Cells, Brillouin Zones,
and Basic Symmetry Elements of Graphite
and Single-Layer Graphene

In Fig. 1, a, a standard unit cell of the crystal lat-
tice of Bernal graphite, v-C, is shown [3]. It corre-
sponds to the standard diagram of its spatial sym-
metry group P63/mmc (Dg,,) |4]. In Fig 1, b, the ar-
rangement and orientation of the symmetry elements
for the point group 6/mmm (Dgy,) are demonstrated.

Figure 2 illustrates the Brillouin zone in v-C' crys-
tals and its symmetry points. The points are denoted
by letters corresponding to Herring’s notation for
hexagonal structures [5, 6].

The Wigner—Seitz unit cell and the Brillouin zone
for single-layer graphene C, 1 are depicted in Fig. 3, a
and Fig. 3, b, respectively. Solid lines are used in
Fig. 3, a to schematically mark the unit cell of
graphene Cp, ;. The figure also illustrates the corre-
sponding primitive translation vectors a; and as, as
well as the orientation of cell symmetry elements in
the three-dimensional space, which were used in cal-
culations. The dashed lines in Fig. 3, a demonstrate
the reciprocal lattice vectors b; and by on an arbi-
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Fig. 2. Brillouin zone of graphite v-C' crystals and its sym-
metry points (reproduced from work [1])

trary scale and the positions of reciprocal lattice sites
in the reciprocal space. In Fig. 3, b, on the contrary,
solid lines are used to show the reciprocal lattice vec-
tors, and the dashed ones to demonstrate the direct
lattice vectors. The unit cells (the Wigner—Seitz cells)
of the graphene layer in the coordinate (Fig. 3, a) and
reciprocal (Fig. 3, b) spaces (in the latter case, this
cell coincides with the first Brillouin zone) are col-
ored grey. In Fig. 3, b, the high-symmetry points I,
K, and M in the Brillouin zone of graphene are also
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Fig. 3. Wigner—Seitz unit cell (a) and Brillouin zone of single-layer graphene Cr, ; (b) (reproduced from work [1])

shown. The equivalent points are marked by one or
two primes.

The spatial symmetry group of the crystalline lat-
tice of graphite, P63/mmc(Dg,), is nonsymmor-
phic. It is determined by the basic (main) elements,
which can be chosen as follows:

hy = (0le), ha = (Olcs), hs = (0[c3), ha = (0|(u2)1),

ai

hs = (0[(u2)2), he = (0|(u2)3), hr = (7 Cz)a

o= (249 o= (%) = (o)

hi1 = (% (UIQ)Q), hia = (ﬂ (Ulg):s), hiz = (O|i)7

his = (Olics), his = (0ic3), hig = (0li(u2)1),

hi7 = (0li(uz)2), his = (0li(uz2)3), hig = (%‘l@)

= (2 = (2 = ()

ay a;

o = (), = (2

where a; is a primitive vector of the crystal lattice
directed along the axis OZ (Oz). At the same time,

344

the spatial symmetry group of the crystal lattice of
single-layer graphene, P6/mmm (DG80) [7], whose
diagram coincides with that of the tri-periodic spatial
group P6/mmm (D},), is symmorphic, and all its
“rotational” elements—the symmetry elements of the
point group 6/mmm (Dgp)—do not contain nontrivial
(partial) translations.

3. Qualitative Character

of the Influence of Electron Spin and
Time-Reversal Symmetry on the Energy
Spectra of Elementary Excitations

in Crystalline Graphite, Their Dispersion
at the Points Along the Lines I'-A-A,
K-P-H, and M-U-L of Its Brillouin Zone,
and the Energy Spectra and Dispersion

of Electron w-Bands of Single-Layer
Graphene at Points I'y K, and M

3.1. Line I'-A-A of crystalline graphite and
point I' of single-layer graphene

3.1.1. Points I

At points T', the factor groups of the wave-vector
groups with respect to the subgroups of trivial trans-
lations are isomorphic to the same point symmetry
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group 6/mmm, (Dgp,) for both crystalline graphite ~-
C' and single-layer graphene C, ;. This point group
is a symmetry group of equivalent directions in the
both structures: in crystalline graphite v-C, where it
is a group of the crystalline class, and in single-layer
graphene Cp 1, where it characterizes the symmetry
of the macromolecular class [1].

The wave functions of vibrational elementary ex-
citations at points ' — Ty (Dlagvib) are trans-
formed, for both crystalline graphite and single-layer
graphene, by the single-valued vector irreducible rep-
resentations of the point group 6/mmm (Degy), which
are irreducible representations of the projective class
Ky of this group. The representations of those exci-
tations are determined by the formula [8]

Fvib = Feq oy 1_‘vectora (1)

where I'yq is the atomic equivalence representation !
at point I', and I'yector 1S the representation of a polar
vector r with the components z, y, and z.

Among the electron excitations at points I', we
will consider only the excitations of electron m-bands,
whose wave functions are orthogonal to those of
the sp?-hybridized o-bands (i.e. the bands of sp?-
hybridized o-electrons). In work [1], when determin-
ing the representations I';; for states neglecting the
spin (at a weak spin-orbit interaction), we used the
following formula, which, in addition to the represen-
tation I'yq, includes only the representation I',:

F7T == Feq ® Fz7 (2)

where I', is a representation that is an irreducible
representation of the group 6/mmm (Dgp,) for a vec-
tor directed along the z-axis, because the electron
m-bands in graphite and graphene are formed by the
nondegenerate electron orbitals p,.

In order to determine the electron representation of
m-bands making allowance for the electron spin, I,
we have to use the formula

I =Te®T.. (3)

Here, T, is the representation of the electron m-orbital
taking the spin into account. It is determined using

1 A technique used for determining the character of the atomic
equivalence representations and the results of corresponding
calculations for the high-symmetry points in the Brillouin
zones of graphite and single-layer graphene were presented
in work [1].

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4

the formula

_ +
r=r.,o D1/2' (4)
In turn, th/z is an even two-dimensional (spinor) rep-
resentation of the rotation group for the quantum
number of total electron angular momentum j = %
Its characters in the case of the rotation by the angle

¢ are equal to |9
sin G+ ¢]
sin (%)

In Table 1, the irreducible representations of the
projective class Ky for the group 6/mmm (Dgyp) are
given. They describe the symmetry of vibrational
and electron excitations at points I' of crystalline
graphite v-C' and single-layer graphene Cp ; mak-
ing no allowance for the spin. They are identical to
the ordinary single-valued vector irreducible repre-
sentations. In addition, Table 1 contains the irre-
ducible representations of the projective class K for
the group 6/mmm (Dgj). They characterize the sym-
metry of electron states making allowance for the
spin. They are two-valued spinors.

In Table 2, the characters of equivalence repre-
sentations, I'cq, and the characters of representa-
tions that characterize the symmetry of electron 7-
bands making allowance for the electron spin (7'-
bands), I'}, = I'eq ® I',, are presented for points I'
in the Brillouin zones of crystalline graphite v-C' and
single-layer graphene C7, ;. The table also presents

()

x;j(cp) =

the characters of the representations I',, D1+/27 and
=r.e D1+/2, as well as the corresponding projec-

tive representations, for other high-symmetry points
in the Brillouin zones of those structures.

The electron excitation distributions at the high-
symmetry points in the Brillouin zones of crystalline
graphite and single-layer graphene with respect to
irreducible two-valued spinor projective representa-
tions are shown in Table 3. For the sake of compari-
son, the distributions of electron excitations with re-
spect to irreducible projective representations for 7-
bands without taking the electron spin into consider-
ation are also included.

In Table 3, the following notations for the irre-
ducible projective representations are applied in order
to clearly distinguish two-valued spinor representa-
tions in various projective classes for various points
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Table 1. Characters of the one- and two-valued irreducible projective
representations for points I' in the Brillouin zones of crystalline graphite v-C and single-layer graphene Cy, 1

Projec- 1\.Iotati01.1 for 6/mmm(Degp,)

tive 1rre(.iu01.ble

class reg:s;szz;:fon e | es | & |Buz| 2 | | e |Buh| i |ics | icd |Biug| ica | icd | ics |Biul

Ko Ty Af 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Iy Ay 1 1l 1| 1| 1 1 1| -1 -1| -1| -1| -1| -1| -1|] -1
ry A 1 1 1 1 -1 -1 -1| -1 1 1 1 1 -1 -1| -1| -1
ry Ay 1 1 1] 1| =1 —1| —1| -1| —1| —1| -1| —-1| 1 1 1 1
r+oAf 1 1 1 1| 1 1 -1 1| 1] 1| -1 1 1 1] -1
r; Ay 1 1l 1 -1 1 1| —1| -1 =1 =1 1| —-1| -1| -1
Iy Af 1 1 1 -1 =1 -1| -1 1 1 1 1 -1 =1 -1 -1 1
r; Ap 1 1 1| -1| -1 -1| -1| 1| —1| -1| -1 1| 1 1 1| -1
r& Bf 2 | -1| -1| o] 2| -1| -1| o| 2| -1| -1| o 2| -1| -1| o
Iy By 2 | -1 —-1| o 2| -1 -1| of -2 1| 1| of -2 1 1l o
ry Ef 2 | —-1| -1| o] -2 1l o 2| -1| -1| of -2 1 1l 0
Iy Ey 2 | -1 —-1] o] -2 1| ol -2| 1| 1| o 2| -1| -1] o0

K1 rt (Ept 2 1| -1 0 ol v3[-v3| o 2 1] -1 0 o] v3|-v3 0
r; (B~ 2 1| —=1| o] of v3[-v3| o —2| -1| 1| of 0|-v3| V3| 0
s (BH)t 2 1| -1 o] of- V3| o] 2 1] -1 o o|—v3| V3| o0
Iy (B~ 2 1| -1 0 - V3 o] —2| -1 0 0] V3|3 0
Iy (BT 2 | =2 2| o] o o o| 2| -2 2| o of of o] o
Ty (B4~ 2 | -2/ 2| 0| o o o| -2/ 2| -2 o of of o] o

in the Brillouin zones: letters denote points in the
Brillouin zone of the structure; primed letters de-
note two-valued spinor representations, whereas non-
primed letters denote ordinary single-valued vector
ones; parenthesized figures in the superscript indi-
cate projective classes; figures in the internal sub-
script mean the ordinal number of an irreducible rep-
resentation in the given projective class; and the signs
“+” and “—” in the external superscript indicate the
representation parity. It is evident that in those no-
tations, ((I"){")* = T and ((I")}")~ = I'y, where
I't and I'y are the spinor representations (written
in the conventional notation system) that were used,
e.g., to denote two-valued spinor representations in
Table 1. An additional external subscript, if any, in-
dicates the ordinal number of the representation, if
there are several ones.

