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ON THE SINGULARITY OF THE LIQUID-GAS
COEXISTENCE CURVE DIAMETER 1

A simplified Anisimov–Wang variant of the complete scaling approach makes it possible to
determine the amplitudes of singularities for the diameter of the phase coexistence curve (CXC)
on the basis of the coefficients in the power series expansion of the mean-field free energy in
the reduced temperature and pressure near the critical point. This method is applied to obtain
the amplitudes for the leading critical singularities of the CXC diameter in the case of a
fluid described in the framework of the mesoscopic mean-field model. The results obtained
demonstrate that the amplitudes of leading singularities of the CXC diameter are determined
by the mesoscopic asymmetry parameters of the heterophase fluid.
K e yw o r d s: gas-liquid coexistence curve, diameter singularity, heterophase fluctuations,
mesoscopic model, heterophase fluid, mesoscopic asymmetry parameters.

1. Introduction

Experimental studies [1–5] testify that the gas-liquid
coexistence curve (CXC) is not symmetric in the den-
sity, 𝜌, versus temperature, 𝑇 , plane, and its diameter

𝜌𝑑 =
𝜌CXC
𝑣 + 𝜌CXC

𝑙

2𝜌c
(1)

is singular at the critical point (𝜌c, 𝑇c). Here, 𝜌CXC
𝑣

and 𝜌CXC
𝑙 denote the densities of vapor (the subscript

𝑣) and liquid (the subscript 𝑙) at the CXC, and 𝜌c
means the system density at the critical point.

The critical-point theory developed by applying
the Kadanoff–Wilson renormalization group method
[5–7] to the Ising model or the effective Ginzburg–
Landau Hamiltonian [6–8] allows the critical indices
of the order parameter and the correlation length to
be calculated with high accuracy. Similar results were
obtained by applying the method of collective vari-
ables [9].

The Lee–Yang lattice gas model [10] reduces the
theory of a gas-liquid critical point to the Ising model
with a scalar or vector order parameter, thus in-
dicating that the critical point of the fluid belongs
to the Ising universality class. Since the CXC in the
Ising model is symmetric, its diameter is not singu-
lar. The singularity in the diameter arises owing to
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the presence of asymmetric components in the effec-
tive Hamiltonian. As a result, the method of scaling
transformations and renormalization group has to be
revisited.

The method of “complete scaling” (CS) formulated
by Fisher et al. [11, 12] is an important step while
studying the criticality of fluids. On the other hand,
the method of “simplified complete scaling” (SCS) de-
veloped by Anisimov and Wang [13, 14] reduces the
estimation of the amplitudes of the leading singular
terms in the expression for the CXC diameter to the
determination of only two of nine coefficients of the
linear mixing of physical fields that are required in
the CS approach. In Ref. [14], the values of those two
coefficients were expressed in terms of the coefficients
in the expansion of the mean-field chemical potential
of a fluid into a double Taylor series in deviations of
the temperature 𝑇 and the density 𝜌 from their values
at the critical point – 𝑇c and 𝜌c, respectively. It is this
approach that we apply to the mesoscopic mean-field
model of a fluid [15].

In Section 2, the results obtained for the CXC
diameter in the framework of the complete [11, 12]
and simplified complete [13, 14] scaling models are
briefly recalled. In Section 3, the main ideas of the
mesoscopic mean-field theory of a fluid [15] are pre-

1 This article is dedicated to the 75th anniversary of Academi-
cian L.A. Bulavin.
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sented. In Section 4, the governing parameters of the
simplified complete scaling are determined in terms of
the mesoscopic fluid theory, and the results obtained
in Ref. [14] are ordered. The final section 5 is devoted
to the discussion and conclusions.

