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A NEW FAMILY OF INTERACTIONS
BETWEEN CLOTHED PARTICLES IN QED

The method of unitary clothing transformations (UCTs) has been applied to the quantum
electrodynamics (QED) by using the clothed particle representation (CPR). Within CPR, the
Hamiltonian for interacting electromagnetic and electron-positron fields takes the form in
which the interaction operators responsible for such two-particle processes as e” e~ — e e,
etet — e+e+, e et — efe+, e"et — Yy, YY — efeﬂ ye~ — ye~, and ’ye+ — ’ye+ are
obtained on the same physical footing. These novel interactions include the off-energy-shell
and recoil effects (the latter without any expansion in (v/c)* -series) and their on-energy-
shell matriz elements reproduce the well-known results derived within the perturbation theory
based on the Dyson expansion for the S-matriz (in particular, the Mpller formula for the
e~ e -scattering, the Bhabha formula for e~ e -scattering, and the Klein—Nishina one for the
Compton scattering).

Keywords: unitary clothing transformations, quantum electrodynamics, clothed particles,

off-energy-shell effects.
1. Introduction

Starting from the instant form of relativistic quantum
dynamics for a system of interacting particles, where,
amongst the ten generators of the Poincaré group
II, only the Hamiltonian H and the boost operator
B carry interactions, we have built up the Hamil-
tonian in CPR for the interacting electron-positron
and photon fields. In this connection, let as recall
that the transition from the primary “bare” particle
representation (BPR) with its bare particle states to
CPR is implemented via the UCT method put for-
ward by Greenberg and Schweber [1] and developed
in Refs. [2-5].

Currently, the UCT method has been applied in the
mesodynamics to the processes that involve interac-
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tions of the clothed 7, 7, p, w, , 0 mesons and nucle-
ons [3,5-9]. The applications of this method in QED
and quantum chromodynamics (QCD) are shown in
[10-13]. In the present work, we will show explicit ex-
pressions for a new family of interactions between the
clothed particles in QED.

The outline of this paper is as follows. In the next
section, we will take a look briefly at the under-
lying formalism and structure of a Hamiltonian in
CPR. This is followed by a section that shows exactly
how the QED Hamiltonian breaks down into a set of
interactions and provides a derivation of one of them
as an example. Then we will present the explicit ex-
pressions for all the interaction operators included in
the Hamiltonian in the e2-order.

2. Underlying Formalism

The method in question is aimed at expressing a field
Hamiltonian through the so-called clothed-particle
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creation (annihilation) operators a., e.g., cl(c.),
bi(b.), and di(d.) via UCTs W(a.) = W(a) = exp R,
R = —R' in the similarity transformation

a=W(a)a WV (a.)

that connects a primary set o in BPR with the new
operators in CPR.

A key point of the clothing procedure is to remove
the so-called bad terms from the Hamiltonian

H=H(a)=Hp(a)+ Hi(a) =
= W(ae)H (o)W () = K(a.).

By definition, such terms prevent the physical vac-
uum [Q) (the H lowest energy eigenstate) and the
one-clothed-particle states |n). = af(n)|Q) to be H
eigenvectors for all n included. The bad terms occur
every time, when any normally ordered product

a'(1Ma'(2)) ...aT (nf)a(na) ... a(2)a(1)

of the class [C.A] embodies at least one substructure
€[k.0] (k = 1,2,...) or/and [k.1] (kK = 2,3,...). In
this context, all primary Yukawa-type (trilinear) cou-
plings should be eliminated from the interaction V' («)
that enters

Hi(a) =
It results in the form

H = Kp(ac) + Ki(ae) = K, (1)

V(a) + mass and vertex counterterms.

where the free part Kp(a.) = Hp(a.), while the
operator Kj(a.) contains interactions between the
clothed particles. By construction, the latter has the

property

Kr(a.)|) = Kr(ae)n)e. = 0.

For a boson-fermion (meson-nucleon, photon-elect-
ron) system, we have the decomposition

Ki(a) =K(ff > fH)+K(ff— [+

+K(ff = [f)+KObf = bf)+K(bf —bf)+
K(ff< b )+ K(ff < bff)+

+K(ffe>3b)+..., (2)

where separate contributions are responsible for dif-
ferent physical processes. So, for instance, the opera-
tors K(ye — ve),K(e e <> ve e) and K(3N — 3N)
can be used in describing the Compton scattering on
an electron, the electron-electron bremsstrahlung and
model three-nucleon forces, respectively.
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3. QED Hamiltonian in CPR

In the Coulomb gauge (used here), the interaction Ha-
miltonian of spinor QED is given by (cf., for example,
Egs. (8.4.3) and (8.4.23) in [14])

qud :/dqued(m) :/dxjﬂ(m)A}t(m)+VCOul; (3)

with the electron-positron current density J*(x) =
= e: Y(x)y*(x) :, where the colon symbol denotes
the normal ordering, and the Coulomb part,

/ / 4=7T|96—y|) e @)