3.1.2. Point A

The wave-vector star of point A in the Brillouin zone
of crystalline graphite v-C', similarly to that of point
I, is composed of a single vector k4 = —3 by [1]. The
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factor group of the wave-vector group with respect to
the invariant translation subgroup for graphite crys-
tals is, as it takes place for point I', also isomorphic
to the group 6/mmm (Degp).

It was shown in work [1] that the two-valued (spi-
nor) irreducible projective representations at point A
in the Brillouin zone of crystalline graphite v-C' be-
long to the projective class K, of the point symme-
try group of equivalent directions Fy, 6/mmm (Dgp),
coinciding with the crystal class group. It is so be-
cause the single-valued (vector) projective represen-
tations for point A, which are determined by the
properties of the spatial symmetry group of graphite,
P63/mmc (Degp), at this point, belong to the pro-
jective class K5 [1], the transformation of spinors
at symmetry operations of the directional groups
of wave-vector groups to the projective class Kj,
and the product of the projective classes K5 and
K7, which is determined by the pairwise multipli-
cation of the values of the coefficients «, £, and
(ie. agya), Be)Bay, and v5)(1)), equals K5 K =
K, in the system of notations used for projective
classes [1].
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Table 2. Characters of the equivalence representations Deq, the representations D,
characterizing the spatial symmetry of w-orbitals, the spinor representations Dj_/z’ and the spinor

representations D, = D, X D;’_/Z characterizing the symmetry of w-orbitals taking the spin
into account (the spin w-orbitals); and the characters of the representations D’

that characterize the symmetry of electron w-bands taking the spin into account for various
points of Brillouin zones in crystalline graphite v-C and single-layer graphene Cp, 1

Points I
Point groups 6/mmm(Degp,)
Projective classes K1 except for the representations I'eq and I';

6/mmm(Degp) e c3 3 | 3Buz | c2 cd c6 | 3ul i icg | ic3 | 3iug | dca | i) | ice | Biuf
vy—=C k=0 Teq 4 4 4 0 0 0 0 4 0 0 0 4 4 4 4 0
I, 1 1 1 —1 1 1 1 —1 —1 —1 —1 1 —1 —1 —1 1
Di,| 2 1 | -1] 0 0 |—V3| V3| 0 2 1 | -1] 0 0 |[—v3| V3| 0
| 2 1 | -11] 0 0 |—V3| V3| 0 | —2|-1]|1 0 0 | V3 |-v3] 0
ol 8 4 | -4 0 0 0 0 0 0 0 0 0 0 [4V3|-4v3| 0
Cra k=0 Teq 2 2 2 0 0 0 0 2 0 0 0 2 2 2 2 0
| 4 2 | =2 0 0 0 0 0 0 0 0 0 0 |2v3|-2V3] 0
Point A
Point group 6/mmm(Degp,)
Projective class K4 except for the representation Aeq and A’
6/mmm(Degp) e c3 2 | Buz | c2 e c6 | 3ul i icg | ic3 | 3iug | dco | i) | dce | Biuf
vy—C kg = Aeq 4 4 4 0 0 0 0 0 0 0 0 4 0 0 0 0
=—@/2b | AL 2 | 1 | -1 0 | 0 |3 V3|0 |-=2|-1|1/ 0|0 |+V3|=V3 0
Al 8 4 —4 0 0 0 0 0 0 0 0 0 0 0 0 0

Points K
Point groups 6m2(D3y,)
Projective classes K1 except for the representations Keq, K. and Kr

6m2(Dsy) e c3 c2 3us ico ic3 icg 3iub
v—C | (kg)1 = —(1/3)(2ba — b3) | Keq 4 1 1 0 4 1 1 0
(kx)2 = (1/3)(2bz — b3) K. 1 1 1 -1 -1 -1 -1 1
Kn 4 1 1 0 —4 -1 -1 0
DY, 2 1 -1 0 0 -3 V3 0
K 2 1 -1 0 0 V3 -3 0
K. 8 1 —1 0 0 V3 -3 0
Cra | (kx)1=—(1/3)(2b1 —b2) | Keq 2 -1 -1 0 2 -1 -1 0
(kx)2 = (1/3)(2b1 — b2) Kr 2 -1 -1 0 -2 1 1 0
K. 4 -1 1 0 0 —/3 V3 0
Point H
Point group 6m2(Ds3y,)
Projective classes K1 (Heq, Hr, DT/Q and H) and Ko(H,)
6m2(D3p) e c3 cg 3ug ico icg ice 3iub
v—C | (kg)1 = —(1/2)by — (1/3)(2bs — b3) | Heq 4 1 1 0 0 V3 -3 0
(kH)Q=—(1/2)b1+(1/3)(2b2—b3) H, 1 1 1 —1 -1 —1 —1 1
Hr 4 1 1 0 0 —/3i V3i 0
DY,| 2 1 -1 0 0 -3 V3 0
H! 2 1 -1 0 0 V3 -3 0
H! 8 1 -1 0 0 3i 3i 0
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Point P
Point group 3m(C3,)
Projective class Ko

3m(Csy) e c3 c3 3iul
v-C (kp)1 = —k- — (1/3)(2b2 — b3) Peq 4 1 1 0
(kp)2 = —kz + (1/3)(2b2 — b3) P, 1 1 1 1
(kp)s = k- — (1/3)(2b2 — bs3) Py 4 1 1 0
(kp)s = k= + (1/3)(2bz — bs) DY, 2 1 -1 0
Pé 2 1 -1 0
P7’T 8 1 -1 0
Points M
Point groups mmm/(Day,)
Projective classes Ko (Meq, M- and Mr) and K1 (D1+/27 M/ and ML)
mmm(Dap) e (u2)1 C2 (uh)1 7 i(u2)1 ico i(uh)r
v —C | (kn)r = —(1/2)bs, Meq 4 0 0 4 0 4 4 0
(kar)2 = (1/2)b2 M, 1 -1 1 -1 -1 1 -1 1
(knr)s = —(1/2)(b2 — b3), | Mx 4 0 0 4 0 4 —4 0
+
D1/2 2 0 0 0 2 0 0 0
M; 2 0 0 0 —2 0 0 0
M,/r 8 0 0 0 0 0 0 0
Cri | (kum)1 = —(1/2)b2 Meq 2 0 0 2 0 2 2 0
(kar)2 = (1/2)by My 2 0 0 -2 0 2 -2 0
(kar)s = —(1/2)(b1 —b2) | My 4 0 0 0 0 0 0 0
Point L
Point group mmm(Dap,)
Projective classes K5 (L) and Ky (L)
mmm(Day,) e (u2)1 C2 (uh)1 i i(u2)1 ica i(uh)
v—=C | (kr)1 = —(1/2)(b1 + b3) Leq 4 0 0 0 0 4 0 0
(kr)2 = —(1/2)(b1 — b2) L. 1 -1 1 -1 -1 1 -1 1
(krL)s =—(1/2)(b1 + b2 —b3) | Lr 4 0 0 0 0 4 0 0
+
Dy, 2 0 0 0 2 0 0 0
L 2 0 0 0 -2 0 0 0
L 8 0 0 0 0 0 0 0

The factor-system for point A with making al-
lowance for the spin, wg a(r2,71), is the prod-
uct of the factor-systems wy a(r2,71) and wa(ra, 1),
ie wg a(re,r1) = wi a(re,r1)wa(re,r1). The former
is determined by the structure of the spatial group of
a graphite crystal, P63/mmc (Dg,), at point A ne-
glecting the spin, and the latter describes the trans-
formations of spinors at point I" (in the point symme-
try group 6/mmm (Dgp)). They and their structure
are described in details in work [1] (see Tables 1 and
6 in the cited work). The factor-system wsy 4(r2,71) is
presented in Table 4.
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The standard factor-system for point A with mak-
ing allowance for the spin, wy 4 (r2,71), which belongs
to the projective class Ky, coincides with the standard
factor-system of this class, w24) (ro,71), and is the
product of the standard factor-systems w) 4(r2,71)
= wE5)(r2, r1) and wh(re,r1), i.e. wh 4(r2,71)

= Wiy (r2,71) = wig)(r2, 11wy (r2,71). This  factor-
system is presented in Table 5. The reduction
coefficients ug 4(r) of the factor-system wa 4(r2,71)
to the standard form w'z’A(rg,rl) = wE4)(7‘2,r1) are
determined as the products of the corresponding
reduction coefficients u1 4(r) and us(r) of the factor-
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Table 3. Distributions of electron excitations over the irreducible projective
representations of corresponding projective classes for electron mw-bands at high-symmetry
points in the Brillouin zones of the crystalline graphite v-C and single-layer graphene