2. Simplified Complete Scaling
Method for Determining the Amplitudes
of the Leading CXC Singularities

In the CS approach [11, 12], three Ising scaling fields
are regarded to be linear functions of the reduced
chemical potential �̂�, temperature 𝜏 , and pressure 𝜋,

�̂� =
𝜇− 𝜇c

𝑘B𝑇c
, 𝜏 =

𝑇 − 𝑇c

𝑇c
, 𝜋 =

𝑃 − 𝑃c

𝑃c
, (2)

where 𝑘B is the Boltzmann constant. In the frame-
work of this approach, the following expression was
obtained for the CXC diameter:

𝜌𝑑 = 1 +𝐷2𝛽 |𝜏 |2𝛽 +𝐷1−𝛼 |𝜏 |1−𝛼
+𝐷1 |𝜏 |+ ... . (3)

Here, 𝛽 ≈ 0.326 and 𝛼 ≈ 0.109 are universal critical
indices. The amplitudes 𝐷2𝛽 , 𝐷1−𝛼, and 𝐷1 depend
on nine coefficients of the linear mixing of the physical
fields �̂�, 𝜏 , and 𝜋. These coefficients are not univer-
sal and have to be determined from the analysis of
experimental data.

Anisimov and Wang [13, 14] showed the compati-
bility of the CS approach and the mean-field approx-
imation. They proposed the SCS method by having
proved that the amplitudes of the singular and lin-
ear terms in Eq. (3) can be determined knowing only
two field-mixing coefficients, 𝑎3 and 𝑏2. In terms of
those coefficients, the expression for the CXC diame-
ter looks like

𝜌𝑑 = 1 +
𝑎3

1 + 𝑎3
𝐵2

0 |𝜏 |
2𝛽 −

− 𝑏2

(︂
𝐴−

0

1− 𝛼
|𝜏 |1−𝛼

+𝐵cr |𝜏 |
)︂
+ ... . (4)

Here, the parameter 𝐵0 can be found from the exper-
imentally measured CXC near the critical point:

𝜌CXC =
𝜌CXC − 𝜌c

𝜌c
= ±𝐵0 |𝜏 |𝛽 + ... . (5)

The parameters 𝐴−
0 and 𝐵cr determine the critical

specific (per molecule) heat capacity at a constant
volume in the two-phase region, 𝐶𝑉 ,
𝐶𝑉

𝑘𝑏
= 𝐴−

0 |𝜏 |−𝛼 −𝐵cr + ... . (6)

They can be found from experimental data. The co-
efficients 𝑎3 and 𝑏2 remain free parameters, which are
determined by fitting expression (4) to an experimen-
tally measured dependence of the CXC diameter on 𝜏 .

Since the CXC asymmetry and the singularity of
the CXC diameter are determined by the interac-
tion of molecules, the coefficients 𝑎3 and 𝑏2 are or-
dered according to the “interaction volume” param-
eter 𝜛* =

(︀
2𝜉+0

)︀3
𝜌c, where 𝜉+0 is the amplitude

of the density correlation length in the single-phase
region above the critical temperature [14, 16]. Ani-
simov and Wang showed that the values of 𝑎3 and 𝑏2
are arranged along certain master curves 𝑎3(𝜛*) and
𝑏2(𝜛

*) with acceptable deviations from them. The
characteristic lengths 2𝜉+0 are comparable with the
molecular size, and the parameter 𝜛* acquires values
of about 10−1. Therefore, 𝜛* is an averaged micro-
scopic parameter of molecular interactions.

In the mean-field model of a fluid, the CXC asym-
metry appears owing to those terms in the effective
Hamiltonian that violate its symmetry. In the case of
the Ising-type Hamiltonians with a one-component
scalar order parameter, the chemical potential can be
represented as a double Taylor series in 𝜌 and 𝜏 ,

�̂�(𝜌, 𝜏) =

∞∑︁
𝑚,𝑛=0

1

𝑚!𝑛!
𝜇𝑚𝑛𝜌

𝑚𝜏𝑛,

𝜇𝑚𝑛 =

(︂
𝜕𝑚+𝑛�̂�

𝜕𝑚𝜌𝜕𝑛𝜏

)︂
𝜌c,𝑇c

.

(7)

In Refs. [13, 14], the following representations for
the parameters 𝑎3 and 𝑏2 in terms of the coefficients
𝜇𝑚𝑛 were found:

𝑎3
1 + 𝑎3

=
2𝜇21

3𝜇11
− 𝜇40

5𝜇30
, 𝑏2 =

1

𝜇11

(︂
𝜇21

𝜇11
− 𝜇40

5𝜇30

)︂
.

