
Influence of the Stresses 𝜎5 and 𝜎6

https://doi.org/10.15407/ujpe66.1.69

A.S. VDOVYCH,1 I.R. ZACHEK,2 R.R. LEVITSKII 1

1 Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
(1, Svientsitsky Str., Lviv 79011, Ukraine)

2 National University “Lviv Polytechnic”
(12, Stepan Bandera Str., Lviv 79013, Ukraine; e-mail: zachek_i@ukr.net)

INFLUENCE OF THE STRESSES 𝜎5

AND 𝜎6 AND THE ELECTRIC FIELD 𝐸1

ON THE THERMODYNAMIC PARAMETERS
OF GPI FERROELECTRIC MATERIALS

Effects arising in glycine phosphite (GPI) ferroelectrics under the action of the shear stresses
𝜎5 and 𝜎6 and the electric field 𝐸1 have been studied in the framework of a modified model that
accounts for the piezoelectric coupling between the ordered structural elements and the strains
𝜀𝑗. The components of the polarization vectors and the tensor of static dielectric permittivity
are calculated in the two-particle cluster approximation for mechanically clamped crystals. The
corresponding piezoelectric and thermal parameters are also determined. The influence of the
simultaneous action of the stress 𝜎5 and the field 𝐸1, as well as the stress 𝜎6 and the field 𝐸1,
on the physical parameters of the GPI ferroelectric crystals and the phase transition in them
is analyzed.
K e yw o r d s: ferroelectrics, phase transition, dielectric permittivity, piezoelectric moduli,
shear stress.

1. Introduction

The study of the phenomena that arise under the ac-
tion of mechanical stresses and external electric fields
is one of the challenging problems in the physics of
ferroactive compounds. In particular, it concerns the
crystals of glycine phosphite (GPI), which belongs to
ferroactive materials with hydrogen bonds [1].

The influence of the transverse electric field 𝐸1 on
the dielectric permittivity 𝜀33 of a GPI crystal was
experimentally studied in works [2–4]. The cited au-
thors showed that the application of the field 𝐸1 re-
sulted in a decrease of the ferroelectric phase transi-
tion temperature.

The model of a deformed GPI crystal was devel-
oped in work [5] on the basis of the proton model
[3]. It considers the piezoelectric coupling between a
proton and lattice subsystems. This model served as
a basis to study the influence of the transverse elec-
tric fields 𝐸1 and 𝐸3 on the dielectric and piezoelec-
tric properties of GPI [6]. In particular, the above-
mentioned experimental data obtained for the tem-
perature dependence of the transverse dielectric per-
mittivity 𝜀33 in the presence of the field 𝐸3 [3] were
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described correctly at the quantitative level. It was
found that the influence of the field 𝐸1 is qualitatively
similar to that of the field 𝐸3, but it is an order of
magnitude weaker.

In work [7], the GPI model [6] was modified to de-
scribe the case where the shear stresses 𝜎4, 𝜎5, and
𝜎6 are applied to the GPI crystal in the absence of an
electric field. It was found that the appearance of the
shear stress 𝜎4 or 𝜎6 in the ferroelectric phase gives
rise to the emergence of the spontaneous polariza-
tion along the axes 𝑂𝑋 and 𝑂𝑍, and the transverse
permeabilities 𝜀11 and 𝜀33 tend to infinity at the tem-
perature 𝑇𝑐. The stresses 𝜎4 and 𝜎6 were found to
produce similar effects at the qualitative level.

In this work in the framework of a modification of
the model [4] of a deformed GPI crystal, the mutual
action of the electric field 𝐸1 and the stresses 𝜎5 and
𝜎6 on the phase transition in the crystals of this type
and their thermodynamic and static dielectric param-
eters are studied.

2. Model Hamiltonian

Let us consider a system of protons that move in
the GPI crystal along the O–H, ..., O bonds. The lat-
ter form zigzag chains along the 𝑐-axis of the crys-
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Fig. 1. Orientations of the vectors d𝑞𝑓 in a primitive cell 𝑅𝑠

of the ferroelectric phase

tal. Let us assign the dipole moment d𝑞𝑓 to the pro-
ton at the 𝑓 -th bond (𝑓 = 1, ..., 4). In the ferroelectric
phase, the dipole moments are mutually compensated
(d𝑞1 with d𝑞3 and d𝑞2 with d𝑞4) in the 𝑍- and 𝑋-
directions but simultaneously mutually added in the
𝑌 -direction, thus generating a spontaneous polariza-
tion. The vectors d𝑞𝑓 are oriented at certain angles
with respect to the crystallographic axes and have the
longitudinal and transverse components with respect
to the 𝑏-axis (see Fig. 1).

