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ENERGY FLUX EFFECT
IN THE ONE-DIMENSIONAL SPIN-1

2
𝑋𝑋 MODEL OF MAGNETOELECTRIC.
LAGRANGE MULTIPLIER METHOD

The Lagrange multiplier method is applied to study a nonequilibrium steady state with energy
flux in the one-dimensional spin- 1

2
𝑋𝑋 model of a magnetoelectric with the Katsura–Nagaosa–

Balatsky mechanism at sufficiently low temperatures. With the help of the Jordan–Wigner
transformation, the problem is reduced to that with the Hamiltonian for spinless noninter-
acting fermions and can be solved exactly. A number of phase diagrams are plotted, and the
dependences of the magnetization, electric polarization, and various susceptibilities on the
magnetic and electric fields, as well as on the energy flux, are calculated.
K e yw o r d s: one-dimensional 𝑋𝑋 model, magnetoelectric, nonequilibrium steady states, en-
ergy flux, Lagrange multiplier method.

1. Introduction

1.1. Nonequilibrium steady states

In modern statistical physics, much attention is paid
to the theoretical study of nonequilibrium stationary
processes of various nature that take place in various
systems and models. In particular, the specific fea-
tures of nonequilibrium steady states (NESSs) were
studied in the framework of the nonequilibrium spin-
boson model [1, 2], the simplified model of a sys-
tem of noninteracting electrons (a one-dimensional
chain of fermions consisting of a central part and two
metal thermostats) [2], the electron-hole-photon sys-
tem [3], the finite quantum system of interacting par-
ticles connected to electrodes that are simultaneously
thermostats [4], the quantum wire [5], the system in
which a quantum dot is placed between a metal and
a superconductor or a ferromagnetic contact with op-
posite polarizations [6], the 𝑋𝑋 chain located in a
transverse field and connected to quantum reservoirs
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with noninteracting spins and different temperatures
[7], and the spin models with interactions between
the nearest neighbors and the energy [8–20] or spin
[9, 21–24] current. It should be noted that the main
specific feature of NESSs is the presence of a perma-
nent flux of some physical quantity (energy, magnetic
moment, charge, and so on).

For one-dimensional quantum systems, there are
several methods to study NESSs. In particular, in
works [16–18], the nonequilibrium system with the
energy flux induced by the different temperatures, 𝑇1

and 𝑇2, of two parts of the chain was interpreted –
making use of the effective Hamiltonian – as an equi-
librium system (if the both temperatures do not equal
zero) or as a system in the ground state (if any of
those temperature equals zero). In works [5, 8–14],
the Lagrange multiplier method was used. In this
method, the state stimulated by the energy flux or
the magnetic moment can be approximately gener-
ated as the ground state of the effective ℋ − 𝜆𝒥
Hamiltonian (the Hamiltonian ℋ of the system un-
der consideration is supplemented with a term pro-



Energy Flux Effect

portional to the flux operator 𝒥 ). This method is
based on the fact that, when the flux is an integral
of motion, i.e. [ℋ,𝒥 ] = 0. Then, the steady state can
be described using the generalized Gibbs ensemble
[14,25,26]. It should be noted that, for the systems in
the nonequilibrium steady state in which the energy
flux is induced by thermostats with different tempera-
tures, the Lagrange multiplier method should be only
implemented, when those temperatures are low, and
their difference is small [10, 14].

Let us dwell briefly on the main results obtained
while studying the properties of NESSs in the frame-
work of one-dimensional spin models with energy
flux. In works [8, 9], the main attention was focused
on the study of pair correlation functions in the one-
dimensional Ising model and the 𝑋𝑋 model, both
in the transverse field. It was found that, in the
states with energy flux, the correlations damp ac-
cording to the power law as the distance between the
sites grows. In work [9], it was also shown that the
damping of the 𝑥𝑥 pair correlation function in the
NESS occurs faster than in the state without energy
flux. In work [10], it was established that, in the one-
dimensional 𝑋𝑋 model, if the energy flux is switched
on, the intensity redistribution of the 𝑥𝑥 dynamic
structural factor takes place at low frequencies from
the edge of the Brillouin zone toward its center. Let
us recall that the conclusions made in works [8–10]
are applicable only in the case of very low tempera-
tures, because the studies were carried out on the ba-
sis of the Lagrange multiplier method. The authors of
works [17, 18] used a method that has no restrictions
on the temperatures of the chain parts. In work [17],
it was shown that, in the 𝑋𝑋 model in the trans-
verse field and at low temperatures, the 𝑥𝑥 corre-
lation function damps with the distance according to
the power law. At high temperatures, this correlation
function damps exponentially at long distances and
according to the power law at short ones. In work
[18], the Casimir effect in the quantum spin chain
with two magnetic impurities in the NESS was stud-
ied. It was found that the Casimir force damps ex-
ponentially with the growth of the distance between
those impurities.

A special reference should also be made con-
cerning works [27–30], where systems with energy
flux were considered using the Lagrange multiplier
method. However, they are not directly related to
the study of nonequilibrium stationary processes. In

particular, the properties of the ground state of the
three-cubit one-dimensional 𝑋𝑋 model in the trans-
verse field in the presence of an energy flux were
studied in work [27]. In work [28], the quantum en-
tanglement of two qubits interacting with the 𝑋𝑌
chain with energy flux was considered. The authors
of work [29] studied how the energy flux affects the
motion of the quantum state in the 𝑋𝑋 model in a
homogeneous transverse field. The cited work, simi-
larly to two previous ones, is related to quantum com-
puters. The authors of work [30] considered a one-
dimensional generalized model of a compass, in which
the energy flux is an integral of motion only in par-
ticular cases. The influence of three-particle interac-
tions and the Dzyaloshinsky–Moriya interaction on
the physical characteristics was also studied.

1.2. Magnetoelectric effect

Compounds with the magnetoelectric effect (MEE),
as well as the corresponding quantum spin or elec-
tronic models, continue to be the objects of extensive
researches [31–40]. It should be noted here that, al-
though the MEE was substantiated theoretically [41]
and discovered experimentally [42] in the Cr2O3 com-
pound as long as half a century ago, no microscopic
explanation of this phenomenon has been done for a
long time.

Currently, several mechanisms of the MEE for-
mation in crystals have been proposed (see reviews
[32, 34]). These are the magnetostriction model, the
model of spin-dependent 𝑝-𝑑 hybridization of orbitals,
and the model with the Katsura–Nagaosa–Balatsky
(KNB) mechanism of the coupling between the local-
ized spins (magnetic moments) and the electric bond
polarization [43,44]. In the latter model, the polariza-
tion emerges owing to the displacement of a ligand ion
located between two magnetic ions, with the superex-
change interaction taking place between those mag-
netic particles. Hence, the KNB mechanism is based
on the assertion that the polarization at the bond be-
tween two magnetic ions is proportional to the spin
current between them, which, in the operator repre-
sentation, has the form of the Dzyaloshinsky–Moriya
interaction for a number of spin systems. In this con-
nection, the KNB models of magnetoelectrics are also
often called the models of magnetic current or the in-
verse Dzyaloshinsky–Moriya interaction.

The Katsura–Nagaosa–Balatsky mechanism of the
coupling between the localized magnetic moments
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and the electric polarization of the bond between
them was observed in a number of magnetic com-
pounds, in particular, the one-dimensional magne-
toelectric CuCl2 [45]. In addition, LiCu2O2 [46] and
LiCuVO4 [47] crystals can also be described rather
well in the framework of the one-dimensional KNB
model.