CL,1 structures not taking (a) and taking (b) the electron spin into account

Crystalline Single-layer
graphite v-C' graphene Cp, 1

Points I
Point groups 6/mmm(Dgp)
a) Projective classes Ko
Lr = 2(0§7)* + 2(0§7) ~ (D = 20 +2T'3) | e = (0 + (0§)~ (0r = If +T3)
b) Projective classes K1
1 YD+ NON= (7 — 1t -
M= (T )"+ @)y )~ (7 =T7 +T)
Points A
Point group 6mmm(Dsgp,)

7, = 2((){)F +2()0) (1) = 2T +ory)

a) Projective class K5
Ar =240(A); + (A1),

b) Projective class K4
4 4 4
Al = 205+ (452
Points K
Point groups 6m2(Ds3p,)
Projective classes Ko

Projective classes K1
1 1 1
K = 2K + (KNS + (K1)5Y |
Points H
Point group 6m2(D3p,)

Kr=K"” + K + k"

a) Projective class Kj
Hy = HV 4+ H{Y
b) Projective class Ko
Hy = ((H) + (H)) + (H) + 2(H")
Points P
Point group 3m(C3,)

a) Projective class Ko
Pr =P 4+ P{? 4 p®
b) Projective class Ko
P = (PO + (P)S") +3(P")5

Points M
Point groups mmm(Dap,)
a) Projective classes Ko
0 0)y—
My = (Mg”)* + (M%)

b) Projective classes K1
| My = (M) )+ + (M) )=

My = 2(M{7)+ + 2(M{*)~

My = 2((M")D)T 4 2((M")1)=
Point L
Point group mmm(Dap,)

a) Projective class K5
Ly =2LY
b) Projective class K4
1 =2((E)1") + (115Y)
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Table 6. Characters of the irreducible projective representations
of the projective class K4 corresponding to the standard factor-system wE4) (r2,71) of this class

Projec- Notation 6/mmm(Degp,)
tive for irreducible
projective
class representation | € c1 3 | Bug | c2 cd c6 | 3ul i ic3 | icd |3iug | dca | i} | ice |3iuf
K4 pY 2 | 2| 2| 2 0 0 0
p{Y 2 | 2 | 2 | 2 0 0 0
QW 4 | -2 | -2 0 0 0 0
ug, A(T) 1 -1 1 i i -3 | —i | -1 1 -1 1 ) —1i i i 1
Table 7. Characters of the two-valued (spinor) irreducible
projective representations of point A in the Brillouin zone of crystalline graphite v-C
Projec- Notation 6/mmm(Degp,)
tive for irreducible
projective
class representation e c3 cg 3uso cg c6 |3ub| i | dcs z'c§ 3ius | ico icg ice |3iul
Ky N 4 an @y < A7) 2|2 2i 0
(AN + (A, < (4) .
(an$ —2 | 2 |-2i 0
(ALY 2 (=2 | 0 0

systems wi 4(re,r1) and wa(re,r1) to the standard
form, i.e. ug a(r) = u1,a(r)uz(r) [1]. The values of
the coefficients ug 4(r) are shown in the bottom part
of Table 4.

The characters of the irreducible projective rep-
resentations of the projective class K,, which cor-
respond to the standard factor-system of this class,
wg4)(r2,r1), are given in Table 6, and the characters
of the two-valued (spinor) irreducible projective rep-
resentations of point A are quoted in Table 7. In the
bottom part of Table 6, the values of the coefficients
ug,4(r) are shown. As it has to be, the equalities

(AN = ug 4 (r)PY

are satisfied.

The characters of the projective equivalence repre-
sentation at point A, i.e. the representation Aeq and
the two-valued representations A, = I', and A/ are
given in Table 2. The distributions of electron exci-
tations at point A in the Brillouin zone of crystalline
graphite v-C for the w-bands neglecting the electron
spin and taking it into account are presented in Ta-
ble 3. It is of interest that electron excitations of 7-
bands at point A in the Brillouin zone of crystalline

352

(6)

graphite y-C' making allowance for the spin are four-
fold degenerate, because their states are transformed
according to the four-dimensional irreducible projec-
tive representations of the projective class K4. In the
absence of external magnetic fields, additional condi-
tions associated with the time-reversal invariance are
imposed on the wave functions of states and, accord-
ingly, on the representations. In this case, some of the
states may become additionally degenerate.

Let us account for the time-reversal invariance of
the states at points I and A in the Brillouin zone of
crystalline graphite and point I" in the Brillouin zone
of single-layer graphene with the help of the Herring
criterion [5, 6, 9]. The corresponding calculation pro-
cedure is described in works [9,10] in detail. In partic-
ular, the summation is carried out over the elements
g = (ar’) of the wave-vector group Gy, that satisfy
the condition ¢’k = —k (r'k = —k).

For points I' and A of crystalline graphite -C
and point I of single-layer graphene CY, 1, each wave-
vector star has one ray. At those points, the wave vec-
tors —k and k are equivalent (—k = k), and the con-
dition ¢’k = —k is satisfied, for crystalline graphite
~v-C, by the elements g; = (0le), g5 = (0]cs),

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4
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g5 = (0]c3), g4 = (0|(u2)1), g5 = (0[(u2)2), g
= (0l(u2)3), g7 = (%le2), g5 = (% [}): 9
a

= (0[2), 914 = (Olics
(0]ic3), g1 = (0li(u2)1), 917 = (Oli(us)2), gis =
= (0]i(uz)3), g1o = (% lic2), gho = (% |icd), g5y =
= (% lice), g2 = (% li(ur)1), go3 = (% [i(u3)2),
and ghy = (% |i(uj)3) and, for single-layer graphene
Cr.1, by the same values, for which the nontrivial
a

translation %t = 0, because the spatial group of
single-layer graphene is symmorphic and, unlike the
spatial group of crystalline graphite, does not contain
nontrivial translations.

It is easy to calculate the squares of those ele-
ments, (¢')? = (ra+a|r? ). In particular, for points

I' and A of crystalline graphite, (g})> = (0le),
(92 O|C3 3)2 = (0]qcs), (921)2 = (0]q),
(95) = (0|Q)7 ('6) = (0]g), (¢9)* = (a1lq),
(98)° = (a1 |ac3), (95)* = (a1les), (g10)* = (0lg),
(911)> = (0[q), (12)2 = (0lq), (g13)> = (0le),
(914)2 0‘03)5 915)2 = (0|q03), (916) (O|q)a
(917)* = (0lq), (918)*> = (0]q), (919)2 = (0]q),
(950)° = (0]ge3), (g51)* = (0les), (g52)* = (a1 lg),
(g53)% = (a1 lq), (g54)? = (a1 |q) where q is the rota-

tion by the angle 27 around the corresponding axis;
and, for point I' of single-layer graphene C i, these
are the same values, for which the trivial translation
vector a; = 0.

The stages of calculations according to the Her-
ring criterion and the results obtained are presented
in Table 18 (see Appendix). From the values of the
Herring criterion, it is easy to see that both the
single- and two-valued projective representations at
points I' and A of crystalline graphite v-C and
point I' of single-layer graphene Cp i, except for
the representations (A’ )54) and (A’ );4) for crystalline
graphite, are related to the case ay [9], where there
is no additional degeneration of the states provided
that their invariance with respect to the time re-
versal is taken into account. At the same time, the
projective representations at point A for crystalline
graphite — these are the representations (A’ )(14) and

(A’)é4) — are related to the case by [9] and, be-
ing representations with complex-conjugated char-
acters, group together to increase the degeneracy
order of electron states to four. This grouping of

complex-conjugated representations is illustrated in
Table 7.

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4

3.1.3. Point A

The group of equivalent directions of the wave-vector
group at point A of crystalline graphite v-C is the
group 6mm(Cs,). The wave-vector star at this point
contains two rays. The irreducible single- and two-
valued projective representations for point A are
given in work [1]. The condition ¢’k = —k at this
point is satisfied by the elements ¢’k = —k: ¢g) =
= (0](u2)0), g5 = (O(u2)2), g5 = (O[(ua)a). o =
= (% 1(up)1), 911 = (%-1(u)2), 912 = (% [(up)s),
g1z = (0]0), g1y = (Olic3), 15 = (0’263) g9 =
= (% lica), g5 = (% ]ic}) and g3y = (% |ice).
The squares of those elements can be easily calcu-

lated: (g4)® = (01q), (95)* = (0lq), (95)*> = (0q),
(910)* = (0]g), (¢11)* = (0lg), (g12)*> = (0lg),
(913)* = (0le), (91)* = (0]c3), (gi5)* = (Olges),
(919)% = (0]q), (gho)* = (0]qc3) and (gh,)? = (0 |ca).

After calculating the Herring criteria, it is easy to
see that all, both single- and two-valued, irreducible
projective representations at this point belong to the
case ag [9] (subscript 2 means that k is not equiva-
lent to —k, but the space group contains an element
R that transforms k into —k), when there is no addi-
tional degeneration of the states provided that their
invariance with respect to the time reversal is taken
into account. The consistency conditions for the irre-
ducible projective representations along the direction
I' — A—A, which is the direction of the highest sym-
metry in the Brillouin zone of a crystal structure with
the spatial symmetry group P63/mmc(Dg;), were
shown in Fig. 5 of work [1].