Admittedly, the exponential factor with the parame-
ter A > 0 set to zero at the end of all calculations is in-
troduced to deal with infrared divergences. Evidently,
the interaction density Vgeq(z) cannot be scalar, i.e.,
does not possesses the property to be invariant with
respect to the Poincaré group II, viz.,

Up(A, @)V (2)Up' (A, a) = V(Az + a),
V A € L, and arbitrary spacetime shifts a = (a°, a)

VCoul

The correspondence (A,a) — Up(A,a) between el-
ements (A,a) € II and unitary transformations
Ur (A, a) realizes an irreducible representation of IT in
the Hilbert space of states for free (non-interacting)
fields. Here, L, is the homogeneous (proper) or-
thochronous Lorentz group. In this respect, for the
Coulomb gauge (CG), where the photon field 4,,(x) is
introduced in such a way to have Ag(x) = 0, we can-
not use the so-called Belinfante ansatz to construct
the boost generator IV, i.e., put, for example,

Nyea = _/qued(m)dx- (5)

Therefore, one has to seek other ways to provide the
relativistic invariance (RI) in the Dirac sense (see,

e.g., [15]).
In addition, the Fourier expansions

\/;/dpz (pr)b(pp) +

+o(p-p)d' (p-p))e®®, (6)
1 dk
Au(z) = \/ﬁ / o XU: (eu(ko)c(ko) +
+eu(k_o)ct (k_o))e™ =, (7)
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where

p-= (Epa

VE2+ )2

the photon energy, and E, = /p?+ m? the elec-
tron energy, are employed to express the Hamilto-

nian (other generators of the Poincaré group, cur-
rents, etc.) through the creation and annihilation op-
erators that compose the set a..

The two independent ’polarization’ vectors in
Eq. (7) with the helicitiess ¢ = =1, such that
k-e(ko) =0 and €°(ko) = 0, are normalized (see
[14], Sect. 8.5), in terms of the timelike vector
n = (1,0,0,0) so

_p)v k- = (wkﬂ_k)’ Wk =

k,n, +k.n k.k,
Zeu(lm)e ko) = —guu +wk & [ - 22 -
— 32w = P (k). (8)

Substituting these expansions into the Hamiltonian
of interest, in accordance with the prescription given
above, we perform the first clothing transformation
WO = exp[RM] (R(l)T = —RW) which eliminates
the primary interactions V() in the e'-order assum-
ing that V(1) consists of the bad terms only. It is the
case of photons with the interaction in the D picture

0 = [V = [, o)

which is trilinear in the creation and annihilation op-
erators involved.
The operator R(") obeys the equation

(R, Hp| + V) =0 (10)
which has a solution
1 — ;o (1) —et
R zsgrg+ Vi (t)e =tdt, (11)
0

if m, < 2m. Evidently, this inequality is valid
with m, = A and m = m.+ = m.-. One should
stress that, from this moment, all the bare-particle
operators « are replaced by the clothed-particle
counterparts.

In this paper, we will confine ourselves to the con-
sideration of the interaction operators that appear in

the decomposition
Krla))=K(eTe” —we e )+ K(ete = efet)+
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+K(e et
+K(yy — e et)+ K(ye™
+ K(yet — ~e™).

e e+ K(emet = yy)+
—ve )+

(12)
For example, in the e?-order we find the e~ e -scat-
tering operator

) 1
Ke*e*—)e*e* - 5 [R(l)’v(l)}e e~ —e e~ +
+VCOule*e*He*e*- (13)
Here, we have
1 me dk dp' dp
v = - —— [ 2 T5(p' —p—k)x
2 2(2m)3 wi By Ep Vo )
x et (k)a(p")yuu(p)bl(p')be(p)ec(k) + Hec., (14)

1 me dk dp’ dp é(p' —p— k)
2 2(271—)3 wkE E E/—Ep—wk

x et (k)a(p")y,u(p)bl(p')be(p)ce(k) — Hec.

Henceforth, we omit the polarization indices. Now af-
ter a simple algebra with the covariant commutations

{0(pp) " (W)} = {d (pp) 4" (W)} =
= Epduwd(p—p ),
[c (ko) , ¢! (k'a')} = wrdoe6(k — k'),

we get

% {Ru),V(l)}

(15)

dp dps dp: dp>
Ep’l Ep’g Ep, Ep,

e e —e e

X Vo (P, Py p1, p2) bl (01)bE (95)be (p1)be (p2), (16)

with the c-number matrix
2, 2

(2r)?
LA ) aph ) ) |
27 (PPN

V4 (P, Ph; 1, p2) = d(py + P} — P2 — P1) ¥

x v(pl, Py p1,p2)s

v(p, ph;p1,p2) =
X P, () — p1).