(8)

The coefficients 𝑎3 and 𝑏2 determined in Ref. [14] for
some mean-field models are located near the master
curves 𝑎3(𝜛

*) and 𝑏2(𝜛
*).

Proceeding to the consideration of the mean-field
mesoscopic model of a heterophase fluid [15], we note
that the coefficients in series (7), which generate the
singularity of the CXC diameter, become functions
of the asymmetry parameters. This circumstance al-
lows the amplitudes of the singular components of the
CXC diameter to be mutually related and ordered in
terms of those parameters.
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3. Mesoscopic Theory of Heterophase Fluid

As follows from the Frenkel theory [17, 18] (see also
review [19]), the fraction of molecules belonging to
heterophase fluctuations (vapor bubbles in liquid and
droplets in vapor) is small in the biphasic region far
from the critical point (approximately at 𝜏 < 𝜏cross ≈
≈ −0.18). At 𝜏 > 𝜏cross, there is a region near the
critical point in the (𝑃, 𝑇 )-plane, where the gas and
liquid fractions of the fluid form infinite and mutually
penetrating (percolating) clusters. This is a region
of strong heterophase fluctuations (SHFs). It also in-
cludes the region of critical fluctuations, the temper-
ature width of which is about 10−2𝑇c.

Kadanoff applied the hypothesis of scale invariance
and the method of block-spin transformations to the
effective Ising Hamiltonian [6]. Later, when substan-
tiating the applicability of his theory to describe the
gas-liquid critical point, he noted that the fluid is het-
erophase in the critical region:

“In the neighborhood of a critical point, a fluid
shows a very special behavior. As one gets closer to
the critical point, fluctuations appear that are almost,
but not quite, like the ones found in the boiling region
of the first-order transition. ⟨...⟩ The fluid has bubbles
of liquid inside bubbles of vapor, which are themselves
inside bubbles of liquid, almost ad infinitum. The size
of the smallest bubbles is usually of the order of the
range of intermolecular forces or the distance between
molecules” [20].

Hence, Kadanoff considered that the smallest bub-
bles and droplets should be mesoscopic in size be-
cause a single molecule cannot be identified as belong-
ing to a bubble or a droplet. Concerning the effective
Hamiltonian for the fluid, Kadanoff saw its prototype
in the lattice gas model developed by Lee and Yang
[10]. This model, in such a way, reduced the theory of
a gas-liquid critical point to the Hamiltonian of the
Ising model. When proposing to replace atoms and
voids in the Lee–Yang theory with droplets and bub-
bles, Kadanoff evidently stressed the necessity to pre-
serve the applicability of block-spin transformations
near the vapor-liquid critical point and to ignore both
the transition to mesoscopic block-spin transforma-
tions and the absence of the CXC asymmetry in the
Ising model.

The mesoscopic mean-field theory of heterophase
fluid in the SHF region was formulated in Ref. [15]. A
mesoscopic generalization of the Lee–Yang lattice gas

model is a lattice, the cells of which contain “elemen-
tary” (with the smallest allowable sizes) droplets and
bubbles, which were called 𝑙- and 𝑔-fluctuons. The
linear cell size is evaluated as the doubled correlation
length of the direct correlation function introduced
by Ornstein and Zernike [20]. Fluctuons have a short
average lifetime and mutually transform into one an-
other. The sets of fluctuons of the same type form
liquid-like and gas-like fractions of the fluid (the 𝑙-
and 𝑔-fractions, respectively). Two adjacent fluctuons
of different types repulse each other under the action
of surface tension forces.