3.2. Line K—P—-H of crystalline
graphite and point K of single-layer graphene

3.2.1. Redesignation

First of all, let us make an important clarifica-
tion. The matrices of the irreducible representations
of the wave-vector groups, Dg(h), and their charac-
ters X p, (n) contain the phase factor e~ ikleta) where
k is the wave vector, « the vector of nontrivial trans-
lation, and a the vector of trivial translation for
the element g = (a + a|r) of the spatial symmetry
group. This factor was not taken into consideration,
when constructing the characters of irreducible rep-
resentations in work [1] (see formulas (6) and (7) in
work [1]). For the basic elements of the spatial group,
one can choose a = 0, so that this phase factor takes
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the form e~ " where the nontrivial translation vec-
tor a corresponds to the “rotational” element r, i.e. to
the basic element h = («|r) of the spatial symme-
try group. The account for the phase factor e~ ¢
for the elements r’s is necessary, when constructing
a correct irreducible projective representation of the
wave-vector group in the cases where the scalar prod-
uct (k, ) # 0. Note that in the case of point A con-
sidered above, the nontrivial translation vector a was
always equal to zero for the nonzero characters of “ro-
tational” elements r’s.

Since the phase factor e~®(r) is inherent to the
spatial symmetry of a periodic structure, it can be in-
troduced into the definition of the atomic equivalence
representation by replacing formula (15) in work [1]
by the formula

Xeq(RQ) = e—ika (Ra) Z 6Ra'l"j,7'j eiKmrj ) (7)
J

denoting the previously used xeq(Ro) without the
phase factor as (Xeq)o(Ra), i-e. the new Dqq will con-
tain the phase factor e **®(R,), and also denot-
ing Dqq obtained for various points in the Brillouin
zone in work [1] and not containing the phase factor
as (Deq)o-

At points K and H of crystalline graphite v-C and
point K of single-layer graphene Cf,;, the factor-

Table 8. Characters of the irreducible

projective representations of the projective classes
Ko and K; of the group 6m2(Ds3};) corresponding
to the standard factor-systems ""EO) (r2,71) (the
unity-containing factor-system for ordinary vector
representations) and “’El) (r2,71), respectively

Projec- Notation 6/mmm(Degp)
tive for irreducible
1 projective . . . . .
cass representation eles cg Buz|ics ch e 3”/2
Ko | K" Ko j1jifrij1f 1|
K9 Ky |1|1f1| 1 |- 1| -1|=1
K Ky |11 |1|—1]|-1 -1 | -1 |1
K Ky |11 |1|=1]-1] =1 | -1 |1
Kéo) K5 2|-1|-1{ 0|2 -1 | -1]0
Kéo) K¢ [2|-1|-1|0 |-2| 1 1 0
K P 2|-1[-1| 0 [0 | V3i |-V3i| 0
P 2(-1[-1] 0 | 0 |—V3i| V3i| 0
P2(1> 212|2]0|0] O 0 0
up, i (r) = ua(r)| 11| 1| i | =i | =i |1
354

groups of wave-vector groups are isomorphic to the
same point symmetry group 6m2(Dsy,) with respect
to the invariant translational subgroups.

Each of the stars of the wave-vector groups at
points K in both crystalline graphite v-C and single-
layer graphene Cp,; contains two vectors. These are
the vectors (kx)1 = —1(2by — b3) and (kx)2 =
= %(ng — bs) for crystalline graphite, and the vec-
tors (kK)l = —%(2()1 — b2) and (kK)g = %(le — bg)
for single-layer graphene. For crystalline graphite, the
nontrivial translation vector @ = a1/2 is perpen-
dicular to the wave vectors (kk); and (kg)2. The-
refore, the phase factor e **x® equals 1 in all
cases. This is also true for single-layer graphene as
well, where the nontrivial translation vector equals
zero. This means that, for both structures, the
factor-systems wi g (re,r1) include the “+41”-values
only, i.e. they are completely unity-containing factor-
systems, which coincide with the standard factor-
systems of the projective class K. At the same
time, since wg i (r2,m) = w1,k (r2,T1)wa(r2,71) =
= wEO) (ro,r1)wa(re,m1) = wa(re,r1), the factor-sys-
tems for the projective representations at points K
taking the spin into account, i.e. wa g (r2,71), coin-
cide with the factor-system wso(r2,71) belonging to
the projective class K.

The characters of the irreducible projective repre-
sentations of the projective classes K (where they
coincide with the ordinary or vector representations)
and K; of the group 6m2(Dsp), which correspond
to the standard factor-systems w(g(rz,71) (a unity-
containing factor-system, whose coefficients equal
only to +1) and w’l)(rz,rl), respectively, are pre-
sented in Table 8. The characters of two-dimensional
irreducible projective representations corresponding
to the standard factor-system w(,,(r2,71) are marked
with the symbol P. The coefficients us k(1) = ua(r)
are given in the bottom part of Table 8.

In Table 9, the characters of the two-valued
(spinor) irreducible projective representations of
points K in the Brillouin zones of crystalline graphite
and single-layer graphene are given. They are identi-
cal for those two structures.

It should be noted that, for the two-valued (spinor)
irreducible projective representations of points K
in the Brillouin zones of crystalline graphite and
graphene, the following equations are satisfied:

(KM = us(r) PV, (8)
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In addition, for various points in the Brillouin zones —
e.g., for points K — we can also determine how the
characters of the representations of the direct prod-
ucts K; ® D;r/z, where K is the character of the i-
th projective irreducible representation making no al-
lowance for the electron spin, can be expanded in two-
valued (spinor) irreducible projective representations
with regard for the electron spin. In other words, we
can determine which orbitals or the sum of orbitals
found making allowance for the spin will correspond
to an orbital obtained without regard for the spin, if
the latter is taken into account.

Let us determine this correspondence proceeding
from the distributions of the electron m-band rep-
resentations at points K in crystalline graphite and
single-layer graphene without taking the electron spin
into account (see Table 12 in work [1]). In particu-

lar, for the products Kéo) ® DT Kio) ® DT

1/2 1/2°
Kéo) ® Df/zv whose characters are presented in the
bottom part of Table 9, it is easy to find the con-
sistency conditions for the irreducible projective rep-
resentations, which arise, when the electron spin is
taken into account for the orbitals K; determined

without regard for the spin. In particular, the orbital

and

(K’ )gl), which makes allowance for the electron spin,
corresponds to the orbital KQ(O), if the spin is taken
into account; the orbital (K’ )§1) also corresponds to

the orbital Kio); the sum of orbitals (K’)gl) + (K’)gl)

(0)

corresponds to the orbital Ky, i.e. if the electron

spin is taken into account, the orbital Kéo), which is
doubly degenerate, if the electron spin is not taken
into account, becomes split into two doubly degener-
ate spin orbitals (K’)él) and (K’)él).

The characters of projective representations for
points K, namely, the equivalence representations
Ky, the representations of the spatial symmetry of
m-orbitals K, the representations of the symmetry
of electron w-bands without regard for the electron
spin K, two-valued representations DT/Q, K., and
representations of the symmetry of electron 7’-bands
with regard for the electron spin K/, are presented
in Table 2. The distributions of electron excitations
for m-bands (without taking and taking the electron
spin into account) over the two-valued (spinor) irre-
ducible projective representations of points K in the
Brillouin zones of crystalline graphite v-C' and single-
layer graphene C7,; are presented in Table 3.

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4

An important consequence of the account for the
electron spin for electron excitations at points K is
the splitting of the doubly degenerate spinless orbitals
K(()-O) in the structures of both crystalline graphite
and single-layer graphene. This splitting is predicted
by the theoretical-group analysis and occurs as a re-
sult of the consideration of the spin-orbit interac-
tion. But it is extremely weak for carbon structures
(about 1.0+1.5 meV [2]) and will not be noticeable
against the state energies measured in electronvolts
and even tens of electronvolts. From the viewpoint of
a theoretical group description, this splitting of the
spinless orbitals Kéo) into the spin orbitals (K’ )él)
and (K/)gl), if the spin is taken into account, has a
principal character for noncarbon structures with the
spatial symmetry group P63/mmc(Dy,) as well. For
instance, it can be significant for dichalcogenides of
transition metals.