When deriving these formulae, we have used the con-
dition (8), the Dirac equation (§ — m)u(p) = 0, and
the representation

dpy dpj dp, dp;

Ep’l Ep’z Ep, Ep,

VCoul e~e~—e~e~ —

(17)
835
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2,,2

e'm
Veoul (P, ph; p1,p2) = W(S(p/z +p| —p2 —p1) ¥

X UCoul(p/ppé;plap2)7
1 a(py)y u(p1)a(py)y u(ps)
2 (p1 — p1)? + N2 '

Vcoul (P, P55 P1,D2) = —

Moreover, we do not hurry to put A = 0. Besides,
keeping in mind the problem of removing the infrared
divergences, it is convenient sometimes to handle an
infinitesimally small photon mass.

Thus, within our approach, the two-clothed-
electron interaction given by Eq. (13) acquires a co-
variant form due to the cancellation of the non-co-
variant primary Coulomb interaction contribution to
the QED Hamiltonian. In our opinion, it is the time
to quote from [14] on p. 355, wiz., “... the apparent
violation of Lorentz invariance in the instantaneous
Coulomb interaction is cancelled by another apparent
violation of Lorentz invariance, ...” that arises, since
the photon fields A%,(z) do not transform as four-
vectors, “and therefore have a non-covariant propaga-
tor”. An important point is that, in CPR, unlike [14],
such a cancellation (see also our results [6] in mesody-
namics) takes place directly in the Hamiltonian, when
starting with the CG. Such a distinct feature of the
UCT method makes it useful in covariant calculations
of the S-matrix either by solving the two-particle
Lippmann—Schwinger equation (LSE) for the corre-
sponding T-matrix or using the perturbation theory
(not obligatorily addressing the Dyson—Feynman ex-
pansion). In this context, we would like to note an
akin approach developed in [16] to problems of the
relativistic QFT that deserves, in our opinion, a very
undiverted attention.

Of course, doing so, one can find not only the
S-matrix, but the eigenstates of the operator K =

= Kr + K7 in the Fock subspace Rﬁ] spanned onto
the clothed-two-particle K eigenvectors. In this con-
nection, one has to deal with

Kr :/d—kwkd(kz)cc(k)—i—
Wk

+ [ 2 By B 0belo) + L) )] (18)

Ep
4. Explicit Expressions
for the Interaction Operators

In our previous works [12, 13|, we have already
presented the expressions for K.-.+_,o-e+ and
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K-+, when deriving the first correction to the
positronium ground state energy and its decay to two
photons. Now, we will show all the new e?-order in-
teractions between the clothed electrons, positrons,
and photons in terms of the clothed destruction (cre-
ation) operators b, d., c. (bf, df, c}) compared to the
expressions obtained within the Feynman approach in
terms of the bare destruction (creation) operators b,
d, c (bf, df, ct).

4.1. The interaction
operator for e~ e -scattering

To get the operator K.- .- _,.—.—, one needs to sepa-
rate out the blb!b.b.-type terms from the Hamiltonian
K (o). Uniting Egs. (16 and 17), we arrive at

K, . /dp/l‘11"2‘1191‘1102X
cemes Ep’l Ep’z Ep, Ep,

X Vo e (P, P p1, p2)bL ()DL (P5)be (p1)be(p2),  (19)
62 2

m
Ve—e—(Pﬁ»Plz;Pth) = Wfs(l’/z +P/1 —p2 —P1) X

« [USE};Iiman—like + U;)ff—eeiwrgy—shell]’ (20)
UFeynman—like _ 1a(p/l)py#u(pl)ﬂ(pé)ﬁ)/#u(pQ) (21)
e~ e~ 2 (p/1 _pl)Q — )2 ’

/ / /
oft-energy-shell _ _ 1 (Ph +P5 —p1 — pa)(py —p1)
e 2 (PL —p1)* + A2

(! A0 (! \A0
, up)y /u(pl)ugpz)nu(m). (22)
Py —p1)? = A

Here, all momenta are defined on the mass-shell:
p? = EIQ, — p?> = m?. The Feynman-type propaga-
tor ((p} —p1)? —A?)~1 in (21) stems from adding the
two noncovariant (“nonrelativistic”) propagators

1 { 1 n
2wp! —p; (Ep, — Epi — wpy—p,
1

+ )
Ep, — Ep, — Wp,—p,

(23)

with wpr _p, (P} —p1)?2 + A2 Such a feature
of the UCT method allows us to use the graphic
language of the old-fashioned perturbation theory
(OFPT) (see, e.g., Chapter 13 in [17]), when ad-
dressing the graphs in Fig. 1. As noted in [5], the
graphs in Fig. 1 are topologically equivalent to the
time-ordered Feynman diagram in Fig. 2. However,

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10
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Fig. 1. The typical OFPT diagrams with the intermediate photon (wavy line) on its mass shell

in the Schrédinger picture employed here, where all
events are related to the same instant ¢ = 0, such
an analogy seems to be misleading. In the OFPT,
the particle three-momenta are related to the lines
in Fig. 1 via the following prescription: when mov-
ing from the left to the right, a sum of “outgoing”
momenta is equal to a sum of “ingoing” ones. Here,
the term “ingoing” (outgoing) is referred to the corre-
sponding line or lines lying on the left (right) from
the dotted vertical (a “phantom” line) that passes
through a given vertex. In fact, the line directions
in, fore example, Fig. 3 are given with the sole scope
to discriminate between the fermion and antifermion
states.