Assuming fluctuons to be statistically independent
entities, let us take the chemical potential 𝜇 of the
heterophase fluid in the form [15]

𝜇(𝜎(𝑙), 𝑃, 𝑇 ) =
1

𝑁
𝐺(𝜎(𝑙), 𝑃, 𝑇 ) = 𝑐(𝑙)𝜇(𝑙)(𝑃, 𝑇 )+

+ (1− 𝑐(𝑙))𝜇(𝑔)(𝑃, 𝑇 ) + 𝜇mix(𝜎
(𝑙), 𝑃, 𝑇 ), (9)

where

𝜇mix(𝜎
(𝑙)) = 𝑔2 · 𝜎(𝑙)(1− 𝜎(𝑙))+

+𝑇 · [𝜎(𝑙) ln𝜎(𝑙) + (1− 𝜎(𝑙)) ln(1− 𝜎(𝑙))]. (10)

Here, the superscripts (𝑙) and (𝑔) denote the quanti-
ties associated with the liquid and gaseous fractions,
respectively; 𝑁 is the number of molecules; 𝐺 the free
Gibbs energy; and 𝑁 (𝑙,𝑔), 𝑐(𝑙,𝑔) = 𝑁 (𝑙,𝑔)/𝑁 , and 𝜇(𝑙,𝑔)

are the numbers, concentrations, and chemical poten-
tials of molecules in the liquid (𝑙) and gaseous (𝑔)
fractions. It is assumed that fluctuons of the (𝑙, 𝑔)-th
type contain 𝑘(𝑙,𝑔) molecules, and the quantities 𝜎(𝑙,𝑔)

are their concentrations: 𝜎(𝑙,𝑔) = 𝑁
(𝑙,𝑔)
𝑓 /𝑁𝑓 , where

𝑁
(𝑙,𝑔)
𝑓 = 𝑁 (𝑙,𝑔)/𝑘(𝑙,𝑔) and 𝑁𝑓 = 𝑁

(𝑙)
𝑓 +𝑁

(𝑔)
𝑓 . The pa-

rameter 𝑔2 is the constant of the interaction between
the fluctuons of different types.

As one can see, the term 𝜇mix

(︀
𝜎(𝑙)
)︀

[Eq. (10)] in
the chemical potential (9) describes the contribution
made by the interaction of fluctuons and the entropy
of their mixing to the chemical potential of a fluid,
and it is of the Ising type. The first two terms on the
right-hand side of Eq. (9) describe the contributions
of molecules of the liquid and gaseous fractions to
𝜇. They are regular in the fluctuation region.

Changing to the variable 𝛼 = 𝜎(𝑙) − 1/2 in Eq. (9),
one can observe that the CXC branches 𝛼CXC(𝜏)
determined by stable solutions of the equation of
state 𝜕𝜇 (𝛼, 𝑃, 𝜏) /𝜕𝛼 = 0 are symmetric, 𝛼(𝑙)

CXC(𝜏) =
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Fig. 1. Dependences of the mixing entropy (𝑎) and the pair interaction of fluctuons (𝑏) on the
parameter 𝛼 for some values of the asymmetry parameter 𝜁𝑓

= −𝛼
(𝑔)
CXC(𝜏), with 𝛼c = 0 at the critical point. This

result is a consequence of the fact that the volumes
of all cells are equal.

In Ref. [15], the mesoscopic lattice model was gen-
eralized taking into account that, in effect, the vol-
umes of 𝑙- and 𝑔-fluctuons in a heterophase fluid are
different. A transition to the “melted” lattice can be
made with the help of the following nonlinear substi-
tution of 𝜎 by �̃�:

�̃�(𝑖) =
𝜎(𝑖)𝑤(𝑖)

𝜎(𝑙)𝑤(𝑙) + 𝜎(𝑔)𝑤(𝑔)
(𝑖 = 𝑙, 𝑔) ,

𝑤(𝑙) + 𝑤(𝑔) = 1.