3.2.2. Point H

As was mentioned above, the wave-vector factor-
group at point H in the Brillouin zone of crystalline
graphite 7-C' with respect to the infinite invariant
translation subgroup is isomorphic to the point group
6m2(D3p,). The star of the wave-vector group con-
tains two vectors, (kg)1 = —%bl — %(2b2 — bs) and
(kiH>2 = —%bl + %<2b2 - b3)

Table 9. Characters of the two-valued (spinor)
irreducible projective representations of the group
6m2(D3p) (the projective class K1) of the spinor
representation Dj_/z(r) and the projective

representation products Kéo) ® Dt

1/2°
(0) + (0) +
K, ®D1/2,andK6 ®D1/2
Projec- Notation 6m2(Dsp,)
tive for irreducible
lass projective ) ) ) )
s representation | ¢ | ©3 c3 |Bug|icz| icg | ice |3iuj
K1 (k7)Y 201|-1]0|0]|v3|-v3| 0
(K" 201 |-1| 0 |0|-v3 V3| 0
(K" 22200l oo o
DY)y (r) 2[1|-1] 0 |0|-V3 V3| 0
K | K@D, [2/1|1[0]0|V3|-v3] 0
K" @D, 21|10 |0 V3|-v3] 0
KP@Df, |4|-1/1]0 |0[-v3[ V3| 0
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Table 10. Characters of (a) the one-valued irreducible projective representations of the projective

class K7 of the group 6m2(Dj3p) corresponding to its standard factor-system and (b) the one-valued p-equivalent
representations describing the symmetry of vibrational and electron excitations without taking the spin

into account at point H in the Brillouin zone of crystalline graphite for the spatial symmetry group (the
wave-vector group of point H) that is a subgroup of the spatial symmetry group P63/mmc (Déh)

Projec- Notation 6m2(D3p)
tive for irreducible
1 projective . ) ] ] )
e representation € 3 3 3uz tc2 icg ice 3iul
K a p 2 -1 -1 0 V3i —V/3i 0
P 2 -1 -1 0 —V/3i V3i
p{M 2 2 2 0 0 0
uy,p () 1 1 1 1 i i i i
etkra(r) 1 1 1 1 i i i i
eRH (PYuy 1 (r) 1 1 1 -1 -1 -1 -1
K b oY 2 -1 -1 0 0 —V/3i V3i 0
" 2 -1 -1 0 V3i —V/3i 0
H{" 2 2 2 0 0 0 0 0

In work [1], it was shown that both the factor-
system of the spatial symmetry group of crystalline
graphite at point H of its Brillouin zone, wy g (r2,71),
with the coefficients wy g(r) of reduction to the
standard form and the factor-system of the spin
variable transformations; ws(rq,71), with the coeffi-
cients us(r) of reduction to the standard form be-
long to the same projective class Kj. This means
that the two-valued (spinor) irreducible projective
representations for point H in the Brillouin zone
of crystalline graphite y-C' belong to the projec-
tive class Ko (K71 - K1 = Kj), and the reduction
coeflicients of the transformation factor-system to
the standard form taking the electron spin into ac-
count, wa g (r2,71) = w1 g(re,r1)wa(re,r1), are de-
termined at this point by the equality ug m(r) =
= wuy g(r)uz(r). When constructing the characters
of the two-valued (spinor) irreducible projective rep-
resentations of point H, it is also necessary to
consider the phase factor e **#%(r) i.e. to deter-
mine the resulting factors e~ **#%(r)uy g (r)us(r),
by which the characters of the irreducible projec-
tive representations of the projective class Ky (these
are the characters of the vector representations for
the point symmetry group 6m2(Ds;)) have to be
multiplied.

The characters of the single-valued irreducible pro-
jective representations of the projective class K of
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the point group 6m2(Dsp,), which correspond to the
standard factor-system of this class, and the charac-
ters of the single-valued irreducible projective repre-
sentations characterizing the spatial symmetry of vi-
brational and electron — in the latter case, not taking
the electron spin into account — excitations at point
H in the Brillouin zone of crystalline graphite are
given in Tables 10, a and 10, b, respectively 2. The
bottom part of Table 10, a contains the values of the
coefficients uq, i (r) that transform the factor-system
of the projective class K7, which corresponds to the
spatial symmetry of point H, to the standard form,
as well as the values of the phase factors e~ k#e(r)
and the coefficient products e~ %7 (r)u; g (r).

The characters of the two-valued (spinor) irre-
ducible projective representations belonging to the
projective class Ky and characterizing the symme-
try of electron excitations taking the electron spin

2 It is of interest to note that the characters of the single-
valued irreducible projective representations for point H in
the Brillouin zone of crystalline graphite (the spatial sym-
metry group of crystalline graphite is P63/mmc(Dg, ), and
the factor-group of the wave-vector group for point H is iso-
morphic to the point group 6m2(D3;) with respect to the
invariant translation subgroup), which belong to the projec-
tive class K1, exactly coincide with the characters of the first
three irreducible representations presented in Table C.28 of
work [8].
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Table 11. Characters of (a) the two-valued (spinor) irreducible projective representations
at point H in the Brillouin zone of crystalline graphite v-C (the spatial symmetry group P63/mmec (D§,),

the projective class Ko) and (b) the projective representation products H{l) ® Dj_/z and Hél) ® Dt

1/2
Projec- I\‘Iotatioril 6/mmm(Dgp,)
tive for irreducible
projective
class reprosentation e cs 3 3uo ico ic3 ice 3iub
Ko a (H"){® 1 -1 1 i —i i i 1
23 I S U I AU BN B
(=) 1 -1 1 —i —i i i -1
(H’)A(lo) 1 -1 1 —i i —i —i 1
(H')éo) ) 1 -1 —21 —1 —1
(H"){ 2 1 -1 0 2i i i
u1,m (r) 1 1 1 1 i i i v
ua(r) 1 -1 1 7 7 —1 —1 -1
etkma(r) 1 1 1 1 i i v
e H (ryuy, g (r)uz(r) 1 -1 L : - i ‘ !
D, |2 Lo o N T R
(1) + ]
Ko b ! e D}, 4 1 1 0 3i 3
a +
Hy’ @ D), 4 2 -2 0 0 0
H. 8 1 -1 0 3 3i

into account are given in Table 11, a. The bot-
tom part of Table 11, a contains the values of
the coefficients u; g (r) and wuz(r), which transform
the factor-system wq g (re,71) and wa(re,r1), respec-
tively, to the standard form, as well as the values
of the phase factors e~*#%(r), the coefficient prod-
ucts e~ * 7% (r)uy g (r)ua(r), and the characters of
the double-digit spinor representation Di"/Q (r) of the

point symmetry group 6m2(Dsy). In Table 11, b, the
characters of the products of the projectivev repre-

sentations Hfl) ® DT/Q and Hél) ® DIF/Q are shown,
which make it is easy to find the consistency con-
ditions for the irreducible projective representations
for the spinless orbitals of point H, the orbitals Hi(l)
of the projective class Ky with irreducible projective
representations of spin orbitals (H’ )1(-0) of the projec-
tive class Ky, which arise, when the electron spin
is taken into account. For instance, if the electron

spin is taken into consideration, the sum of spin or-
bitals ((H,>§0) + (H’)go)) + (H’)éo) corresponds to the
spinless orbital Hl(l), and the sum of spin orbitals
(H’)éo) + (H')éo) to the spinless orbital H?()l).
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The characters of the projective representation of
all electron m-bands taking the electron spin into ac-
count (7'-bands) for point H in the Brillouin zone of
crystalline graphite y-C, i.e. the representation H.,
are equal to the sums of the corresponding character
values of all spin orbitals (H ’)EO). They are given in
the bottom part of Table 11, b. The indicated values
for the characters of the projective representation H
can be easily obtained using formula (4) (for point H,
it looks like H.. = H.,® H, where H/, is a representa-
tion that characterizes the symmetry of a m-electron
with its spin at point H in the Brillouin zone of crys-
talline graphite).

Table 2 demonstrates the characters of the equiva-
lence representation for point H in the Brillouin zone
of crystalline graphite, the representations Hyq; the
representations H, =T", and H; = H.,® H, describ-
ing the spatial symmetry of 7-electron and electron
m-bands, respectively, without taking the spin into
account; the two-valued (spinor) representation D1+/27
and the two-valued representations H, = H, ® Di"/Q
and H] = Heq ® H. describing the symmetry of 7-
electron and electron 7-bands making allowance for
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the spin. Table 3 contains the distribution of electron
m’-bands with regard for the spin at point H over the
two-valued (spinor) irreducible projective representa-
tions of the projective class Kj.

Our calculation of the Herring criterion for point H
with the use of the symmetry elements satisfying the
equality ¢’k = —k — namely, these are the elements

gh = (%le2), g6 = (%cd), g6 = (% lce)s gho =
= (% (ug)1), 911 = (5 [(uh)2), 912 = (% [(u3)3),

Table 12. (a) Characters of the one-valued irreducible
projective representations of the projective class Ko
of the group 3m (C3.), which describe the symmetry
of vibrational and electron excitations without taking
the spin into account for the spatial symmetry group at
point P (the wave-vector group of point P) in the Bril-
louin zone of crystalline graphite and are p-equivalent
to the characters of the one-valued irreducible pro-
jective representations corresponding to the standard
unity-containing factor-system of this projective class.
(b) Characters of the two-valued (spinor) irreducible
projective representations of point P in the Brillouin
zone of crystalline graphite v-C (the spatial symme-
try group P63/mmc (Dgh), the projective class Kp),
the two-valued spinor irreducible projective represen-

tation Dj_/z, the projective representation products
P{”®D} ,, P{” @D}, and P{”®D} ,, and the two-

valued projective representation of electron 7’-bands
taking the electron spin into account — representation
P (9)

Projec- Notation for 3m(Cs)
tive irreducible
class projective '
representation € €3 c§ 3iuby
Ko a PO | 1 1 1 s
0
PO 1 | 1| 1| o
PO 2 | 1| 1 0
UQ(T) 1 -1 1 7
Ko b (P/)g0> 1 -1 1 i'r]kz
PO 1 | a1 | i,
(P)sY 1| 1] o
+
Dip| 2 1 -1 0
(0) +
Pl( ) ® D1/2 2 1 -1 0
0 +
P22 ) @Dy, | 2 1 -1 0
0 +
B D1/2 4 -1 1 0
Pr| 8 1| -1 0
* g, = e—tkpa1/2 — o—ikzai/2
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gis = (0]i), gia = (Olics), gi5 = (0ic3), g1 =
= (0li(u2)1), 917 = (0i(uz)2), gis = (0]i(uz)s), and
their squares equal (g7)* = (a1 |q), (95)* = (a1 |qc3),
(95)° = (a1les), (g10)* = (0lg), (911)* = (Olg),
(912)* = (0la), (g55)> = (Ole), (g14)® = (0]c3),
(915)* = (Olqes), (g16)* = (0lg), (g17)* = (0lq)
and (gig)? = (0|q) — testifies that the two-valued
one-dimensional spinor irreducible projective repre-
sentations (H’)go) and (H’)go) at point H in the
Brillouin zone of crystalline graphite belong to the
case by [9] and, owing to their time-reversal in-
variance, they must unite, although our case corre-
sponds to the union of nonequivalent complex repre-
sentations, rather than complex-conjugate ones. At
the same time, the two-valued two-dimensional
complex-conjugate irreducible projective representa-
tions (H’)éo) and (H')éo) belong to the case ay [9] and
do not unite, if the time-reversal symmetry is taken
into account.