Besides the fundamental importance of the MEE,
it also opens wide opportunities for technological ap-
plications due to the mechanism allowing the control
over the magnetic properties of materials (especially
nanostructured) with the help of an electric field and
vice versa [37, 39, 40, 48, 49], which is the main reason
for a high interest in this effect. Here, we may mention
the development of magnetoelectric-based data carri-
ers that do not need electric currents [50], BiFeO3-
based optical diodes [51], and others. The latter ex-
ample became possible because of the dynamic MEE,
which is applied in a lot of domains [52–54]. In partic-
ular, under the laser action, there arises a spin current
in magnetoelectrics because, according to the Flo-
quet theory, strong periodic fields generate additional
terms in the Hamiltonian, which allow the magneto-
electric bond to be dynamically controlled [52]. Such
a spin current can be detected using opto-spintronic
devices. Another interesting phenomenon is the dy-
namic phase transitions induced by ultrashort peri-
odic pulsations of the electric field [54].

There are a few rigorous results for magnetoelec-
tric systems, and, as far as we know, all they were
obtained in the framework of one-dimensional mod-
els [55–60] or for two-dimensional decorated lattices
[61]. A quantum spin-1/2 𝑋𝑋𝑍 chain with the KNB
mechanism of the coupling between magnetization
and electric polarization was cosidered in work [55],
where, in particular, the magnetization, electric po-
larization, and magnetoelectric tensor were analyzed
as functions of the electric and magnetic fields. It
was found that such a simple model does not predict
the so-called nontrivial magnetoelectric effect, when
only the electric (magnetic) field can induce the mag-
netization (electric polarization). This phenomenon
can be described, only if additional interactions in
the system are made allowance for. For instance, the
above-mentioned nontrivial MEE is realized in the
𝑋𝑋 KNB chain with three-spin interactions [56].

Recently, the effect of a geometry change in the
case of the 𝑋𝑋 magnetoelectric with the KNB mech-
anism in the zigzag chain [57] and the influence of the

anisotropy on the magnetoelectric properties of the
one-dimensional 𝑋𝑌 KNB model [58] have been stud-
ied. Additionally, exact results were obtained in work
[59] for the KNB magnetoelectric on a ladder with
the Ising and Heisenberg interactions in the chains
and between them, respectively. A special mention
should also be made of the one-dimensional model
of a quantum compass, which was generalized to the
case of the magnetoelectric with the KNB mechanism
and solved exactly [60].

1.3. Formulation of the problem

In this research carried out in the framework of the
Lagrange multiplier method, the influence of an en-
ergy flux on the parameters of the one-dimensional
spin- 12 𝑋𝑋 model for the magnetoelectric in a non-
equilibrium steady state in the electric and transverse
magnetic fields is considered. The coupling of local-
ized spins with the electric polarization of the bond is
described in this model using the Katsura–Nagaosa–
Balatsky mechanism. The energy flux can be induced,
for example, by thermostats at the chain ends. The
main attention is focused on the analysis of phase di-
agrams, as well as the dependences of the electrical
polarization and susceptibilities (magnetic, electric,
and magnetoelectric ones) on the fields and the en-
ergy flux.

Recall that the Lagrange multiplier method is per-
tinent to describe the NESS with a permanent energy
flux in the case where the edges of the system are con-
nected to thermostats with different and rather low
temperatures. This method is based on the fact that
such a nonequilibrium state with a permanent energy
flux can be described by the generalized Gibbs distri-
bution e−𝛽(ℋ−𝜆𝒥 ℰ), where 𝛽 is the average value of
the inverse temperatures of the tanks contacting with
the chain edges, ℋ is the chain Hamiltonian, 𝒥 ℰ is
the energy flux operator, and 𝜆 is the field generating
this flux [14].

It should be noted that the magnetoelectric model
under consideration is integrable. In integrated mod-
els, the Fourier law is not obeyed, and the energy flux
is not proportional to the temperature gradient in the
spin chain [10, 62]. This circumstance may be associ-
ated with the fact that, in such systems, the energy
flux is an integral of motion and, as a consequence,
the thermal conductivity coefficients are anomalous
[63, 64].
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2. One-Dimensional Spin-1
2

𝑋𝑋 Model of Magnetoelectric

A one-dimensional spin- 12 𝑋𝑋 model of a magneto-
electric in the electric field directed perpendicularly
to the 𝑧-axis [E = (𝐸𝑥, 𝐸𝑦, 0)] and in a transverse
magnetic field [h = (0, 0, ℎ𝑧)] is considered. The cou-
pling of the electric polarization p𝑗,𝑗+1 of the bond
connecting the spins S𝑗 and S𝑗+1 with those local-
ized magnetic moments is described by the Katsura–
Nagaosa–Balatsky mechanism [43]:

p𝑗,𝑗+1 = 𝛾e𝑗,𝑗+1 × S𝑗 × S𝑗+1. (1)

Here, e𝑗,𝑗+1 is a unit vector oriented from the 𝑗-th site
to the (𝑗+1)-th one, and 𝛾 is the coupling coefficient
between the electric polarization and the spin cur-
rent operator. In what follows, for simplicity, we put
𝛾 = 1. Since the chain is oriented along the 𝑥-axis,
i.e. e𝑗,𝑗+1 = (1, 0, 0), the chosen configuration of the
fields ensures the problem integrability (the magne-
toelectric with the energy flux taken into account on
the basis of the Lagrange multiplier method).

The Hamiltonian of the one-dimensional 𝑋𝑋 mag-
netoelectric with the chosen fields h and E has the
form [55–57, 65]

ℋME =

𝑁∑︁
𝑗=1

[︁
− ℎ𝑆𝑧

𝑗 + ℐ(𝑆𝑥
𝑗 𝑆

𝑥
𝑗+1 + 𝑆𝑦

𝑗 𝑆
𝑦
𝑗+1)−

−𝐸(𝑆𝑦
𝑗 𝑆

𝑥
𝑗+1−𝑆𝑥

𝑗 𝑆
𝑦
𝑗+1)

]︁
, (2)

where ℎ = ℎ𝑧 is the external transverse magnetic
field, ℐ is the superexchange interaction, 𝐸 = 𝐸𝑦

is the 𝑦-component of the external electric field,

𝑝𝑗,𝑗+1 = 𝑝𝑦𝑗,𝑗+1 ≡ 𝑆𝑦
𝑗 𝑆

𝑥
𝑗+1−𝑆𝑥

𝑗 𝑆
𝑦
𝑗+1

is the operator of the 𝑦-component of the bond elec-
trical polarization.

Recall that the quantity 𝑆𝑦
𝑗 𝑆

𝑥
𝑗+1−𝑆𝑥

𝑗 𝑆
𝑦
𝑗+1 is the 𝑧-

component of the Dzyaloshinsky–Moriya interaction
[66, 67] in the operator form. Various models with it
have been studied for decades [68–75] including the
case where it is regularly variable [76, 77]. It should
be noted that, for the one-dimensional spin-1/2 𝑋𝑌
chain in a transverse field with the homogeneous
Dzyaloshinsky–Moriya interaction directed along the
𝑧-axis, an exact result was obtained as long ago as in
1965 in work [68] on the basis of the one-dimensional
Jordan–Wigner transformation.

3. Nonequilibrium Steady States

To study the nonequilibrium states of a magnetoelec-
tric (2) with the stationary energy flux, the Lagrange
multiplier, 𝜆, method for quantum systems can be ap-
plied [8–14]. For instance, at the temperature 𝑇 → 0,
such a steady state corresponds to the state with the
lowest energy for model (2) with the given energy
flux. In other words, we need to calculate the ground
state of the following effective Hamiltonian:

ℋℰ = ℋME − 𝜆𝒥 ℰ , (3)

where 𝒥 ℰ is the so-called macroscopic energy flux,
and the Lagrange multiplier 𝜆 is an effective field that
governs this flux.