(11)

Then the symmetry of the CXC 𝛼CXC(𝜏) disap-
pears. The corresponding expression for the chemical
potential reads

𝜇 (�̃�, 𝑃, 𝑇 ) = �̄� (𝑃, 𝑇 )− 4�̃�+ 𝜁

4
(︁
1 + �̃�𝜁

)︁Δ𝜇 (𝑃, 𝑇 )+

+
𝑇c

𝑘

2− 𝜁𝑓𝜁

2
(︁
1− 𝜁2𝑓

)︁ 1 + 2𝜁𝑓 �̃�

1 + �̃�𝜁
×
[︂
1

2
− 2�̃�2 + (1 + 𝜏)×

×
(︂
1

2
ln

(︂
1

4
− �̃�2

)︂
− �̃� ln

(︂
1− 2�̃�

1 + 2�̃�

)︂)︂]︂
, (12)

where the equality 𝑔2 = 2𝑇c for this chemical poten-
tial was taken into account, and the following nota-
tions were introduced:

�̄� =
𝜇(𝑔) + 𝜇(𝑙)

2
, Δ𝜇 = 𝜇(𝑔) − 𝜇(𝑙),

𝑘 =
𝑘(𝑙) + 𝑘(𝑔)

2
, 𝜁 =

𝑘(𝑙) − 𝑘(𝑔)

𝑘
, (13)

𝜁 =
2 (𝜁 + 2𝜁𝑓 )

2 + 𝜁𝜁𝑓
, �̃� = �̃�(𝑙) − 1

2
.

The difference

𝜁𝑓 = 𝑤(𝑔) − 𝑤(𝑙) (14)

is a parameter of asymmetry.
Note that this method allowing one to break the

symmetry of 𝛼CXC(𝜏) is only one among other possi-
ble variants.

Figure 1 demonstrates the dependences of the mix-
ing entropy and the pair interaction of fluctuons on
the parameter 𝛼 for various values of the asymme-
try parameter 𝜁𝑓 . Despite insignificant quantitative
changes in the fluid thermodynamics, this asymme-
try, as will be shown below, plays a crucial role at
the determination of the coefficient 𝑏2 and the ampli-
tude 𝐷1−𝛼.

4. Amplitudes 𝐷2𝛽 and 𝐷1−𝛼 in Terms
of the Mesoscopic Asymmetry Parameters

The expressions for the series coefficients (7), which
were found in Ref. [15], are given in Appendix. They
are presented in terms of the mesoscopic asymmetry
coefficients 𝜁𝑓 , 𝜁, and 𝜁. According to the SCS equa-
tions (8) and (A.1)–(A.4), we obtain the following
expressions for the coefficients 𝑎3 and 𝑏2:

𝑎3
1 + 𝑎3

= − 4 (𝜁 − 𝜁𝑣𝑐)

𝜁𝑣𝑐

(︁
4− 𝜁𝜁

)︁ +
16

3

(𝜁 − 𝜁𝑣𝑐)
2

𝜁2𝑣𝑐

(︁
4− 𝜁2

)︁2𝐷0, (15)

𝑏2 = 2𝑘
1− 𝜁2𝑓

2− 𝜁𝑓𝜁

(︃
𝜁𝑓𝜁𝑣𝑐

4− 𝜁2

4− 𝜁𝑣𝑐𝜁
+𝐷0

)︃
. (16)

When estimating the values of those parameters,
the parameter 𝐷0 can be neglected, because it is as-
sociated with the coefficients of linear thermal expan-
sion and compressibility of 𝑙- and 𝑔-fluctuons, which
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Fig. 2. Dependences of the parameters 𝑎3 (𝑎, 𝑏) and 𝑏2 (𝑐, 𝑑) on the
mesoscopic asymmetry parameters 𝜁 and 𝜁𝑓 reproduced according to the
data of Ref. [14]. The calculation parameters 𝜁𝑣𝑐 = 0.8 and 𝑘 = 3

are non-singular in the critical region. As a result, we
obtain

𝑎3
1 + 𝑎3

∼= − 4(𝜁 − 𝜁𝑣𝑐)

𝜁𝑣𝑐(4− 𝜁𝜁)
,

𝑏2 ∼= 2𝑘𝜁𝑓𝜁𝑣𝑐
1− 𝜁2𝑓

2− 𝜁𝑓𝜁

(︃
4− 𝜁2

4− 𝜁𝑣𝑐𝜁

)︃
.

(17)

In this approximation, the parameter 𝑏2 is propor-
tional to the asymmetry parameter 𝜁𝑓 . One can see
that the parameters 𝑎3 and 𝑏2 substantially depend
on the mesoscopic asymmetry coefficients 𝜁 and 𝜁𝑓 .