In this way, the denominator (Ep,— Ep —wp:_p, ) '
may be related to the noncovariant propagator

Dil(E)E=Ep1 +Ep, =
= (E — Epll — Epg - wp’l—p1)|E:Ep1 +Ep, =

= Ep1 - Ep/l — wp/l (24)

—P1’

which is associated with the right diagram in Fig. 1,
where the three-momentum is conserved at the each
vertex. Such an interpretation has much in common
with the theory of meson-nucleon interactions (see
Sec. 3.2 in [5]).

Furthermore, according to [3, 5], the properly sym-
metrized interaction is given by the matrix element
(quasipotential)

Ve-e— (P, Ph; p1,p2) =
L P (PE) QK - - oo b (1)) (p2)2) =
= Ve (01, 05; 1, D2) — Ve—e- (05, P P2, P1) +

+ ‘/;_e_ (p127p117p17p2) + Vve‘e‘ (pllap/Qap%pl) =
2,2
e

m
= 7)35(13/2 + Pl — P2 —Pp1) X

(2w
—Feynman-like —off-energy-shell
X |02 +oon " , (25)
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D1 » p1 Da

/ /

D2 %) b2 by
Fig. 2. On-energy-shell contributions to the electron-electron
interaction (the e2-order Feynman diagrams for the electron-
electron scattering)

—Feynman-like
e~e~

= —a(p})y"u(p1) x

5 S R S—
2 () —p1)?2 =A% (py —p2)? — N2
X a(ph)vuu(p2) — (1 4 2), (26)

/ /
_fo_ee?ergy—shen _ (P(1p ‘/: €2p1)1271_~_ )\];2)&( D)7 0u(pr) x
Xl{ (PL —p1) (5 — p2) }X
2 (ph —p1)2 = A2 (ph —p2)? — A2
x a(py)y ulp2) — (1 2).

(27)

The r.h.s. of these equations consists of the “di-
rect” term written explicitly and the “exchange” one
(1 +» 2) with the prescription that the variables with
labels 1 and 2 should be mutually interchanged.
Unlike the interactions built up in mesodynamics, a
distinctive feature is the appearance of the noncovari-
ant contribution (27) due to the interplay between the
Coulomb interaction (4) and the noncovariant term
from 1[R, V(l)]blblbrb; One should note that on the
energy shell for the electron-electron scattering, i.e.,
under the condition
Ep + Epy = Ep, + Ep,, (28)
this contribution becomes to be zero. The impor-
tant point is that such a cancellation in CPR takes
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place directly in the Hamiltonian. In this context,
one should stress that, on the energy shell, only the
Feynman-like contribution (26) remains, and the ex-
pression in the curly brackets

1 1 1
2{(p’1 SRy E R U e AQ} (29)

is converted into the genuine Feynman propagator
which occurs, when the S-operator in the e2-order

e _ [ dpy dp; dpy dp>
ce e Epi Ep/z Ep, Ep,
X VeF—eZEman(pllvplz;plap2)bT(P/1)bT(Plz)b(Pl)b(Pz)a (30)
2,2
Feynman . _ . €My
Vvefz— (pllvp/27p17p2) =1 (27’(’)2 X

X 8(py + p) — p2 — pl)UeFf};Ilman'hke(m —mp), (31)
is sandwiched between the bare states (b (p})bf(p}) x
x Q0| S@ bt (p1)bT (p2)Q0). The corresponding  dia-
grams are displayed in Fig. 2.

It is important to emphasize that interaction (25)
is determined not only on the energy shell, but also
beyond it, because it does not contain the factor
§(Ep, + Ep, — Ep, — Ep ). This is a curious fea-
ture of the UCT method. The interaction obtained
is nonlocal, since the vertex factors and propagators
in Egs. (26) and (27) are dependent not only on the
relative three-momenta involved, but also on their to-
tal three-momentum. The interactions in [5] have the
same property.

4.2. The interaction operator
for e~ et -scattering

Next, it is the operator of e~ e scattering. Now, we
are interested in the bld!b.d.-type terms

dpy dp), dp1 dp
I(e*e+ e~et :/ = 5 X
- Ep’l Ep’g Ep, Ep,
X Ve e+ (D, Po; p1, p2)bL (D7) dE (0h)be(p1)de(p2),  (32)

/ / €2m2 / /
Voot (P, P55 1, p2) = Wf?(pz +p) — P2 —P1) X

X [vs(pY, Ph; p1, p2) + va (P, Phs p1,p2)], (33)
US/A _ Ugjinman-like + Ugf}f:nergy-shell’ (34)

838

; 1 1
Feynman-like —
Vg v = _u(pll)/yuu(pl)z{(p/ _p1)2 — )2 +
1
1 /
oy v(ph),
(p/2 _p2)2 . )\2} (pQ)’Y# (pZ)
off-energy-shell __ (pll + p/2 —P1— p2) — . 1\ .0
v = U u X
S (pll _p1)2 +)\2 (pl)’y (pl)