The local energy flux 𝐽ℰ
𝑗 , which contributes from

the 𝑗-th spin into the “macroscopic” flux
(︀
𝒥 ℰ =

=
∑︀𝑁

𝑗=1 𝐽
ℰ
𝑗

)︀
, is obtained from the continuity equa-

tion for the local energy [8, 63, 64, 78–81],

ḢME
𝑗 = 𝑖[ℋME, 𝐻ME

𝑗 ] = −div𝐽ℰ
𝑗 = 𝐽ℰ

𝑗−1 − 𝐽ℰ
𝑗 . (4)

Here, 𝐻ME
𝑗 is the operator of this local energy, and

we put ~ = 1.
For our problem, the operator 𝐻ME

𝑗 can be selected
in the form

𝐻ME
𝑗 = ℐ(𝑆𝑥

𝑗 𝑆
𝑥
𝑗+1 + 𝑆𝑦

𝑗 𝑆
𝑦
𝑗+1)− ℎ𝑆𝑧

𝑗 −
−𝐸(𝑆𝑦

𝑗 𝑆
𝑥
𝑗+1 − 𝑆𝑥

𝑗 𝑆
𝑦
𝑗+1). (5)

Note, firstly, that this is not the only way to select
the local energy operator that provides the fulfill-
ment of the continuity equation (4). Secondly, the
correct choice of 𝐻ME

𝑗 (i.e., it provides the fulfill-
ment of Eq. (4)) does not affect the final result for
the “macroscopic” energy flux.

On the basis of Eqs. (4) and (5), we obtain the
following local energy flux operator:

𝐽ℰ
𝑗 = ℎ𝐸(𝑆𝑥

𝑗 𝑆
𝑥
𝑗+1 + 𝑆𝑦

𝑗 𝑆
𝑦
𝑗+1)+

+ℎℐ(𝑆𝑦
𝑗 𝑆

𝑥
𝑗+1 − 𝑆𝑥

𝑗 𝑆
𝑦
𝑗+1)+

+2𝐸ℐ(𝑆𝑥
𝑗 𝑆

𝑧
𝑗+1𝑆

𝑥
𝑗+2 + 𝑆𝑦

𝑗 𝑆
𝑧
𝑗+1𝑆

𝑦
𝑗+2)+

+ (𝐸2 − ℐ2)(𝑆𝑥
𝑗 𝑆

𝑧
𝑗+1𝑆

𝑦
𝑗+2 − 𝑆𝑦

𝑗 𝑆
𝑧
𝑗+1𝑆

𝑥
𝑗+2). (6)

Hence, Hamiltonian (3) can be written in the form

ℋℰ =

𝑁∑︁
𝑗=1

[︁
− ℎ𝑆𝑧

𝑗 + ℐ̃(𝑆𝑥
𝑗 𝑆

𝑥
𝑗+1 + 𝑆𝑦

𝑗 𝑆
𝑦
𝑗+1)−

− �̃�(𝑆𝑦
𝑗 𝑆

𝑥
𝑗+1 − 𝑆𝑥

𝑗 𝑆
𝑦
𝑗+1)+
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+ �̃�(𝑆𝑥
𝑗−1𝑆

𝑧
𝑗 𝑆

𝑥
𝑗+1 + 𝑆𝑦

𝑗−1𝑆
𝑧
𝑗 𝑆

𝑦
𝑗+1)+

+ �̃�(𝑆𝑥
𝑗−1𝑆

𝑧
𝑗 𝑆

𝑦
𝑗+1 − 𝑆𝑦

𝑗−1𝑆
𝑧
𝑗 𝑆

𝑥
𝑗+1)

]︁
, (7)

where the following notations were introduced:

ℐ̃ = ℐ − 𝜆ℎ𝐸, �̃� = 𝐸 + 𝜆ℎℐ,

�̃� = −2𝜆𝐸ℐ, �̃� = −𝜆(𝐸2 − ℐ2).

It should be noted that the spin chains in which, in
addition to two-spin interactions between the near-
est neighbor sites, there are three-spin interactions
between the next after the nearest sites have been
studied theoretically for several decades. One of the
first works, where the so-called modified 𝑋𝑋𝑍 model
with competing interactions whose Hamiltonian is the
sum of two integrals of motion was considered, is
[82]. One of the integrals of motion is the well-known
𝑋𝑋𝑍 chain, and another one is the chain with only
three-spin interactions. It should be noted that the
latter integral of motion is nothing else but the en-
ergy flux operator for the ordinary one-dimensional
𝑋𝑋𝑍 model (see, e.g., work [83]). Similar zigzag lad-
ders with competing interactions between the nearest
and the next after the nearest neighbors were studied
in works [83–87] and many others.

4. Result of the Jordan–Wigner
Fermionization

The effective Hamiltonian (7) with energy flux has the
same two- and three-spin terms as in work [56]. The-
refore, we can immediately write down the final
result obtained after the one-dimensional Jordan–
Wigner transformation (see works [65, 88–90]) and,
after changing to the momentum space,

ℋℰ =
∑︁

−𝜋≤𝑘<𝜋

Λ𝑘

(︂
𝑛𝑘 − 1

2

)︂
. (8)

Here, 𝑘 belongs to the first Brillouin zone, 𝑛𝑘 = 𝑐†𝑘𝑐𝑘,
𝑐†𝑘 and 𝑐𝑘 are the creation and annihilation operators,
respectively, of spinless fermions, and the spectrum is
determined as follows:

Λ𝑘 = −ℎ+ ℐ̃ cos 𝑘 − �̃� sin 𝑘 − �̃�

2
cos(2𝑘)+

+
�̃�

2
sin(2𝑘). (9)

In the thermodynamic limit and on the basis of
Eq. (8), it is easy to calculate the energy of the ground
state per one site,

𝑒0 =
⟨ℋℰ⟩
𝑁

= − 1

4𝜋

𝜋∫︁
−𝜋

𝑑𝑘|Λ𝑘|, (10)

and, on the basis of Eq. (10), the energy flux at
𝑇 → 0,

⟨𝐽ℰ⟩= ⟨𝒥 ℰ⟩
𝑁

= −𝜕𝑒0
𝜕𝜆

= − 1

4𝜋

𝜋∫︁
−𝜋

𝑑𝑘 sgn(Λ𝑘)𝑔𝑘, (11)

where the notation

𝑔𝑘 = ℎ𝐸 cos 𝑘 + ℎℐ sin 𝑘−

−𝐸ℐ cos(2𝑘) +
𝐸2 − ℐ2

2
sin(2𝑘) (12)

was introduced.
The magnetization and electrical polarization (per

one site) at the zero temperature can be obtained,
e.g., as follows:

𝑚 ≡ lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑗=1

⟨𝑆𝑧
𝑗 ⟩ =

1

2𝜋

𝜋∫︁
−𝜋

𝑑𝑘

(︂
⟨𝑛𝑘⟩ −

1

2

)︂
=

= − 1

4𝜋

𝜋∫︁
−𝜋

𝑑𝑘 sgn(Λ𝑘), (13)

𝑝 ≡ lim
𝑁→∞

1

𝑁

𝑁∑︁
𝑗=1

⟨𝑝𝑗,𝑗+1⟩ =
1

2𝜋

𝜋∫︁
−𝜋

𝑑𝑘 ⟨𝑛𝑘⟩ sin 𝑘 =

= − 1

4𝜋

𝜋∫︁
−𝜋

𝑑𝑘 sgn(Λ𝑘) sin 𝑘. (14)

In our study, the independent parameters of the
problem are the energy flux (rather than 𝜆; see, e.g.,
work [9] and Appendix), the superexchange inter-
action, and the magnetic and electric fields. In this
case, the spectrum of elementary excitations (9) is
given parametrically: Λ𝑘 = Λ(𝑘, 𝜆, ℐ, ℎ, 𝐸), where
𝜆 = 𝜆(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸) is an implicitly determined func-
tion (see Eq. (11)). Accordingly, other physical char-
acteristics will also be determined parametrically.