3.2.3. Point P

The group of equivalent directions of the wave-vector
group at point P in the Brillouin zone of crys-
talline graphite v-C' is the group 3m (Cs, ). The group
3m (C3,) has only one class of projective represen-
tations. This is the class K. Therefore, all projec-
tive representations of this group are p-equivalent
to vector ones. The wave-vector star at this point
contains four rays: (kp)y = —k, — %(ng — bs),
(kp)2 = —k.+%(2by—b3), (kp)3 = k. — +(2by —bs),
and (kp)4 = kz + %(ng — bg)

Table 12 presents (a) the one-valued irreducible
projective representations of the projective class K
of the group 3m (Cs,) at point P in the Brillouin zone
of crystalline graphite and (b) the two-valued (spinor)
irreducible projective representations, also belonging
to the projective class Ky of this group, of equiva-
lent directions; the characters of the spinor represen-
tation D;r/z; the products of projective representa-

tions P’ ® D}, P{” @ D}, and P{” @ D ,;
and the characters of the projective representation of
electron 7’-bands making allowance for the electron
spin, P.. The bottom part of Table 12, a contains the
coefficients us(r) that transform the factor-system
of transformations of the spin variable ws(rs,71) to
the standard form wy(r2,71) = wy) (2, 71. The bot-
tom part of the whole Table 12 shows the phase fac-
tor value.
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The characters of the one-valued projective equiv-
alence representations Py, the one-valued projective
representations P, and P, the double-valued projec-
tive representations D1+/2 and P, and the two-valued
(spinor) projective representation P/ of electron 7'-
bands making allowance for the electron spin for point
P in the Brillouin zone of crystalline graphite are
given in Table 2. The distributions of projective rep-
resentations of electron m-bands without taking the
electron spin into account, P, and taking it into ac-
count, P!, over the irreducible one- and two-valued,
respectively, projective representations are presented
in Table 3.

The calculation of the Herring criterion for point P
in the Brillouin zone of crystalline graphite with the
use of the symmetry elements satisfying the require-
ment ¢’k = —k-namely, these are the elements g}, =
= (% 1(ur)1), 911 = (5 [(uh)2), 912 = (5 |(u)s),
g3 = (0[0), giy = (Olic3) and g5 = (0[ic5), and
their squares equal (g10)* = (0lq), (91,)* = (0lq),
(912)> = (0lg), (913)* = (Ole), (g74)* = (0]c3),
(915)*> = (0|ges) — shows that the two-valued one-
dimensional spinor irreducible projective representa-
tions at this point, (P’)go) and (P’)éo), belong to the
case by [9] and, owing to the time-reversal invari-
ance, they unite into the two-dimensional projective
representation ((P’)go) + (P,)éo))_ At the same time,
the one-valued irreducible projective representations
Pl(o), PQ(O), Péo), and the two-value (spinor) projective
representation (P’)éo) belong to the case as [9] and do
not unite, if the time-reversal symmetry is taken into
consideration.

At point H, which is limiting for points P in the
Brillouin zone of crystalline graphite, if the elec-
tron spin is neglected, i.e. when the phase factor
e~=a1/2 — j at k, = —by/2, the sums of the char-
acters of one-valued irreducible projective represen-
tations Pl(o) and PQ(O), as the complex-conjugate rep-
resentations, should transform into the characters of
the two-dimensional one-valued irreducible projective
representation Hél) belonging to the projective class
K, of a higher symmetry group than the symmetry
group of points P. It is also easy to see from Ta-
ble 12, b that, if the electron spin is taken into ac-
count, the spin orbital (P’ )éo) corresponds to the spin-
less orbitals Pl(o) and PQ(O)7 and the sum of the united

spin orbitals ((P’)(lo) + (P’)go)) and the spin orbital

(P )éo) corresponds to the spinless orbital P?EO).
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3.3. Line M-U-L of crystalline
graphite and point M of single-layer graphene

At points M and L in the Brillouin zone of crystalline
graphite v-C' and at point M in the Brillouin zone of
single-layer graphene C7, 1, the factor-groups of wave-
vector groups with respect to the invariant translation
subgroups are isomorphic to the same point symme-
try group mmm (Dap,), which is the point symmetry
group of equivalent directions for points M in those
structures.

3.3.1. Points M

Each of the stars of the wave-vector groups at points
M in the Brillouin zones of the structures con-
cerned contains three rays: these are (kas); = —3bs,
(k:M)Q = %bg, and (kM)g = —%(bg — bg) for Crys-
talline graphite v-C; and (kj)1 = —%bg, (k)2 =
= 2by, and (ka)s = —3(b1 — bs) for single-layer
graphene C7p, ;.

First of all, as was done in work [1] for the point
group 6/mmm (Degyp), let us construct a factor system
wa(r9,r1) describing the transformations of spinors
under the action of symmetry operations for the
point group mmm (Dsy) and determine the coeffi-
cients ug(r) that transform it to the standard form
wh(ra,r1).

Of three rays of the wave-vector stars at point M
in the Brillouin zones of both crystalline graphite and
single-layer graphene, let us consider the rays (kas);
(points M), for which the elements of symmetry that
transform these rays into the equivalent ones and
form the point symmetry group mmm are the ele-
ments e, (u2)1, c2, (u4)1, i, i(uz)1, ice, and i(ub);. As
the mmm group generators, let us choose the ele-
ments a = (uz2)1, b = c2, and ¢ = 4. This choice makes
allowance for the composition principle. According to
the latter, the group mmm can be represented as
the direct group product 222 @ 1 (mmm = 222 ® 1
or Do, = Dy ® (), and the group 222 as the direct
group product 2/ ®2 (222 =2'®2 or Dy = C,® ().

By applying the defining relations, let us calculate
all values of wa(r2,71). It is clear that this is the defin-
ing relations for the double group (msmm)’ that have
to be taken for this purpose:
at=e, bt=e, AE=e,
ab = gba, ac=ca, bc=cbh.

The factor-system ws (12, 71) calculated for the mmm
group following this way and using the method of

359



V.O. Gubanov, A.P. Naumenko, M.M. Bilyi et al.

Table 13. Factor-system w2(r2,r1) for the group mmm (D2p) (a) and the corresponding
standard factor-system w}(r2,71) (b). The bottom part of Table 13, a contains the values of the function
uz(r) that transforms the factor-system wz(rz2,r1) to the standard form w(r2,r1) = wzl)(rz, 1)

(:):(r:,rl)| R 2 3 4 5 6 7 8 ; a ! b 1 ¢ d d
e (wy), ¢, ), i i), ic, i(u), @y (nn)=dy(n.n)f  pe==---- Fa G e P
- o A 2 13 4 A 5 6 7 8
Loe] e e de le he e el SO e )t Gy i i(w), ! e, i)
2 (uy), gy ~ly Ly Lis) Ly 1 Ll Loy & E a, E 1 & | P 1 i 1y L1 Us Ligy E Ly gy
3 Gl e e e e e Tw Tl e vas !t 2 @l e e 9w A te e | 2le e
A AR () FRNTION, 5, o1 JNISIC AN Lo /U Wi -} PP | i . A, T 0 OO )
4w Ly e e Sl e le le the b E b, E 3 G gy lw Il e ) e te? le e
3 i lo b dor T T ETR VT T Lo 4 G| 1w s ol e ] e 1e | 2le e
6 ‘:(UZL Loy =L =l Ly Ly =l =l Ly e - —':.—(-']- r - ; - -;_ i —[l: - ']:I v g 1ay [-1:|_ _].I- —t L) Loy
7 eyl oy o el ly —loy Ly ¢ Viga! s | ke 1is) |".m = " | Ui - | Ty =lgy
8| 1y clg b ol e clg e -y, d \ d, H ;] Yoy bt Yey Ten N Lt by ey
w0 i i T T S vyt 8 8] 1 g e e | e e | e e
a b

work [1] is shown in Table 13, a. This factor sys-
tem belongs to the projective class K7, because o =
= -1, =1, and v = 1 for it [1]. In Table 13, a,
the subscripts near the coefficients of the factor-
system wa (72, 71), which contain parenthesized num-
bers, compose a multiplication table for the elements
of the mmm group (the numbers in parentheses indi-
cate the numerical designations of the elements cor-
responding to the products rory).

With the help of the coefficients ua(r) given in
the bottom part of Table 13, a, the factor system
wa(rg,r1) is transformed into a p-equivalent block-
symmetric form, which corresponds to the defini-
tion of a standard factor system, i.e. the factor-
system wh(re,r1). In so doing, the values of the
coefficients ug(r) can be calculated using formulas
(13.3), (14.18), and (14.19) of work [9]. Alternati-
vely, they can be found, when constructing an ex-
tended group, the representation group [9], where
they are determined by its one-valued irreducible rep-
resentations, being additional to ordinary vector rep-
resentations.