For the amplitudes 𝐷2𝛽 and 𝐷1−𝛼, we obtain the
expressions

𝐷1−𝛼
∼= −𝜁𝑓

3𝜁𝑣𝑐
2

4− 𝜁2

4− 𝜁𝜁𝑣𝑐
, (18)

𝐷2𝛽
∼= −3𝜁𝑣𝑐(4−𝜁2)(𝜁 −𝜁𝑣𝑐)

(4− 𝜁𝜁𝑣𝑐)2
+ 𝜁𝑓

3𝜁𝑣𝑐
2

4− 𝜁2

4− 𝜁𝜁𝑣𝑐
. (19)

It is of interest to know if there are master curves
for the parameters 𝑎3 and 𝑏2 in terms of the meso-
scopic asymmetry parameters. According to the val-
ues of those quantities determined in Ref. [14] for a

number of fluids, we fitted the parameters 𝜁 and 𝜁𝑓
at the fixed values of the parameters 𝑘 and 𝜁𝑣𝑐. In so
doing, on the basis of estimates of the quantity 𝑘 for
simple liquids [22], we took 𝑘 = 3. The parameter 𝜁𝑣𝑐
was taken to equal 0.8. This choice corresponds to a
density ratio of about 2.5 : 1 between the liquid and
gas fractions.

The plots depicted in Fig. 2 illustrate the relation
between the experimental data for the parameters 𝑎3
and 𝑏2 and the mesoscopic asymmetry parameters 𝜁
and 𝜁𝑓 . The most demonstrative master curves are
the straight line 𝑎3 ≈ −1.33 (𝜁 − 𝜁𝑣𝑐) /𝜁𝑣𝑐 in Fig. 2, 𝑎,
which shows the dependence of the parameter 𝑎3 on
𝜁, and the straight line 𝑏2 ≈ 2.5 𝜁𝑓 in Fig. 2, 𝑑,
which exhibits the dependence of the parameter 𝑏2
on 𝜁𝑓 . Note that the dependences 𝑎3(𝜁𝑓 ) and 𝑏2(𝜁)
are also approximately linear.

5. Discussion and Conclusions

The contribution of heterophase fluctuations to the
thermodynamics of the critical fluid was considered,
in that or another form, in a number of works (in ad-
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dition to those cited above, see also Refs. [23–25]) in
the Frenkel approximation, i.e. assuming that the nu-
clei of the coexisting phase do not mutually interact.

It should be noted that van der Waals was the
first who understood that just the appearance of
heterogeneous unstable molecular formations (which
he called pseudoassociations) in the fluid near the
critical point is responsible for the deviation of the
critical compressibility factor 𝑍c = 𝑃c𝑣c/𝑇c from a
universal value of 0.375 obtained from the equation
of corresponding states. In his Nobel Lecture [26],
he paid considerable attention to elucidate the na-
ture and role of pseudoassociations (associations of
molecules without chemical bonds) at the qualita-
tive level. He noted that a pseudoassociation, being a
temporary object, contains densely packed molecular
complexes [26]:

“Let the number of molecules that have combined
into a complex be so large that it is possible to speak
of a molecule at the center surrounded by a single
layer containing almost as many other molecules as
is possible simultaneously. Then, for the surrounding
molecules the attraction directed towards the interior
acts only to maintain the complex; and this part of
its attraction is lost for the surface pressure. Only the
forces acting outwards from these molecules can con-
tribute to the formation of the internal pressure. But
of course, for pseudo association as for true associ-
ation the number of formed complexes increases with
decreasing temperature and volume. At the critical
point, so I was compelled to conclude, only a very
small part of the weight is present as complexes. If
pseudo association exists in a substance, there are
at least two types of molecules, namely simple and
complex.”

However, van der Waals did not consistently ex-
amine the equation of fluid state in the presence of
pseudoassociations and their contribution to the crit-
ical compressibility factor. To some extent, this con-
sideration was done in Ref. [22]. Pseudoassociations
of Van der Waals can be regarded as a prototype
of Frenkel’s heterophase fluctuations. As concerning
his assumption that, near the critical point, only an
insignificant fraction of molecules belongs to molecu-
lar complexes, it is not justified, because the critical
point lies in the region of strong heterophase fluc-
tuations.