1 (P’1 - pl) (P’z - P2)
2{(2?’1 —p1)2 =22 (ph—p2)? —AZ} -
x 0(p2)7y v (ph),

; 1 1
F -like _
e — ayt ot o+
1
+ 3 (0 (P2)uulp),
(P} +Ph)? — AQ} 8
/ /o _
U;ﬂ—energy—shell _ (pl + D2 P1 p2) a(pll )VOU(]?/Q) >

(P1 +p5)? + A2
_ (p1 + p2) } y
(p1+p2)? — A2

1{ (P} + ph)
(P} +ph)?% — A2

2
x 0(p2)y u(py).- (35)

We have introduced the decomposition into the so-
called scattering and annihilation contributions vg
and v4. Each of them has structure (34). Again, only
the Feynman-like part survives on the energy-shell,
i.e., under the condition p* + p5 = pJ + pY.

The corresponding S-operator is

dpy dp; dp, dpa
Ep’l Ep; Ep, Ep,

X VIV (g pls oy, p2)bT () dT () b(p1)d(ps),
(36)

Se‘e+—>e‘e+ =

2, 2
0o

F e
V. *ezj:man(plhpé;phpQ) = —1 (27T)26(p12+p/1_p2_p1) X

x [vg™™ 0 (ph, phs pr, p2) + VY (), Pl pr,ypo)] s
(37)
1
Feynman _ _
v = —a(py )y u(p1) 5 0(p2) 7.0 (Ph),
(pl_pl) (38)
Feynman __ —/ 7\ _ pu / _
v =1U v — 70 U ,
A (P v(pa) it P’ (p2)vpu(p1)

with the bare electron mass mg and charge eq.

The scattering term vg can be obtained from the
direct parts of Egs. (26, 27)
u(py) = 0(p2), u(p2) = v(py), (39)

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10
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Fig. 3. OFPT graphs for the scattering contribution (vg) to the electron-positron scattering
process
/ | /
Py D P | P

| I
| |
! |
| |
! |
! |
) |
| |
! |
! |
I |
! I
! |
|

P2 i j o2

and the corresponding OFPT graphs are obtained
from the Fig. 1 by replacing the electron line with
the positron one that is illustrated in Fig. 3. Hence-
forth, the line directions in graphs are given with the
sole scope to discriminate between the electron and
positron states.

In the annihilation term, the Feynman-like propa-
gators arise from the noncovariant propagators in the
following way (see details in [18])

1 1
+ —
Wp,+py, — Epy — Epy  wplgpy, + Epy + Epy
1
T + )2 — )2’
(P +p3) (40)
1 1
%

+
Wpy+ps — EP1 - Epz Wpy+po + Epl + Ep2

1
- (p1 +p2)? — A

The two noncovariant denominators

-1
Dy E)p= Ep,+Ep, = (E - wP1+P2)|E:Ep1 +Ep, =

(
—(

Wpy+py — Pl - EP2)7
Dy (E)p- By +Ey = (E — wp)1py)|E= By +Ey =
—(wpy4py — Epy — Epy)

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10

|
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|
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|
|
|
|
|

P}
Fig. 4. OFPT graphs for the annihilation contribution (v4) to the electron-positron scattering
process

Py |

can be associated with the left graph in Fig. 4 with
one internal line putting between the dotted (“phan-
tom”) lines. In its turn, the right graph with five in-
ternal lines relates to the denominators

Dy N (E)p=p,, +B,, =

= (E—Ep, —Ep,

- Epl - EPz —Wpi +pl, ) |E:Ep1 +Ep,
= —(wpy+py — Epy — Epy),
Dy (B)p=r,, +5,, =

= (E*Ep’l —Ep, —Ep, —Ep,

_Epz)'

—Wpi+po ) |E:Ep/1 +Ep/2
= (wP1+P2 - EPl

By analogy with the interaction between clothed elec-
trons, we introduce the matrix element

Vet (P, Phip1,p2) =
<bl(p/1)di(pIQ)Q|Ke*e+—>e*6+ |bl(p1)di(p2)ﬂ> =

= _Ve_e+ (pllvp/Q;pMPQ)a

(41)

which is equal to Eq. (33) with the opposite sign. Like
the case of the electron-electron interaction, the de-
nominators in the curly brackets in the Feynman-
like contributions are converted into the genuine
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P1 P

2] P2

P1 P/l

/.

P2 P2

Fig. 5. Feynman diagrams for the on-shell contribution to the electron-positron interaction

Feynman propagators

1 1 1
= + =
2{(19’1 —p1)? =A% (ph —p2)? —A2}

1 1

— = ,
(P1—p1)> =A% (ph—p2)* — A2

(42)

1 1 1
- + N
2 {(m +p2)2 =A% (p) +ph)? — Az}

1 1

% p— .
(P +p5)? =A% (p1+p2)?— A2

The corresponding Feynman graphs are displayed in
Fig. 5.