A numerical analysis of spectrum (9) shows that,
depending on the values of the parameters ⟨𝐽ℰ⟩, ℐ, ℎ,
and 𝐸, there can be two or four Fermi points 𝑘F𝜈 . Re-
call (see, e.g., works [85,90,91]) that the points 𝑘F𝜈 are
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the quasimomentum values at which the spectrum of
elementary excitations Λ𝑘 equals zero. Note that if
𝜆, ℐ, ℎ, and 𝐸 are independent parameters, there
can also be two or four Fermi points. However, the
case is also possible, where there is a gap in the spec-
trum [65].

On the basis of relations (9) and (11)–(14), and
taking the presence of Fermi points

𝑘F𝜈(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸) = 𝑘 F
𝜈 (𝜆(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸), ℐ, ℎ, 𝐸),

into account, we obtain the magnetic, 𝜕𝑚
𝜕ℎ , electric

𝜕𝑝
𝜕𝐸 , and two magnetoelectric, 𝜕𝑚

𝜕𝐸 and 𝜕𝑝
𝜕ℎ , suscepti-

bilities at 𝑇 → 0:

𝜕𝑚

𝜕𝜉
=𝜁

∑︁
𝜈

(−1)𝜈
𝜕𝑘F𝜈
𝜕𝜉

, (15)

𝜕𝑝

𝜕𝜉
=𝜁

∑︁
𝜈

(−1)𝜈 sin 𝑘F𝜈
𝜕𝑘F𝜈
𝜕𝜉

. (16)

Here, the summation is carried out over the indices
of all Fermi points, the notation 𝜁 = sgn(Λ𝑘=𝜋)/(2𝜋)
was introduced, and 𝜉 = ℎ or 𝐸 (here and below). We
also present expressions (15) and (16), which are nec-
essary for the calculation of susceptibilities, in the
explicit form,

𝜕𝑘F𝜈
𝜕𝜉

= −
(︂
𝜕Λ𝑘F

𝜈

𝜕𝜉
+

𝜕Λ𝑘F
𝜈

𝜕𝜆

𝜕𝜆

𝜕𝜉

)︂⧸︂(︂
𝜕Λ𝑘

𝜕𝑘

⃒⃒⃒⃒
𝑘=𝑘F

𝜈

)︂
, (17)

𝜕𝜆

𝜕𝜉
= −

[︂
1

4𝜋

𝜋∫︁
−𝜋

𝑑𝑘 sgn(Λ𝑘)
𝜕𝑔𝑘
𝜕𝜉

+

+ 𝜁
∑︁
𝜈

(−1)𝜈𝑔𝑘F
𝜈

(︂
𝜕Λ𝑘F

𝜈

𝜕𝜉

)︂⧸︂(︂
𝜕Λ𝑘

𝜕𝑘

⃒⃒⃒⃒
𝑘=𝑘F

𝜈

)︂]︂
×

×
[︂
𝜁
∑︁
𝜈

(−1)𝜈𝑔𝑘F
𝜈

(︂
𝜕Λ𝑘F

𝜈

𝜕𝜆

)︂⧸︂(︂
𝜕Λ𝑘

𝜕𝑘

⃒⃒⃒⃒
𝑘=𝑘F

𝜈

)︂]︂−1

, (18)

𝜕Λ𝑘

𝜕ℎ
= −1− 𝜆(𝐸 cos 𝑘 + ℐ sin 𝑘),

𝜕Λ𝑘

𝜕𝐸
= 𝜆[ℐ cos(2𝑘)− 𝐸 sin(2𝑘)− ℎ cos 𝑘]− sin 𝑘,

𝜕Λ𝑘

𝜕𝜆
= −ℎ(𝐸 cos 𝑘 + ℐ sin 𝑘) + ℐ𝐸 cos(2𝑘)−

− (𝐸2 − ℐ2) sin(2𝑘)/2,
𝜕Λ𝑘

𝜕𝑞
= −ℐ̃ sin 𝑘 − �̃� cos 𝑘 + �̃� sin(2𝑘) + �̃� cos(2𝑘),

𝜕𝑔𝑘
𝜕ℎ

= 𝐸 cos 𝑘 + ℐ sin 𝑘,

𝜕𝑔𝑘
𝜕𝐸

= ℎ cos 𝑘 − ℐ cos(2𝑘) + 𝐸 sin(2𝑘).

5. Results of Numerical Researches

In this section, the attention will be focused on the
study of the dependences of the magnetization, elec-
tric polarization, and susceptibilities on the magnetic
and electric fields, as well as on the energy flux. Since

∙ the fields ℎ and 𝐸 can be scaled by the interaction
magnitude |ℐ|, the energy flux ⟨𝐽ℰ⟩ = 1

𝑁 ⟨𝒥 ℰ⟩ by the
ℐ 2-value, and the Lagrange multiplier 𝜆 by the value
of 1/|ℐ |;

∙ ⟨𝐽ℰ⟩ is an even function of both the fields and in-
teraction; the magnetization is an even function of 𝐸
and ℐ, and an odd function of ℎ; and the polarization
has the following properties at a fixed energy flux:

𝑝(ℐ, ℎ, 𝐸) = 𝑝(−ℐ,−ℎ,𝐸) = −𝑝(ℐ,−ℎ,−𝐸),

then, without losing the generality, we may put ℐ =
= −1 and confine the consideration to positive mag-
netic fields ℎ ≥ 0 for an arbitrary 𝐸, or vice versa,
for positive electric fields 𝐸 ≥ 0 for an arbitrary ℎ.

Note that we carry out a theoretical study of the
influence of the energy flux on the characteristics of
the spin- 12 𝑋𝑋 model of the magnetoelectric with the
KNB mechanism in the framework of the Lagrange
multiplier method. Therefore, for the completeness of
the picture, the values of ⟨𝐽ℰ⟩ will be analyzed in a
rather wide interval.

5.1. Phase diagrams

Similarly to what was done in work [9], we will distin-
guish three different phases in the gapless spin fluid:
nonmagnetic (𝑚 = 0) phase I with four Fermi points,
and magnetically ordered (𝑚 ̸= 0) phases II and
III with four and two Fermi points, respectively. The
phase transitions between those phases can only be
of the second kind. The difference between magnet-
ically ordered phases II and III will be clarified in
more details, when analyzing the field dependences of
the magnetization, electric polarization, and suscep-
tibilities.

Figures 1 to 3 exhibit the phase diagrams in the
planes (|ℎ|, ⟨𝐽ℰ⟩), (|𝐸|, ⟨𝐽ℰ⟩), and (|𝐸|, |ℎ|), respec-
tively. Figure 1 demonstrates how the (|ℎ|, ⟨𝐽ℰ⟩) dia-
grams change with the variation of the electric field.
They are qualitatively identical at any 𝐸-value and
have a topology similar to that given and analyzed
in work [9] for the 𝑋𝑋 model in the transverse mag-
netic field. All three phases are present in those phase
diagrams. The boundary between phases II and III is
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Fig. 1. Phase diagrams in the plane “magnetic field
magnitude–energy flux” at various electric field magnitudes:
|𝐸| = 0.5 and 2. Also shown are the curves that correspond
to the maximum achievable energy flux ⟨𝐽ℰ

max⟩, with no states
above them. The diagram for 𝐸 = 0 can be seen in work [9],
where it was shown that the transition between the magneti-
cally ordered phases II and III occurs at

⃒⃒
ℎII→III
𝑐

⃒⃒
= 1

a vertical segment. Besides the curves corresponding
to the I → II and II → III phase transitions and con-
verging at a point of the “triple point” (TP) kind,
the phase diagrams contain curves corresponding to
the maximum achievable energy flux ⟨𝐽ℰ

max(|ℎ|, |𝐸|)⟩
(see work [9]). There are no states above those curves,
because states with energy fluxes larger than ⟨𝐽ℰ

max⟩
cannot be realized at the given magnetic and elec-
tric fields (see work [65] and Appendix). It should be
noted that the “triple point” is not a classical triple
point in this problem, because it lies on a curve that
outlines the area, where the states do not exist.