Kadanoff marked [20] that, at scaling transforma-
tions, the block size has to be confined from below by

the size of the region of short-range molecular corre-
lations, in which the homogeneity of scaling transfor-
mations becomes lost. The “interaction volume” 𝜛*,
which was used in Refs. [13, 14] at the ordering of
the parameters 𝑎3 and 𝑏2, is an average microscopic
quantity that characterizes the local interaction of a
molecule with its environment. Instead, the volumes
of fluctuons are mesoscopic parameters. The fact that
these volumes are not identical in the general case re-
sults in the mixing of the quantities 𝜎(𝑙) and 𝜎(𝑔) [see
Eq. (11)] and the appearance of the asymmetry pa-
rameter 𝜁𝑓 .

Experimental results testify that the leading sin-
gular components of the CXC diameter for liquids
of various nature have a universal form [see Eq. (3)].
This is also true for substances for which there coexist
two or more types of short-range correlations in the
liquid, and the gas-liquid transition is accompanied
by transformations associated with the evolution of
the short-range ordering of molecules. For instance,
mercury belongs to such substances. More specifi-
cally, the liquid-like fraction of mercury is a mixture
of metallic and semiconducting fluctuons, so that the
gas-liquid transition is accompanied by the insulator–
semiconductor–metal transformations [27]. It is evi-
dent that, in this case, the number of mesoscopic
asymmetry parameters in the effective Hamiltonian
increases with the number of contributing short-
range-order types.

The answer to the question “How effective is the
SCS approach for finding the amplitudes 𝐷2𝛽 and
𝐷1−𝛼 in the case where the number of asymmetry
parameters increases?” is reduced to finding the se-
ries coefficients 𝜇𝑚𝑛 which determine the parameters
𝑎3 and 𝑏2 in Eqs. (8). In Ref. [27], we estimated the
most probable values of the parameters 𝑎3 and 𝑏2. For
this purpose, we fitted the amplitudes 𝐷2𝛽 and 𝐷1−𝛼

by varying the “effective” values of the asymmetry pa-
rameters 𝜁 and 𝜁𝑓 . However, the problem of finding
the coefficients 𝜇𝑚𝑛 for complex fluids remains open.

In order to compare our results of the ordering
of the parameters 𝑎3 and 𝑏2 with those proposed in
Refs. [13,14] at a qualitative level, let us plot the mas-
ter curves 𝑎3 (𝜛

*) and 𝑏2 (𝜛
*) from those works (see

Fig. 3) and compare them with ours (Fig. 2). One
can see that the relation of the parameters 𝑎3 and 𝑏2
with 𝜛* is rather unambiguous at 𝜛* < 0.2, which
corresponds to fluids with large molecular weights. At
𝜛* > 0.2, the unambiguity disappears. At the same

ISSN 2071-0186. Ukr. J. Phys. 2020. Vol. 65, No. 9 807



O. Bakai, M. Bratchenko, S. Dyuldya

Fig. 3. Asymmetry coefficients 𝑎3 and 𝑏2 of the complete scaling model as
functions of “interaction volume”𝜛*. According to the data of Refs. [13, 14]

time, the linear master curves in Figs. 2, 𝑎 and 𝑑 ac-
ceptably put into order the parameters 𝑎3 and 𝑏2 de-
termined from the analysis of experimental data. This
circumstance gives us the reason to conclude that the
mesoscopic asymmetry parameters are responsible for
the amplitudes 𝐷2𝛽 and 𝐷1−𝛼 of the leading singu-
lar components of the CXC diameter. As an exam-
ple, here are the values of the mesoscopic asymme-
try parameters 𝜁 and 𝜁𝑓 determined using the linear
master curves (Fig. 2) for ethane: 𝜁 = 0.788 and
𝜁𝑓 = −0.025.

The authors are grateful to L.A.Bulavin for valu-
able discussion.