4.3. The interaction operator
for e~ et -pair annihilation

The interaction operator corresponding to the anni-
hilation of the clothed electron and positron to two
photons is

dk, dky dp: dp
K. - = e
et / Wk, Wk, Epl Epz .

X ‘/re*e+—>'y'y(k27 kl;p27pl)cl<k2)ci(kl)bc(p2)dc(p1)7

(43)
€2m
Ve et osyy (b2, k15p2,p1) = 202n) X
CB(1 o k)[R g el
(44)
Feynman-like — 6(p1)¢(k1)¢(k2)u(p2)
e~ et—yy F‘l 7]%1+m ?
Uoff-energy-shell _ _1 6(p1)¢(k1)¢(k2)u(p2) + (45)
et 2T h—Hitm

@(P1)¢(k2)¢(k1)u(p2)}
1,52 - /%1 —-—m )
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The corresponding matrix element (quasipotential)
is determined as

7e_e+—>’yy(k27k1;p23p1) =
(el (k) el (k1) QUK o= e+ s [l (p2)dE (p1)2) =
= _‘/e*eJr—)'y’y(k% kl;anpl) -

— Vet oy k1, k23 p2, p1) =
€2m B
- 2(2#)35(p1+p2_k1_kQ)U€’6+—>’w(k27k1§p27p1)7
(46)

Ve et —yy (K2, K152, p1) = 0(p1)¢ (k1) X

bokayutrn) +

xl{ ! B :

9 F;Qf]ﬁlfm ]{51fl¢1+m )
+U(p1)¢(k2)2{lj2_l¢1—m_ﬁl—]ﬁ"‘m}x
X ¢ (k1)u(pz2).

The Feynman-like propagators in the curly brackets
of this expression appear after the summation of the
corresponding noncovariant propagators which are il-
lustrated on OFPT graphs in Fig. 6. For example, by
adding contributions (a) and (b), we get

m Pi(q) P_(q-)
Ekl—Pl Epl_wk1+Ek1—p1 EPl_wkl_Ek‘1—P1
1

:ﬁ1*/§{1+m’

with the four vector ¢ = (Eg,—p,,k1 — p1) and
the projection operators on the fermion positive
(negative)-energy states Py (q) = (¢ &= m)/2m.
According to [5], we introduce “left” (s, ui, and
t1) and “right” (s2, us, and t3) Mandelstam vectors

(47)

(48)

up = p1 — ke,
ta = p2 — ko.

Sg = pa + ko,
t1 =p1 — ki,

s1 =p1 + ki,

49
Uy = pa — ki, (19)
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Py : k1

Y ! | ky

Fig. 6. The direct (a, b) and exchange (¢, d) OFPT diagrams for interaction (46)

In these notations, expression (47) looks as

Ue*e+'y'y(k27 kl;p27p1) =

— o) 3 {7 — e +
1 1

o) { o — T Aulen). GO

On the energy shell, E, + Ep, = wg, + wk,, and
the expressions in the curly brackets are transformed
into the Feynman propagators

;{Zfz—l%—m_lfl—;m”n}_)

T e —Ha—m’

;{Z/‘27§1m_ﬁ17;2+m}_>

T e Hi—m

This occurs, when we evaluate the S-matrix for the
ete™-pair annihilation. The corresponding Feynman
diagrams are displayed in Fig. 7.

4.4. The interaction operator
for e~ et -pair production
Operator (43) is not Hermitian, and its Hermitian

conjugate describes the ete™-pair production
dky dky dp: dp

_ - - T X

— + =
]('y’y—na e L E
Wky Wky Lpy Lpy

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10

Y2 ' k1
d
D2 ko D2 ky
e e AVAVAVAVAVAV. e e AVAVAVAVAVAV.
e AVAVAVAVAVAV. e AVAVAVAVAVAV.
D1 ky P1 ko

Fig. 7. The Feynman diagrams of the e2-order for the anni-
hilation process

X ‘/'y'y—m*eJr (p2ap1; k27 kl)bi(p2) X

x i (p1)ce(ks)ce(kr), (52)
€2m
V’y’y—>e’e+(p25pl;k27k1) = m X
X 8(pr + Py — Joy — Ry [pFeymalke . offenergy-shel)
(53)

Feynman-like _ _ﬂ(p2)¢(k1)¢(k2)v(p1)
yy—e—et ﬁl — ]i{l +m )
off-energy-shell :1 ﬂ(p2)¢(k1)¢(k2)v(p1) + (54)
yy—e~et 2 ﬁl — ]%1 +m

(p2)¢ (k)¢ (k1) (p1)
p el B)uie) |

To retain the hermiticity of the total Hamiltonian,
operators (43) and (52) should be considered jointly.
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4.5. The interaction operator
for the Compton scattering

The Compton scattering is described by the operator
with a structure blclb.c.

dky dps dk, dp:
Koo e :/ X
ve Wy EPz Wiy EPl

X V’ye* (p27 k?;plv kl)b:r:(pQ)ci(kQ)bC(pl)cc(kl)a
62m
2(2m)3

Feynman-like off-energy-shell
Fey -y fenersyhell)