The values of the coefficients us(r), which char-
acterize the transformation of spin functions for
identical elements r belonging to different point
groups — in our case, to point groups mmm and
6/mmm, where the group mmm is also a subgroup
of the group 6/mmm — expectedly turned out iden-
tical. This means that the factor-system presented in
Table 13, b is really a standard factor-system for the
projective class K7 of the point group mmm, i.e. the
factor-system wy(rz,71) = w(;(rz,r1). Solid lines in
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Table 13, b distinguish the contours of blocks, in
which the coefficients have a value of —1.

Table 14 displays the characters of the irreducible
representations of the double group (mmm)’ (D5,,),
the additional one-valued irreducible representations
of which (additional to the ordinary vector one-valued
irreducible representations of the group mmsm, which
can be obtained from the representations of the group
(mmm)’ by simply excluding the element ¢ from all
relations) are either two-valued projective or spinor
representations of the mmm group. The spinor rep-
resentations are denoted by the symbols (E')* and
(E')~ in the Mulliken notation or the symbols T'y
and I'; in the Koster notation, where the letter I'
denotes not only their membership in a certain point
group (in the given case, this is the group mmm),
but also in the coinciding group of equivalent direc-
tions of the wave-vector group of point I' in crys-
tals or periodic nanostructures. The symbols Ky and
K, denote the corresponding projective classes, and
the notations ((I")™)* and ("))~ were proposed
by us (here, the prime means the two-valued spinor
representation, the superscript (the number in the
parentheses) indicates the projective class, and the
superscripts “4” and “—” mean the representation
parity).

The characters of the irreducible representations of
the point group mmm (Dap,) of the projective classes
Koy (ordinary one-valued or vector) and K; (two-
valued projective or spinor) for the standard factor-
systems wEO) (rg,71) and wzl) (r9,71) of the point group
mmm are presented in Table 15. The irreducible pro-
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Table 14. Characters of the irreducible representations of the double group (mmm)’ (D%, )

u2)1, uH)1, . . i(u2)1, ico, i (u

(o (D4 Lo [ | @ | | || s | e | s,

Ko rF Af 1 1 1 1 1 1 1 1 1 1
ry AT 1 1 1 1 1 -1 | -1 -1 -1 -1

ry AT 1 1 1 -1 -1 1 1 1 -1 -1

ry Ay 1 1 1 -1 -1 -1 | 1 -1 1 1

T Bt 1 1 -1 1 -1 1 1 -1 1 -1

ry By 1 1 -1 1 -1 -1 | -1 1 -1 1

ry Bf 1 1 -1 -1 1 1 1 -1 -1 1

ry By 1 1 -1 -1 -1 | -1 1 1 -1

Ki | (@) 1of  (EHt | 2| 2 0 0 0 2 -2 0 0 0
(- s (BN | 2| -2 0 0 0 -2 2 0 0 0

Table 15. Characters of the one-valued

(vector) and two-valued (spinor) irreducible
projective representations of the group mmm (Da2p,)
corresponding to the standard factor systems

wéo) (r2,71) (the projective class Ko) and wzl)('r'z, 1)

(the projective class K1), respectively

mmm (Dap) | €| (u2)1 | e2 | (uh)1| ¢ |é(u2)1 | ica |i(ub)1
Ko Afji 1 | 1] 1 |1 1 1 1
A1 1 | 1| 1 |1 | -1 |1
AF 1l 1 |-1 | -1 |1 1 |1 1
Ay (1] 1 |1 |1 |1 ] 1 1
Bfl1| -1 |1 ]-1 | 1] 1| -1
Byf1l -1 | 1] -1 |-1 1 |-1 1
Bf|{1| -1 |-1| 1 | 1] -1 [ 1
By |1 -1 |-1]| 1 |-1 1 1| -1
K| (POY*+ 2] o 0| o 2 0 0 0
(POY=12] 0 0 0 |-2 0 0 0

jective representations for M points in the Brillouin
zones of crystalline graphite and single-layer graphene
are identical to them and are shown in Table 16. In
the group mmm (Dap), the second-order axis (uz);
is a senior axis in the structurally distinguished se-
nior subgroup [the axis ¢z is involved into the ex-
tension of the group consisting of the elements e and
(uz2)1 (the group C4) to the group Ds]. In other words,
in the formation of the direct product of the groups
CY [(U2)1] and Cy, the axis (ug); plays the role of the
principal axis, according to which the symbols (num-
bers) of irreducible representations are determined. It
is easy to see that the characters of the irreducible
projective representations of the class K of the group
mmm for the standard factor-system of this class,

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 4

Table 16. Characters of the one-valued (vector)
(the projective class Kg) and two-valued (spinor)
(the projective class K1) irreducible projective
representations of points M in the Brillouin zones
of crystalline graphite and single-layer graphene

mmm (Dap,) e|(u2)1| c2 [(uh)1| ¢ |i(u2)1|ica|i(ub)1
Ko Mffi 1 1|1 1| 1 |1] 1
Myjtp1 |11 |11 |1
M1l 1 -1 |-1 [1| 1 |1] 1
0,775 5 Y A T O s T I W I B A |
Mfjlll-1 |1 |-1 [1]|-1 |11
Miyji|-1 | 1|-1 |1 ] 1 |-1| 1
M[i-1 |1 1 [1|-1 |1] 1
My -1 |1 -1 1 [ 1] -1
Ki[((MHYMY+ MFl2l o [o] o |2 0 |0] O
(MDY= M2l 0 O] 0 |2 0 |O] ©

where they are denoted as (P™M)* and (P™M)~, on
the one hand, and the characters of the irreducible
projective representations of the class K; of the group
mmm for points M, which are denoted by the sym-
bols My and Mg [or ((M")M)* and ((M')M))],
on the other hand, coincide with the character of
the spinor irreducible representations of the double
group (mmm)’.

Table 2 exhibits the characters of the projective
equivalence representation at point M (the repre-
sentation Mcq), the characters of the representation
M, =T, which determines the spatial symmetry of
the p, orbital, the characters of the representation
of the electron m-bands without taking the spin into
account (the representation M, ), and the characters
of the two-valued representations D, M! = I,

1/20 7z
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Table 17. Characters of the irreducible projective representations
of the projective class K4 of the group mmm (Da2p) corresponding to the standard
factor-system of this class, w24) (r2,71) (a), and the characters of two-valued (spinor)

irreducible projective representations of point L in the Brillouin zone of crystalline graphite v-C (b)

- : : . mmm (Dap,)
Projective Notation for irreducible
class projective representation e (u2)1 co (uh)1 i i(u2)1 ico i(uh)
Ky a P 2 0 0 0
p{Y 2 -2 0 0 0
uy,1,(r) 1 1 1 1 1 1 -1 -1
ua(r) 1 7 7 -1 1 7 7 -1
e~tkra(r) 1 1 i i 1 1 i i
L (r)ur, 1 (rua(r) |1 i e ! i ! ‘
DY, 2 0 0 0 2 0 0 0
Ky A 2 2i 0 0 0 0 0 0
b YD L@ 1
(ED17 + (L) )<L§4) 2 —2 0 0 0 0 0 0
L 8 0 0 0 0 0 0 0

and M. The distributions of electron excitations at
points M in the Brillouin zones of crystalline graphite
~-C and single-layer graphene C, ; for m-bands with-
out taking and taking the electron spin into account
over the one- and two-valued (spinor), respectively, ir-
reducible projective representations of points M are
given in Table 3.

3.3.2. Point L

As was already mentioned above, the factor-group of
the wave-vector group with respect to the invariant
translation subgroup at points L in the Brillouin zone
of crystalline graphite is also isomorphic to the point
group mmm (Dap). The wave-vector star of point L
for the graphite 7-C' structure also contains three
vectors: these are (kr); = —%(bl + b3), (kr)2 =
=—1(b1 — by), and (k)3 = —5(b1 + ba — b3).

Similarly to what was done earlier for point M, of
three rays of the wave-vector stars at point L in the
Brillouin zone of crystalline graphite, let us consider
the ray (kp)1, for which the symmetry elementsthat
transform the rays of the wave-vector star at point L
into the equivalent ones and form the point symme-
try group mmm (Dap,) are the elements e, (us2)1, co,
(uh)1, i, i(ug)1, ice, and i(uh);. Again, as was done
for the group of point M, let us choose the elements
a = (u2)1, b = ¢o, and ¢ = i to be the mmm group
generators.
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In work [1], it was demonstrated that the factor-
system w1 1,(r2, 1) belongs to the projective class Kj
of the group mmm (Dap,) and can be reduced to the
standard form wy ;(r2,m1) = w(y(rz,m1) with the
help of the coefficients wu; () given in the bottom
part of Table 17, a in work [1]. It was also shown
that the factor-system ws(ra,r1) of spinor transfor-
mations at the symmetry operations of the group
mmm (Day), as it occurs for point M, belongs to the
projective class K; and is reduced to the standard
form wj(rz,r1) = Wy, (r2,71) with the help of the co-
efficients ua (1) given in the bottom part of Table 13, a
of this work. This means that the factor-system at
point L making allowance for the spin, ws 1,(r2,71),
is the product of the factor-system wi r(r2,71) (the
projective class Kj3), which is determined by the
structure of the spatial group of crystalline graphite
at point L making no allowance for the spin, and
the factor-system wa(ra,71) (the projective class K1),
which describes the transformations of spinors at
point L (in the point symmetry group mmm (Dap)),
e wo (re,m) = wi,n(re, r1)wa(re, r1).