APPENDIX

The expressions for 𝜇𝑚𝑛 in terms of the mesoscopic model
parameters [15] look like

𝜇11 =
2

𝑘𝜁2𝑣𝑐

2− 𝜁𝜁𝑓

1− 𝜁2𝑓

(︃
4− 𝜁𝜁𝑣𝑐

4− 𝜁2

)︃2
+𝑂

(︀
𝑘−2

)︀
, (A.1)

𝜇21 =
4

𝑘𝜁3𝑣𝑐

2− 𝜁𝜁𝑓

1− 𝜁2𝑓

(︃
4− 𝜁𝜁𝑣𝑐

4− 𝜁2

)︃3
×

×
(︂
3𝜁𝑓 + 6

𝜁 − 𝜁𝑣𝑐

4− 𝜁𝜁𝑣𝑐
+

4

𝜁𝑣𝑐

4− 𝜁𝜁𝑣𝑐

4− 𝜁2
𝐷0

)︂
+𝑂

(︀
𝑘−2

)︀
, (A.2)

𝜇30 =
16

𝑘𝜁4𝑣𝑐

2− 𝜁𝜁𝑓

1− 𝜁2𝑓

(︃
4− 𝜁𝜁𝑣𝑐

4− 𝜁2

)︃4
+𝑂

(︀
𝑘−2

)︀
, (A.3)

𝜇40 =
160

𝑘𝜁5𝑣𝑐

2− 𝜁𝜁𝑓

1− 𝜁2𝑓

(︃
4− 𝜁𝜁𝑣𝑐

4− 𝜁2

)︃4
×

×
6
(︁
𝜁 − 𝜁𝑣𝑐

)︁
+ 𝜁𝑓

(︁
4− 𝜁𝜁𝑣𝑐

)︁
4− 𝜁2

+𝑂
(︀
𝑘−2

)︀
, (A.4)

where

𝐷0 = 𝑇c

(︃
𝜅c −

𝜁 − 𝜁𝑣𝑐

4− 𝜁𝜁𝑣𝑐
Δ𝜅c

)︃
−

−
4− 𝜁𝜁𝑣𝑐

4𝜁𝑣𝑐

Δ𝑠c𝑃c

𝑍c

(︃
𝛽c −

𝜁 − 𝜁𝑣𝑐

4− 𝜁𝜁𝑣𝑐
Δ𝛽c

)︃
, (A.5)

�̄�c =
𝜅
(𝑔)
c + 𝜅

(𝑙)
c

2
, Δ𝜅c = 𝜅

(𝑔)
c − 𝜅

(𝑙)
c ,

Δ𝑠c = 𝑠
(𝑔)
c − 𝑠

(𝑙)
c ,

𝛽c =
𝛽
(𝑔)
c + 𝛽

(𝑙)
c

2
, Δ𝛽c = 𝛽

(𝑔)
c − 𝛽

(𝑙)
c .

(A.6)

Here, 𝑠(𝑔,𝑙)c , 𝜅(𝑔,𝑙)
c , and 𝛽

(𝑔,𝑙)
c are the specific entropy, the co-

efficient of thermal expansion, and the compressibility of the
gaseous (𝑔) and liquid (𝑙) fractions of the fluid at the critical
point, respectively.
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ПРО СИНГУЛЯРНIСТЬ ДIАМЕТРА
КРИВОЇ СПIВIСНУВАННЯ РIДИНА–ГАЗ

Р е з ю м е

Метод спрощеного “повного” скейлiнгу Анiсiмова–Ванга до-
зволяє знайти амплiтуди сингулярностей дiаметра кривої
спiвiснування (КС) фаз за коефiцiєнтами розкладання сере-
дньопольової вiльної енергiї за ступенями приведених тем-
ператури i густини в околi критичної точки. Цей метод
застосовано при визначеннi амплiтуд головних критичних
сингулярностей дiаметра КС для плину, що описується ме-
зоскопiчною теорiєю. Згiдно з одержаними результатами,
амплiтуди головних сингулярностей дiаметра КС визнача-
ються мезоскопiчними параметрами асиметрiї гетерофазно-
го плину.
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