It is also worth noting that the curves correspond-
ing to the I → II phase transition in the (|ℎ|, ⟨𝐽ℰ⟩)
diagrams are superimposed on one another at dif-
ferent electric field values. Furthermore, the smaller
|𝐸|, the “shorter” this curve. Thus, the coordinates

Fig. 2. Phase diagrams in the plane “electric field magnitude–
energy flux” at various magnetic field magnitudes: |ℎ| = 0.5, 1,

and 2. Also shown are the curves that correspond to the maxi-
mum achievable energy flux ⟨𝐽ℰ

max⟩, with no states above them

(ℎI→II
𝑐 , ⟨𝐽ℰ⟩I→II

𝑐 ) of the transition points between
phases I and II do not depend on the electric field
value.

For the phase diagrams in the (|𝐸|, ⟨𝐽ℰ⟩) plane,
there are three different topologies (see Fig. 2). In
particular, in the diagrams for |ℎ| < 1, the curve
(boundary) between phases I and II does not intersect
the curve corresponding to the maximum achievable
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Fig. 3. Phase diagrams in the plane “electric field magnitude–magnetic field magnitude” at various energy
flux values: ⟨𝐽ℰ⟩ = 0.05, 0.2, 1/𝜋, and 0.5. Also shown are the curves at every point of which the maximum
achievable energy flux ⟨𝐽ℰ

max⟩ is equal to the corresponding given flux value ⟨𝐽ℰ⟩ = 0.2, 1/𝜋, 0.5. There are
no states below those curves

flux, whereas, at |ℎ| = 1, those curves converge at
the point 𝐸 = 0, ⟨𝐽ℰ⟩ = 1/𝜋. In contrast to the cases
with |ℎ| ≤ 1, in the phase diagrams for |ℎ| > 1, there
are phase III and the “triple point”. This TP shifts
toward larger |𝐸| and ⟨𝐽ℰ⟩ as |ℎ| grows. It should be
noted that the lines corresponding to the phase tran-
sitions between phases II and I (III) are horizontal
(vertical).

The phase diagrams in the (|𝐸|, |ℎ|) plane can pos-
sess four different topologies (see Fig. 3). If ⟨𝐽ℰ⟩ <
< 1/𝜋, the curves separating phases I, II, and III
do not intersect, and only if ⟨𝐽ℰ⟩ < 1/(2𝜋), there
are no areas without states in the diagrams. Already
in the case ⟨𝐽ℰ⟩ = 1/𝜋, there exists a “triple point”
with the coordinates (𝐸TP=0, |ℎTP|=1). As the en-
ergy flux increases, this “triple point” shifts toward
larger |𝐸| and |ℎ| (see the curves for ⟨𝐽ℰ⟩ = 1/𝜋
and 0.5 in Fig. 3). It should be noted that the coor-

dinates (𝐸II→III
𝑐 , ℎII→III

𝑐 ) of the transition point be-
tween phases II and III do not depend on ⟨𝐽ℰ⟩, ex-
cept for the case ⟨𝐽ℰ⟩ > 1/𝜋 where the transition
curve between the mentioned phases begins from the
“triple point”. In other words, the curve correspond-
ing to the II → III phase transitions at ⟨𝐽ℰ⟩ = 0.5 is
superimposed on the corresponding curves at ⟨𝐽ℰ⟩ =
= 0.05, 0.2, and 1/𝜋 (it can be seen in Fig. 3).

5.2. Magnetization and electric polarization

Now, let us consider the behavior of the magneti-
zation 𝑚 and the electric polarization 𝑝, when the
model parameters ℎ, 𝐸, and ⟨𝐽ℰ⟩ change. Figures 4
to 6 depict almost all possible (qualitatively differ-
ent) dependences of 𝑚 and 𝑝 on the magnetic and
electric fields, as well as on the energy flux. It should
be marked at once that, in our study, we did not
consider cases where at least one of the |ℎ|, |𝐸|, or
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Fig. 4. Dependences of the magnetization 𝑚 and the electric polarization 𝑝 on the magnetic field for
various values of the energy flux and the electric field. The upper, middle, and lower figures correspond to
⟨𝐽ℰ⟩ = 0.05, 0.2, and 0.5, respectively

⟨𝐽ℰ⟩ parameters is infinitely large. It is clear from
the figures that, at the phase transition points, both
the magnetization and the electric polarization de-
pendences have cusps. Only the cusps corresponding
to the transition between phases II and III in the de-
pendences 𝑝(ℎ) in the case of electric fields close to
zero are weakly pronounced (see Fig. 4).

It should be noted that the effective Hamiltonian
(7) contains terms describing three-spin interactions
𝑋𝑍𝑌 − 𝑌 𝑍𝑋 and 𝑋𝑍𝑋 + 𝑌 𝑍𝑌 , which lead to the
spontaneous magnetization in the models considered
in works [56, 85, 92] even in the absence of the mag-
netic field, as well as to the spontaneous electric po-
larization in the model studied in work [56] even in
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Fig. 5. Dependences of the magnetization 𝑚 and the electric polarization 𝑝 on the electric field for various
values of the energy flux and the magnetic field. The upper and lower figures correspond to ⟨𝐽ℰ⟩ = 0.05

and 0.5, respectively

the zero electric field. Due to those effects, as well
as because the quantities ℎ and 𝐸 in our problem
are included in a certain way into �̃�, �̃�, ℐ̃, and �̃�,
the dependences 𝑝(ℎ) and 𝑝(𝐸) are asymmetric. At
the same time, the dependences 𝑚(ℎ) and 𝑚(𝐸) are
symmetric (see Figs. 4 and 5).

At sufficiently low values of the energy flux (e.g.,
⟨𝐽ℰ⟩ = 0.05, see Figs. 1, 3, and 4), the system demon-
strates a cascade of four phase transitions III → II →
→ I → II → III with the change of ℎ at any 𝐸,
and the behavior of the dependence 𝑝(ℎ) in phase
II is drastically different in the cases of positive and
negative ℎ. In particular, for positive magnetic field
values, the electric polarization in phase II can be a
nonmonotonic function of ℎ with one maximum, or
a monotonically increasing function of ℎ in the case
where the electric field is close to zero. At the same
time, if ℎ < 0, the dependence 𝑝(ℎ) can only be a
monotonically increasing function in the phase-II re-
gion at any value of the electric field. It should also

be noted that if ⟨𝐽ℰ⟩ = 0.05, the electric polarization
in the magnetically disordered phase I can only be a
decreasing function of ℎ.

If ⟨𝐽ℰ⟩ = 0.2 (see Figs. 1, 3, and 4), then, in con-
trast to the case ⟨𝐽ℰ⟩ = 0.05, the given value of the
energy flux (⟨𝐽ℰ⟩ = 0.2) cannot be achieved at the
low ℎ and 𝐸 fields (as was said above), i.e. there is a
region with no states. Therefore, when ℎ grows, the
system undergoes a cascade of four phase transitions
III → II → I → II → III, only if 𝐸 > 0.5066, whereas,
at lower electric field values, we have two cascades of
two transitions, III → II → I and I → II → III. In
phase II, the 𝑝(ℎ) dependences at various 𝐸 are simi-
lar to the corresponding dependences at ⟨𝐽ℰ⟩ = 0.05:
the electrical polarization in phase II at the positive
ℎ can be an increasing or nonmonotonic function of
the magnetic field, whereas, at ℎ < 0, it can only be
monotonically increasing. In phase I, the behavior of
𝑝(ℎ) in the case ⟨𝐽ℰ⟩ = 0.2 differs from the corre-
sponding behavior at ⟨𝐽ℰ⟩ = 0.05. In particular, the
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Fig. 6. Dependences of the magnetization 𝑚 and the electric polarization 𝑝 on the energy flux for various
magnetic field values. The figures for 𝑚 and 𝑝 correspond to the cases |𝐸| = 2 and 𝐸 = 2, respectively

electric polarization is a decreasing function of ℎ in
this magnetically disordered phase only at large and
very small values of the electric field. At the same
time, e.g., at 𝐸 = 0.1, 0.4, and 0.5, it is a decreas-
ing function of the magnetic field in the nonmagnetic
phase only if ℎ < 0, whereas 𝑝(ℎ) is a nonmonotonic
function with one maximum, if ℎ > 0.