The standard factor-system taking the spin into
account for point L, wyy(r2,71) = w25)(r2,r1)x
X wy(rz,11) = wig)(r2, r1)w(y)(r2,71), belongs to the
projective class Ky of the group mmm (D) (be-
cause Ky - K1 = K,) and coincides with the stan-
dard factor-system of the projective class K, of the
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Fig. 4. Dispersion of the electron energy mn’-bands calculated taking the electron spin into
account
group mmm (Day); i.e., wy p(r2,m1) = wE4) (re,71) | projective representation of electron 7n’-bands making

with the coefficients of transformation to the stan-
dard form, ug 1,(r), being equal to the product of the
coeflicients of transformation of the factor-systems
w1,r(r2,71) and wa(re,r1) to the standard form,
w1, (r) and ug(r).

The characters of the irreducible projective rep-
resentations of the point group mmm (Da) of the
projective class K4 for the standard factor-system
wE4)(r2,r1) of the point group mmm are presented
in Table 17, a. In the bottom part of this table,
the values of the coefficients w1 (1), wua(r), the
phase factors e~**2%(r), the products of coefficients
e~ kLo (pyuy 1 (rjus(r) = e *r%(r)uy 1(r), and the
characters of the irreducible spinor projective repre-
sentation DIF/Q are given. The characters of the two-
valued (spinor) irreducible projective representations
at point L in the Brillouin zone of crystalline graphite,
which were calculated using the formula

(L)) = e ®e () (s o () (r) P =
= e kLo (r)ug, (1) PLY, 9)

are shown in Table 17, b. The bottom part of this
table contains the characters of the two-valued spinor
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allowance for the electron spin.

The characters of the projective equivalence rep-
resentation at point L (the representation Ley), the
representation L, = I', determining the spatial sym-
metry of the p, orbital, the representation L, of the
electron m-bands making no allowance for the spin,
and the two-valued representations D) /20 L =T,
and L/, are given in Table 2. The distributions of elec-
tron excitations at point L in the Brillouin zone of
crystalline graphite for 7m-bands without and with tak-
ing the electron spin into account over the one-valued
and, accordingly, two-valued (spinor) irreducible pro-
jective representations of point L are presented in
Table 3.

Our calculation of the Herring criterion using the
symmetry elements for point L in the Brillouin zone
of crystalline graphite, which satisfy the equality
gk = —k — in particular, these are the elements
g1 = (0le), g3 = (0](uz)1), g7 = (5 |e2). g0 =
— (% ](uh)1)s gk = (O1i), gl = (OfiCuz)r), ghy =
= (7|102) and g5y = (% |i(uh),), whose squares

wal (g)2 = (0e), ()% = (0]a), (¢4)* = (as |q),
(910)2 = (0]g), (91)* = (Ole), (916)*> = (Olq),
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Fig. 5. Dispersion of the electron energy (a) m-bands (not taking the electron spin into account) and (b) 7’-bands (taking the
electron spin into account) in the K — P — H direction of the Brillouin zone in graphite v-C crystals. The spin-dependent fine
structure of 7’-bands in panel b is shown schematically, with the energy scale for the splitting of electron n’-bands being enlarged

by a factor of about 103

(919)*> = (0lg) and (gh)* = (a1lq), — testifies
that the two-valued (spinor) irreducible projective
representations of point L in the Brillouin zone of
crystalline graphite that belong to the projective
class K, — these are the representations (L’ )(14) and
(L’)§4> — belong to the case bs [9]. Being the rep-
resentations with complex-conjugate characters, if
their time-reversal invariance is taken into considera-
tion, they unite into four-dimensional representations
(I + (@), and (L)Y +(1)59)s, so that the
degree of degeneration for each of the electron states
increases to four. In Table 17, b, just this union of
representations with complex-conjugate characters is
indicated.

In Fig. 4, the dispersion of the electron energy =-
bands making allowance for the electron spin (7'-
bands) in graphite crystals is shown schematically.
The letters are used to mark points in the Brillouin
zone, and the letters with indices to mark the two-
valued spinor irreducible projective representations
of the corresponding projective classes (the latter
are indicated by the parenthesized superscripts). The
dispersion of electron m-bands is schematically illus-
trated for all high-symmetry points in the Brillouin
zone of crystalline graphite. The curves agree well
at the qualitative level with the results of numer-
ical calculations carried out in works [11, 12] tak-
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ing no electron spin into account, i.e. in the case of
weak spin-orbit interaction. Nevertheless, the curves
demonstrate the qualitative behavior of the disper-
sion of the electron m-bands along the line I'-A-A.

Figure 5, a exhibits the dispersion of the electron
m-bands along the line K—P—-H in the Brillouin zone
of crystalline graphite calculated making no allowance
for the electron spin. Figure 5, b qualitatively demon-
strates the spin-dependent fine structure of the energy
m-bands for the splitting of electron states shown in
Fig. 5, b (the energy scale of the spin-dependent fine
structure is enlarged by a factor of about 10%). This
fine structure is obtained, if the methods of theo-
retical symmetry-group analysis are consistently ap-
plied to determine the dispersion of electron mw-bands
in crystalline graphite taking the electron spin into
account. The spin-dependent splitting can be sub-
stantial, e.g., for dichalcogenides of transition met-
als with the same spatial symmetry group. However,
it is small for crystalline graphite and single-layer
graphene, because it is caused by a low spin-orbit
interaction energy for carbon atoms and, as a conse-
quence, carbon structures.

4. Conclusions

1. For the first time, a theoretical symmetry-group
description of the dispersion of electron w-bands
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in crystalline graphite (the space symmetry group
P63/mmec (Dg,)) and single-layer graphene (the
diperiodic space group P6/mmm (DG80)) is made.
The consistency conditions for the irreducible pro-
jective representations making allowance for the elec-
tron spin and the changes of the projective classes are
determined for various high-symmetry points in the
Brillouin zones of those materials.

2. A correlation between the electron excitations
in crystalline graphite making allowance for the elec-
tron spin and the spinor excitations in single-layer
graphene is shown.

3. With the help of theoretical symmetry-group
methods, the existence of a fine structure for elec-
tron m-bands has been predicted for the first time. It
arises, when the electron spin is taken into account,
even in the case of weak spin-orbit interaction. The
corresponding results include the appearance of a
small (about 1.0-1.5 meV according to the estima-
tions of work [2]) band gap between the valence and
conduction bands at the Dirac points and in their
very small vicinities in crystalline graphite and single-
layer graphene. A new interpretation is also given to
a small splitting (the spin-dependent fine structure)
of electron m-bands, if the electron spin is taken into
account, at point H of crystalline graphite on the ba-
sis of the established change in the projective classes
of irreducible projective representations of the wave-
vector groups, which excludes the intersection of the
dispersion curves of electron bands near point H.

APPENDIX:
Calculation of the Herring criterion

Table 18 illustrates the stages and the results of cal-
culations of the characters xx,p,[(¢)?], Xk,DL[(g’)Q],
and the corresponding values of the Herring criterion
for irreducible representations at points I" and A.
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EHEPT'ETUYHI CIIEKTPU EJIEKTPOHHIX
3BV/2KEHB TA IXHA OVCIIEPCIS B TPADITI
I TPA®EHI: BPAXYBAHHS EJIEKTPOHHOI'O
CIIIHY TA CUMETPII JO IHBEPCIIi YACY

Pezmowme

HocniizkeHo nucriepciifHi 3a/1e2KHOCTI €JIEKTPOHHUX 30Y/?KEHb
KpucTajivHOro rpadiry i omHomaposoro rpadeHny i3 Bpaxysa-
HHSIM CIIHY €JIEKTPOHAa. BU3HAYEHO KOpPEJIslil €HEePreTHIHUX
CIIEKTPIB €JIEKTPOHHUX 30y/I2KEHb 1, BIIEpIe, YMOBHU CyMiCHO-
CcTi JIBO3HAYHUX HE3BIJIHUX IIPOEKTUBHUX IIPEJICTABJIEHD, IO
XapaKTepHU3yIOTh CHUMETPII0 CIHIHODHUX 30y/2KeHb B 3a3Hade-
HUX BUIIE CTPYKTYpPaX, Ta PO3MOIIINA CIIHOPDHUX KBAHTOBUX
CTaHIB 32 IPOEKTHUBHUMU KJIACAMHU Ta HE3BIIHUMU ITPOEKTUB-
HUMU I[PEJICTABJEHHSIMU JIJIsl BCIX TOYOK BHUCOKOI CHMeTpil y
Bignosigaux 3omax Bpimmioena. 3a momomororo cuMerpiffHmx
TEOPETUKO-I'PYIOBUX METOIB JIJIsI IPOCTOPOBUX I'PYI CUMETPIT
KpucTajaivHoro rpadiry i ogHOmAapoBoro rpadeHy BCTAHOBJIE-
HO iCHyBaHHSI CITiH-3aJIE2KHUX PO3IIEIJIEHb EHEPreTUYHUX eJle-
KTPOHHHUX CIEKTPIB, 30KPEMA, PO3IIEIJIEHb T-30H B TouKax Jli-
paka, BeJIMYMHA SIKUX MOXKe OyTH 3HAYHOI, HAIIPUKJIAL, JJIs
IUXaJIbKOTEHIIB IIePEXiIHUX METaJIiB TaKOl CaMOl IIPOCTOPOBOT
rpymnu cuMeTpil, ajie € HeBEJIUKOIO JIsI KPUCTAIIIHOro rpadity
i omHOIIApOBOro rpadeHy, OCKIJIbKM BOHA 3yMOBJIEHA MAaJIOIO
€HEeprier CIiH-0pOITAJILHOI B3a€MOJIT JjIsi aTOMIB BYTJIEIHO i,
SIK HACJIJOK, JIJIsI ByIJIEEBUX CTPYKTYD.
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