(55)

Viye— (D2, k25 p1, k1) = 0(p1 + k1 —p2 — k2) X

X [v (56)
1
ﬂ1+/j/1—m
TS S >}< )
lpfl—k/g—m 2) (ulpP1),

Ugif—_cncrgy—shcll _ ﬂ(p2)¢(k2) «

U’I:E}:nman—like _ ﬁ(pz) {¢(k2) ¢(k1) +

1 1 1
g 2{]?/2 +Pa—m P+ Hi— m}¢(k1)u(p1)+

+ﬂ(]92)¢(k1)% {#2 - ;;1 —m  g— 1;2 - m} )

x ¢ (k2)u(p1). (57)
The corresponding quasipotential is

Ve (p2, ks p1, k1) =

= <ci(k2)b1(p2)|K’ye*—>'ye*|Ci(k1)b:r:(p1)> =

= Viye- (D2, k25 p1, k1). (58)

For the interpretation of expression (58), we write
an intermediate analytic result that leads to it:

ﬂ(pg) X

DN | =

Une— (P2, k23 p1, k1) =

{402 Pl Ko, kg () b)),
59
where (59)
m P+(EP1+k17p1 +k1)
P(ps, ka;p1, k1) = +
(p2 e 1) EP1+k1 {Epl + Wi, — EP1+k1

P (EPH-kla —P1— kl)}
+
EP1 + Wi, + Ep1+k1
m {P+(Epzk17p2 - kl)
Epz—kl Epz - Wk, — Epz—k‘l
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+

+ +

P (Ep, K, ,— k
+ ( pa—ki) —P2 + 1)} (60)

Ep, —wk, + Ep,—k,
Each contribution to the r.h.s. of Eq. (60) can be
represented by the graphs in Fig. 8. Graphs (a) and

(¢) correspond to the two terms in the first curly
brackets:

Da(B)|E=Ey, +wn, = (B = Epi 1) 5L B, 4o, =
= (Epl + We, — Eﬁ1+k‘1)_17
DC(E)‘E:EPQ Fwry, =

— —1 _
= (E - Epli Ep27 Wiy — Wey— EP1+’<31)E:EP2 twy
— —1
- _(Epl + Wk, + EP1+k1) )

(61)

while graphs (b) and (d) are associated with the two
ones in the second curly brackets.

In terms of the Mandelstam variables (49), expres-
sion (59) takes the form

Uye— (D2, k25 p1, k1) = U(p2)d (ko) x
A5+ g Oulen) +
+ a(p2)d (k1)

x ¢ (k2)u(p1).

On the energy shell, E,, + wk, = Ep, + wk,, where
there is no difference between the left and right Man-
delstam vectors, this equation reduces to

RS
29k —m 24k, —m
(62)

U@*’y(p27 ko:p1, kl)\Epl +wi, =Fpy +wiy —

u(p2)¢ (k2)¢ (k1)u(p:1) n u(p2)¢ (k1)¢ (k2)u(p1)
§—m h—m 7
(63)

which coincides up to a numerical factor with the ex-
pressions, obtained with help of the Feynman rules
from the diagrams in Fig. 9.

One can replace the Dirac spinors (v — v) in in-
teractions (55) and (19) to obtain expressions for the
corresponding processes with positrons.

In Ref. [19], there are the calculations of the
e~e”, e~et scattering and e~eT annihilation cross
sections with the new interaction operators shown
above. They reproduce the results obtained using
the well-known formulas by Mpgller and Bhabha
(see, e.g., [20]).
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P |

ko

Py I
d

Fig. 8. OFPT diagrams for different contributions to interaction (58)

E—@
Y4\ P2

P P2

Fig. 9. Feynman diagrams for the Compton effect in the second order

The corresponding cross-sections in the e?-order
can be obtained from the interaction operator (19)
using the Born approximation for the T-matrix

S(py — pi)Tyi = (fIK i), (64)

where p; (py) is the total momentum in the initial
(final) state. For example, for the e~ e~ -scattering,
one has

i) = ——

= bl (p1)bl(p2)[92),

P1
1

which gives
(FIKIlD) = (flKe-eme-e-i) =
ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 10

E

P2

(65)

If) = bl (ph)bl(ph) 1),

= Ve_e_ (pllap/Q;plaPQ)ﬂ (66)
with the quasipotential V,—.-  defined in
Eq. (25). The cross-section is calculated using

the following expression (see Eq. (3.137) in Ref.