In the case of large energy flux values – e.g., ⟨𝐽ℰ⟩ =
0.5 (see Figs. 1, 3, and 4) – there is a cascade of
four phase transitions III → II → I → II → → III
in the system, as ℎ increases at 𝐸 > 1.4634, and
two cascades of phase transitions III → II → I and
I → II → III at 𝐸TP < 𝐸 < 1.4634 (𝐸TP = 0.7555),
whereas, at 𝐸 < 𝐸TP, the system can be only in phase
III. The electric polarization in phase II for negative
ℎ is a monotonically increasing function of the mag-
netic field for an arbitrary 𝐸 (similarly to the cases
⟨𝐽ℰ⟩ = 0.05 and 0.2 described above). At the same
time, in contrast to the cases ⟨𝐽ℰ⟩ = 0.05 and 0.2, the
polarization 𝑝(ℎ) in phase II at ℎ > 0 can only be a
monotonically decreasing function, if the energy flux
values are large. In the magnetically disordered phase
I, the polarization behavior at ⟨𝐽ℰ⟩ = 0.5 also differs
from the corresponding behavior both at ⟨𝐽ℰ⟩ = 0.05
and 0.2. In particular, for 𝐸 = 2, 1.5, and 1.463, the
polarization 𝑝(ℎ) is a nonmonotonic function with one
minimum, and, for 𝐸 = 1.25 and 1, it is monotoni-
cally decreasing (increasing) in regions I, if ℎ < 0
(ℎ > 0).

All the aforesaid about the polarization depen-
dences on the magnetic field in the nonmagnetic (I)
and magnetically ordered (II) phases concerns only
the cases of finite 𝐸 ≥ 0. The behavior of 𝑝(ℎ)

at finite negative 𝐸 can be seen from the property
𝑝(ℐ, ℎ, 𝐸) = −𝑝(ℐ,−ℎ,−𝐸), which takes place, if the
energy flux is fixed.

At the same time, in the magnetically ordered
phase III, in contrast to phases I and II, the
polarization dependence on the magnetic field is
unambiguous at any finite values of the energy flux
and the electric field 𝐸 (irrespective of its sign): 𝑝(ℎ)
is a monotonically increasing function for both posi-
tive and negative ℎ. It should be noted that, only in
this magnetic phase III, the electric polarization is an
even function of the electric field, (𝑝(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸) =
= 𝑝(⟨𝐽ℰ⟩, ℐ, ℎ,−𝐸)). This can be seen in Fig. 4,
if we recall the property 𝑝(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸) =
= −𝑝(⟨𝐽ℰ⟩, ℐ,−ℎ,−𝐸). But this behavior will be
demonstrated more clearly below, when analyzing
the dependences of 𝑝 on 𝐸 (Fig. 5).

Note that, for the given electric field and the ener-
gy flux at the region boundary with no states, we
have 𝑝(ℎ) = −𝑝(−ℎ). This can be seen in Fig. 4 for
⟨𝐽ℰ⟩ = 0.2 at 𝐸 = 0, 0.1, 0.4, and 0.5, and for
⟨𝐽ℰ⟩ = 0.5 at 𝐸 = 0, 0.5, 1, and 1.25. In the case
where the system is in phase III (⟨𝐽ℰ⟩ = 0.5, 𝐸 = 0
and 0.5), this relationship can be explained, in partic-
ular, on the basis of the property 𝑝(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸) =
= −𝑝(⟨𝐽ℰ⟩, ℐ,−ℎ,−𝐸) and the fact that the polar-
ization is an even function of the electric field in this
phase III.

The dependences of the magnetization on the mag-
netic field are rather trivial for any ⟨𝐽ℰ⟩. In the mag-
netically ordered phases II and III, the dependence
𝑚(ℎ) is an increasing function. It is worth noting the
magnetization dependence in the case of large ⟨𝐽ℰ⟩
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Fig. 7. Dependences of the magnetic, 𝜕𝑚/𝜕ℎ, and magnetoelectric, 𝜕𝑝/𝜕ℎ, susceptibilities on the magnetic
field for various values of the energy flux and the electric field. The upper, middle, and lower figures
correspond to ⟨𝐽ℰ⟩ = 0.05, 0.2, and 0.5, respectively

and at the electric field values, when the system can
only be in phase III (see Fig. 4, ⟨𝐽ℰ⟩ = 0.5, 𝐸 = 0
and 0.5). At large and growing |ℎ|, the magnetization
gradually saturates. Near the boundary of the region
with no states, 𝑚(ℎ) increases drastically with ℎ and
goes to zero at the boundary of this region. Looking
ahead, it should be noted that the behavior 𝑚 → 0

at the boundary of the region without states can also
be seen in Fig. 5 (for ⟨𝐽ℰ⟩ = 0.5 at ℎ = 1.3 and 1.5)
and in Fig. 6 (for |𝐸| = 0.5 at |ℎ| = 1.5 and 2, as well
as for |𝐸| = 2 at |ℎ| = 2.5 and 3).

The behavior of the dependences 𝑚(𝐸) and 𝑝(𝐸)
in various phases and at various phase transitions is
illustrated in Fig. 5 (see also Figs. 2 and 3). In the
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Fig. 8. Dependences of the magnetoelectric, 𝜕𝑚/𝜕𝐸, and electric, 𝜕𝑝/𝜕𝐸, susceptibilities on the electric
field for various values of the energy flux and the magnetic field. The upper and lower figures correspond
to ⟨𝐽ℰ⟩ = 0.05 and 0.5, respectively

nonmagnetic phase I and the magnetically ordered
phase II, the electric polarization increases with the
electric field at both negative and positive 𝐸 (with
𝑝 → ±1/𝜋 at 𝐸 → ±∞ and provided that all other
model parameters are finite). At the same time, in
phase III, the dependence 𝑝(𝐸) is a decreasing func-
tion at 𝐸 < 0 and an increasing one at 𝐸 > 0, since
the polarization in phase III is an even function of
𝐸. From the aforesaid, it is clear that, at the point of
the II → III phase transition and the negative elec-
tric field values, 𝑝(𝐸) has a cusp and a maximum,
whereas, at the point of the III → II phase transition
and positive fields 𝐸, the polarization has a cusp, but
not an extremum. It is of interest that, for the given
magnetic field and the energy flux at the boundary of
the region without states, the relation 𝑝(𝐸) = 𝑝(−𝐸)
is obeyed, not only when the system is in phase III
(where the polarization is an even function of 𝐸), but
also in phase I (see Fig. 5; for ⟨𝐽ℰ⟩ = 0.5 at ℎ = 1.3,
1.5, and 0.1).

Now, let us dwell very briefly on the dependence
𝑚(𝐸). Since it is an even function of the electric field,
it is sufficient to confine its consideration to posi-
tive 𝐸-values. In this case, with the increasing electric
field, the magnetization decreases in phase II and, on
the contrary, increases in phase III.

All the aforesaid about the magnetization and po-
larization dependences on the electric field concerns
only the cases of finite ℎ ≥ 0. The behavior of
𝑚(𝐸) and 𝑝(𝐸) at finite negative ℎ can be seen from
the properties 𝑚(ℐ, ℎ, 𝐸) = −𝑚(±ℐ,−ℎ,±𝐸) and
𝑝(ℐ, ℎ, 𝐸) = −𝑝(ℐ,−ℎ,−𝐸), which are obeyed pro-
vided that the energy flux is fixed.

Finally, let us consider the dependences of the mag-
netization, 𝑚(⟨𝐽ℰ⟩), and the electrical polarization,
𝑝(⟨𝐽ℰ⟩)), at finite ℎ and 𝐸 (see Fig. 6, as well as
Fig. 1 and 2). At rather large magnetic fields (e.g.,
at |ℎ| > 2.236 for |𝐸| = 2), the system is in the
magnetically ordered phase III within the whole in-
terval ⟨𝐽ℰ⟩ ∈ [0, ⟨𝐽ℰ

max⟩] where the states exist. At

902 ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10



Energy Flux Effect

lower |ℎ|-values and the increasing energy flux until
⟨𝐽ℰ⟩ < ⟨𝐽ℰ

max⟩, the phase transition from the magnet-
ically ordered phase II to the magnetically disordered
phase I takes place. In phases II and III, the depen-
dence 𝑝(⟨𝐽ℰ⟩) is almost a linear function: decreasing
at positive magnetic fields and increasing at nega-
tive ones. In those magnetically ordered phases, the
following property for the polarization takes place, if
the electric field is fixed: 𝑝(⟨𝐽ℰ⟩, ℎ) = −𝑝(⟨𝐽ℰ⟩,−ℎ)+
+2𝑝(0, |ℎ|), with the value 𝑝(0, ℎ) = 𝑝(0,−ℎ) being
larger than zero (equal to zero) in phase II (III). In
the nonmagnetic phase I, the polarization is a de-
creasing function of the energy flux for both positive
and negative ℎ.

All the aforesaid about the polarization depen-
dences 𝑝(⟨𝐽ℰ⟩) is valid only for the cases with finite
𝐸 ≥ 0. The polarization behavior at finite negative
𝐸 can be seen from the property 𝑝(⟨𝐽ℰ⟩, ℐ, ℎ, 𝐸) =
= −𝑝(⟨𝐽ℰ⟩, ℐ,−ℎ,−𝐸).

The magnetization dependence 𝑚(⟨𝐽ℰ⟩) in the
magnetically ordered phases is an expectedly decreas-
ing (increasing) function at positive (negative) val-
ues of the magnetic field. It should be noted that the
derivative 𝜕𝑚/𝜕⟨𝐽ℰ⟩ in phase II in a vicinity of the
transition II → I is a finite quantity, whereas it is
infinitely large in phase III at ⟨𝐽ℰ⟩ → ⟨𝐽ℰ

max⟩.

5.3. Susceptibilities

Now, let us briefly analyze the dependences of the
magnetic, 𝜕𝑚/𝜕ℎ, electric, 𝜕𝑝/𝜕𝐸, and magnetoelec-
tric, 𝜕𝑚/𝜕𝐸 and 𝜕𝑝/𝜕ℎ, susceptibilities on the mag-
netic and electric fields (see Figs. 7 and 8). The fig-
ures demonstrate all qualitatively different field de-
pendences of the indicated susceptibilities.

Note that, from the symmetry properties of the
magnetization and the electric polarization, one can
easily see that 𝜕𝑚/𝜕ℎ is an even function of the su-
perexchange interaction and the both fields. At the
same time, 𝜕𝑚/𝜕𝐸 is an odd function of ℎ and 𝐸
and an even function of ℐ. The susceptibility 𝜕𝑝/𝜕ℎ
has the following property at a given energy flux: the
simultaneous change of the directions of both fields
does not vary this susceptibility, whereas the sign of
𝜕𝑝/𝜕ℎ changes to the opposite one, if the sign of the
superexchange interaction and the direction of either
of the fields change. The electrical susceptibility does
not change, if the signs of any two parameters from
the set (ℐ, ℎ, and 𝐸) change.

Figures 7 and 8 demonstrate that all susceptibilities
diverge in the magnetically ordered phase II at the
boundary with another magnetically ordered phase
III. The only exception is the case |𝐸| → 0 for 𝜕𝑝/𝜕ℎ
(see Fig. 7, the curves for ⟨𝐽ℰ⟩ = 0.05 and 0.2). It
should be noted that the mechanism of the indicated
differences in the susceptibility is known and similar
to that taking place in the systems considered, e.g., in
works [57, 90]. In addition, in a vicinity of the region
without states, there are divergencies of the suscep-
tibilities 𝜕𝑚/𝜕ℎ and 𝜕𝑚/𝜕𝐸 in phase III, as well as
𝜕𝑝/𝜕𝐸 and 𝜕𝑝/𝜕ℎ in the nonmagnetic phase I (ex-
cept for the case |𝐸| → 0; see Fig. 7, the curves for
⟨𝐽ℰ⟩ = 0.2).

In phase II, the magnetic susceptibility as a func-
tion of ℎ is always nonmonotonic, whereas 𝜕𝑝/𝜕ℎ can
be both a monotonic function and a nonmonotonic
one of the magnetic field, depending on the model
parameters (see Fig. 7). The electrical susceptibility,
in turn, has a nonmonotonic dependence on the elec-
tric field with two extrema in phase III. The same
can be said about 𝜕𝑚/𝜕𝐸 in the same phase, but
only for such ℎ-values, when the given energy flux is
achievable even at 𝐸 = 0 (see Fig. 8, the curves for
⟨𝐽ℰ⟩ = 0.05 at ℎ = 1.5 and for ⟨𝐽ℰ⟩ = 0.5 at ℎ = 2
and 2.5).

It is important to pay attention to that the electri-
cal susceptibilities in the magnetically ordered phase
with two Fermi points can be negative (see Fig. 8). In
our opinion, this occurs, because the unexpected ef-
fects are possible in the nonequilibrium steady states,
e.g., negative heat capacity [93, 94].

6. Conclusions

In this work, the exact results are obtained for a
number of parameters of the one-dimensional spin-
1
2 𝑋𝑋 model for a magnetoelectric with the steady
energy flux. The latter is taken into account us-
ing the Lagrange multiplier method for quantum
systems in the case of low temperatures. In this
method, the nonequilibrium steady state is approx-
imately considered as the ground state of the sys-
tem, which is described by the effective Hamiltonian
ℋℰ = ℋME − 𝜆𝒥 ℰ .

The phase diagrams were plotted in the magnetic
field–energy flux, (ℎ, ⟨𝐽ℰ⟩), electric field–energy flux,
(𝐸, ⟨𝐽ℰ⟩), and (𝐸, ℎ) planes. Differences in the be-
havior of the electric polarization 𝑝 and the magneti-
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Fig. 9. Dependences of the energy flux ⟨𝐽ℰ⟩ on the governing
field 𝜆 at ℐ = |1| for various values of ℎ and 𝐸

zation in different phases were found. Here is a short
list of main conclusions that can be drawn from the
study carried out for the finite positive ⟨𝐽ℰ⟩ and both
positive and negative finite superexchange interaction
values ℐ and the fields ℎ and 𝐸.

∙ The phase diagrams in the ℎ−⟨𝐽ℰ⟩ plane have the
same topology at any electric field value. At the same
time, both the (𝐸, ⟨𝐽ℰ⟩) and (𝐸, ℎ) diagrams can be
qualitatively different at different ℎ- and ⟨𝐽ℰ⟩-values,
respectively. For instance, in the diagrams in the 𝐸 –
⟨𝐽ℰ⟩ plane, the magnetically ordered phase with two
Fermi points is present at large magnetic field mag-
nitudes and is absent at its low values. In the (𝐸, ℎ)
phase diagrams, the region without states is available
only at sufficiently large energy flux values. In addi-
tion, the curves corresponding to the transitions be-
tween different phases do not intersect at small ⟨𝐽ℰ⟩,
but at large flux values, they converge to the same
point that lies on the boundary below which there
are no states.