[21]):

do = /dp'ldp’zd(Ep/1 + Ep, — Ep, — Ep,) X

24| T, |2
><<5(p’1+p’2—p1—p2)7( V1T :
Urel

(67)

where v, is the relative speed of electrons in the ini-
tial state. Here, we encounter with the energy-shell
condition Ep; + Ey, = Ep, + Ep,. Therefore, in the
quasipotential V.- .-, the “off-energy-shell” contribu-
tion (27) vanishes. For an unpolarized initial beam
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and when the final polarization is not observed, the
differential cross-section in the center-mass system
(c.m.s.) is given by

do  (2m)*E?
aQ 16 D

H€[1/*"I27l"17/—‘2

Tyl (68)

where F is the c.m.s. energy of the pair of electrons.
The T-matrix is

o e <U(p’u’z)v“U(pul)u(p’u’l)’mu(puz)
NCLEE P —p )
_ ﬂ(p’u’l)W“U(pm)ﬂ(p’_u’z)w(pu2)>
(' —p)?

with p = (E,p), p- = (E,—p) and |p| = VE? —m?.
After summations over polarizations and using the
formulas for Dirac traces, we obtain the Mgller for-
mula

do  a?(2E? — m?)? 4 3
s *2 24532 (sin2 6 sin’0
(E* —m?) (1+ 4 ))

(2E2 — m?2)? sin? 0

The Bhabha formula for the e~ e™-scattering and the
Klein—Nishina one for the Compton scattering are ob-
tained in the same way by using the appropriate ex-
pressions for the corresponding initial and final states
in Eq. (64).

N.B. At this point, we would like to note that
such a transition to the CPR calculations of the cor-
responding S-matrix elements can be simplified with
the help of the equivalence theorem [22]. It has turned
out that the S operators that are determined by the
time evolution from a distant past to a distant future,
for the two decompositions H = H(«) = Hp + H;
and H = K(a.) = Kr + K, being sandwiched be-
tween the bare states and the corresponding clothed
ones are equal to each other. Such a coincidence be-
comes possible owing to a certain isomorphism be-
tween the «. algebra and the « algebra, once the
UCTs Wp(t) = exp(iKpt)W exp(—iKpt) obey the
asymptotic condition Wp(£oo) = 1 (cf., analogous
considerations on p. 114 of Ref. [6] for the NN-
scattering amplitudes).

(69)

+ (70)

5. Conclusions

Our consideration gives one more application of a
well-forgotten concept on the clothed particles in
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quantum field theory, put forward by Greenberg and
Schweber [1]. We have seen that our approach leads
to the new Hermitian and energy-independent inter-
actions between clothed particles including the off-
energy-shell and recoil effects (the latter in all or-
ders of the v?/c?-expansion). These interactions have
been verified on the energy shell, viz., they repro-
duce the well-known formulas for the cross-sections
of elementary processes in the standard QED. Moreo-
ver, our results can be used for a more detailed study
of the processes in which the off-energy-shell effects
play an essential role. It is the case of the treatment
of positronium properties, the simplest bound state
in QED, and other processes involving bound states,
e.g., the electron-positronium scattering, etc. Our ex-
plorations in this direction are underway.
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A.M. Apcaananies, H.O. Kocmunenxo, O.B. Illebeko

HOBE CIMEVCTBO B3AEMO/IIN
MIYK OJJATHEHUMU YACTUHKAMU B KEJ]

Meron yHiTapHIX ongararounx nepersopens (YOII) 6ys sacro-
coBanuii y kBauTosiii esekrponunamini (KE/) 3a gonomororo
300paskenHs oxgaruennx dactuHok (30Y). ¥V pamkax 30Y ra-
MIJIBTOHIaH [AJIsT B3a€MOMIIOUNX €JIEKTPOMArHITHUX Ta €JIEKT-
POH-TIO3UTPOHHMX II0JIiB HabyBae dopmu, B sKiil omepaTopu
B3aeMO/Iil, BinmoBigaabHi 3a Taki JBOYACTUHKOBI IIPOIECH, K
e e —e e, etet — e+e+, eet — e_e+, e~et — Y,
Yy — e’e*, ye - — ye  Ta 'yeJr — ’ye*, OTPUMYIOTBCA Ha
omHiit i Tiit camiit dizuuniit ocuosi. 1li HOBI B3aeMozil BKIIrOYa-
10Thb edeKTH 1mo3a eHepreruyHoio nosepxuero (off-energy-shell
effects) Ta edexrn Bimmaui (ocranni 6e3 GyIb-AKOro po3KIaIa-
HHA B pag 1o (v/c)?), a ixni MaTpuuHi eTeMeHTH Ha eHepreTu-
9HIM MOBEpPxXHI BiATBOPIOIOTH 106pe BigOoMi pe3ysibTaTH, OTpHU-
MaHi B paMKax Teopil 30ypeHb Ha ocHOBI psiay laiicona nyst S-
Marpuri (30kpema, dopmyna Mesutepa st e~ e -po3cisiHHS,
dopmyna Baba mns e~ et-poscismus Ta dbopmyna Knsitna—
Himmeu 4151 KOMOTOHIBCHKOIO PO3CIIOBAHHS ).

Katwwoei caoea: yHITapHI Ofsiraiodi 11epeTBOPEHHS], KBaH-

TOBa €JIEKTPOJINHAMIKa, OJSArHEHI YaCTUHKH, e(peKTH I[103a
€HEPreTUIHOIO ITOBEPXHEIO.
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