∙ In the phases with four Fermi points (the mag-
netically disordered I and magnetically disordered II
ones), the polarization 𝑝(𝐸) is an increasing func-
tion. In the magnetically ordered phase III with two
Fermi points, 𝑝 increases with the electric field, if
ℎ𝐸ℐ < 0 and decreases, if ℎ𝐸ℐ > 0. It is an even
function of 𝐸 only in this phase.

∙ The magnetization 𝑚(𝐸) in phase II decreases, if
ℎ𝐸 > 0, and increases, if ℎ𝐸 < 0. On the contrary,
in phase III, 𝑚 is an increasing (decreasing) function
of the field 𝐸 at positive (negative) values of the field
product.

∙ In nonmagnetic phase I, the polarization is a de-
creasing function of the energy flux, if 𝐸 > 0, and an
increasing one at negative 𝐸. In magnetically ordered
phases II and III, 𝑝(⟨𝐽ℰ⟩) is an almost linear function:
decreasing at ℎ𝐼 < 0 and increasing at ℎ𝐼 > 0.

∙ The dependence 𝑚(⟨𝐽ℰ⟩) in the magnetically or-
dered phase II is quite close to linear. The derivative
𝜕𝑚/𝜕⟨𝐽ℰ⟩ in phase II in a vicinity of the II → I tran-
sition has a finite value.

∙ In the phases with four Fermi points (I and II),
the polarization can be an increasing, decreasing, or
nonmonotonic (with one extremum) function of the
magnetic field at both positive and negative superex-
change interaction values. At the same time, in the
magnetically ordered phase III with two Fermi points,
𝑝 can only increase with the growth of ℎ at ℐ < 0 and
decreases at ℐ > 0.

∙ If the energy flux ⟨𝐽ℰ⟩, rather than the flux-gene-
rating field 𝜆, is considered as the problem parameter,
the electric polarization 𝑝(𝐸) reaches the saturation
±1/𝜋 at infinitely large 𝐸 for any ⟨𝐽ℰ⟩-values. But
if the field 𝜆 generating the energy flux is an in-
dependent variable (see work [65]), then 𝑝(𝐸) → 0
at 𝐸 → ±∞, except for the case 𝜆 → 0, where
𝑝(𝐸) → ±1/𝜋 at 𝐸 → ±∞.

∙ The magnetic, electric, and magnetoelectric sus-
ceptibilities diverge in phase II at the boundary with
another magnetically ordered phase III. The only ex-
ception is the susceptibility 𝜕𝑝/𝜕ℎ at |𝐸| → 0.

∙ The magnetic susceptibility is always a nonmono-
tonic function of ℎ in phase II, whereas 𝜕𝑝/𝜕𝐸 must
be a nonmonotonic function of the electric field in
phase III.

The author expresses gratitude to T.M.Verkholyak
for the interest in this work, help, advice, and useful
discussion.

APPENDIX
Dependences of energy flux
on the generating field

In the framework of the Lagrange multiplier method, the en-
ergy flux ⟨𝐽ℰ⟩ is an increasing and, naturally, an odd function
of the governing field 𝜆 (see Fig. 9). Furthermore, ⟨𝐽ℰ

max⟩ =

= lim𝜆→∞⟨𝐽ℰ(𝜆)⟩ is a finite quantity, which depends on the
superexchange interaction, as well as the magnetic and elec-
tric fields. This means that, in the applied method, the system
cannot achieve a flux larger than ⟨𝐽ℰ

max( ℐ, ℎ, 𝐸)⟩ under any
circumstances.
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The fact that the energy flux in the magnetoelectric model
is finite for the given ℐ, ℎ, and 𝐸 can be verified analytically as
well, proceeding from the expression for the local energy flux
(6) in the operator form. The energy flux is the same (⟨𝐽ℰ

𝑗 ⟩ =
= ⟨𝐽ℰ⟩) at every chain site. Then, on the basis of Eq. (6) after
the fermionization, it is easy to obtain that

⟨𝐽ℰ⟩=
1

2𝜋

𝜋∫︁
−𝜋

𝑑𝑘
[︁
ℎ𝐸 cos 𝑘 + ℎℐ sin 𝑘 − 𝐸ℐ cos(2𝑘)+

+
𝐸2 − ℐ 2

2
sin(2𝑘)

]︁
⟨𝑛𝑘⟩.

It is also worth to note that ⟨𝐽ℰ(𝜆, ℐ, ℎ, 𝐸)⟩ is a single-valued
function of the governing field (see Fig. 9). Therefore, it is not
𝜆, but the conjugate parameter ⟨𝐽ℰ⟩ that is usually (for phys-
ical reasons) considered as an independent variable.
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Dynamic probes of quantum spin chains with the Dzya-
loshinskii–Moriya interaction. Phys. Rev. B 73, 214407
(2006).

75. O. Derzhko, T. Verkholyak. Dynamic structure factors of
the spin-1/2 𝑋𝑋 chain with Dzyaloshinskii–Moriya inter-
action. J. Phys. Soc. Jpn. 75, 104711 (2006).

76. N. Avalishvili, B. Beradze, G.I. Japaridze. Magnetic phase
diagram of a spin 𝑆=1/2 antiferromagnetic two-leg ladder
with modulated along legs Dzyaloshinskii–Moriya interac-
tion. Eur. Phys. J. B 92, 262 (2019).

77. F.K. Fumani, B. Beradze, S. Nemati, S. Mahdavifar,
G.I. Japaridze. Quantum correlations in the spin-1/2 Hei-
senberg 𝑋𝑋𝑍 chain with modulated Dzyaloshinskii–Mo-
riya interaction. J. Magn. Magn. Mater. 518, 167411
(2021).

78. F. Heidrich-Meisner, A. Honecker, D.C. Cabra, W. Brenig.
Zero-frequency transport properties of one-dimensional
spin- 1

2
systems. Phys. Rev. B 68, 134436 (2003).

79. M. Michel, O. Hess, H. Wichterich, J. Gemmer. Trans-
port in open spin chains: A Monte Carlo wave-function
approach. Phys. Rev. B 77, 104303 (2008).

80. L.-A. Wu, D. Segal. Energy flux operator, current conser-
vation and the formal Fourier’s law. J. Phys. A. 42, 025302
(2009).

81. R. Steinigeweg, J. Gemmer, W. Brenig. Spin and energy
currents in integrable and nonintegrable spin- 1

2
chains: A

typicality approach to real-time autocorrelations. Phys.
Rev. B 91, 104404 (2015).

82. A.M. Tsvelik. Incommensurate phases of quantum one-
dimensional magnetics. Phys. Rev. B 42, 779 (1990).
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О.Р.Баран

ЕФЕКТ ПОТОКУ ЕНЕРГIЇ В ОДНОВИМIРНIЙ
СПIН-1/2 𝑋𝑋 МОДЕЛI МАГНЕТОЕЛЕКТРИКА.
МЕТОД МНОЖНИКА ЛАГРАНЖА

Для дослiдження нерiвноважних стацiонарних станiв з по-
током енергiї одновимiрної спiн-1/2 𝑋𝑋 моделi магнето-
електрика з механiзмом Кацури–Наґаоси–Балацького при
достатньо низьких температурах використано метод мно-
жника Лагранжа. За допомогою перетворення Йордана–
Вiґнера задача зводиться до гамiльтонiана невзаємодiючих
безспiнових фермiонiв i може бути розв’язаною точно. По-
будовано ряд фазових дiаграм та розраховано залежностi
намагнiченостi, електричної поляризацiї та рiзноманiтних
сприйнятливостей вiд магнiтного та електричного полiв, а
також i вiд потоку енергiї.

Ключ о в i с л о в а: одновимiрна 𝑋𝑋 модель, магнетоеле-
ктрик, нерiвноважнi стацiонарнi стани, потiк енергiї, метод
множника Лагранжа.
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