The Hamiltonian of the proton subsystem in GPI
consists of the “seed” and pseudospin parts. The
“seed” energy 𝑈seed is associated with the lattice of
heavy ions and does not depend explicitly on the pro-
ton subsystem configuration. The pseudospin part of
the Hamiltonian makes allowance for the short-range,
�̂�short, and long-range, �̂�MF, proton-proton interac-
tions near the HPO3 tetrahedra, as well as the effec-
tive interaction with the electric fields 𝐸1, 𝐸2, and
𝐸3. Hence,

�̂� = 𝑁𝑈seed + �̂�short + �̂�MF + �̂�𝐸 , (1)

where 𝑁 is the total number of primitive cells in the
Bravais lattice.

The quantity 𝑈seed is the seed energy consisting of
the elastic, piezoelectric, and dielectric components,
which are expressed in terms of the electric fields 𝐸𝑖

(𝑖 = 1, 2, 3) and the strains 𝜀𝑗 (𝑗 = 1, 2, 3, 4, 5, 6), so
that

𝑈seed = 𝑣

(︃
1

2

3∑︁
𝑖,𝑖′=1

𝑐𝐸0
𝑖𝑖′ (𝑇 )𝜀𝑖𝜀𝑖′ +

3∑︁
𝑖=1

𝑐𝐸0
𝑖5 (𝑇 )𝜀𝑖𝜀5 +

+
1

2
𝑐𝐸0
44 (𝑇 )𝜀

2
4 +

1

2
𝑐𝐸0
66 (𝑇 )𝜀

2
6 + 𝑐𝐸0

46 (𝑇 )𝜀4𝜀6 −

−
3∑︁

𝑖=1

𝑒02𝑖𝜀𝑖𝐸2 − 𝑒025𝜀5𝐸2 − 𝑒014𝜀4𝐸1 −

− 𝑒016𝜀6𝐸1 − 𝑒034𝜀4𝐸3 − 𝑒036𝜀6𝐸3 −

− 1

2
𝜒𝜀0
11𝐸

2
1 − 1

2
𝜒𝜀0
22𝐸

2
2 − 1

2
𝜒𝜀0
33𝐸

2
3 − 𝜒𝜀0

31𝐸3𝐸1

)︃
. (2)

Here, the parameters 𝑐𝐸0
𝑗𝑗 (𝑇 ) are the so-called seed

elastic constants, 𝑒0𝑖𝑗 the piezoelectric stress coeffi-
cients, 𝜒𝜀0

𝑖𝑗 the dielectric susceptibilities, and 𝑣 the
primitive cell volume.

The Hamiltonian of short-range interactions equals

�̂�short = −2
∑︁
𝑞𝑞′

(︁
𝑤1
𝜎𝑞1
2

𝜎𝑞2
2

+ 𝑤2
𝜎𝑞3
2

𝜎𝑞4
2

)︁
×

×
(︁
𝛿R𝑞R𝑞′ + 𝛿R𝑞+Rc,R𝑞′

)︁
, (3)

where 𝜎𝑞𝑓 (𝑓 = 1, 2, 3, 4) is the 𝑧-component of the
operator for the pseudospin located at the 𝑓 -th bond
in the 𝑞-th cell; the first and second Kronecker deltas
correspond to the proton interaction in the chains lo-
cated near the HPO3 tetrahedra of types I and II, re-
spectively; and Rc is the lattice radius vector directed
along the 𝑐-axis. The contributions of the interaction
between protons located around the tetrahedra of dif-
ferent types to the configuration energy are assumed
to be identical, as well as the average values of pseu-
dospins ⟨𝜎𝑞𝑓 ⟩ related to the tetrahedra of different
types. The quantities𝑤1 and 𝑤2 describe short-range
interactions of protons in the chains. We can expand
them in series in the strains 𝜀𝑗 and confine the ex-
pansions to the linear terms,

𝑤1,2 = 𝑤0+
∑︁
𝑙

𝛿𝑙𝜀𝑙± 𝛿4𝜀4± 𝛿6𝜀6 (𝑙 = 1, 2, 3, 5). (4)

The mean-field Hamiltonian �̂�MF describes long-
range dipole-dipole interactions and indirect (through
lattice vibrations) proton-proton interactions. Ac-
counting for the expansion of the Fourier transforms
of the interaction constants 𝐽𝑓𝑓 ′ =

∑︀
𝑞′ 𝐽𝑓𝑓 ′(𝑞𝑞′) at

q = 0 in series in the strains 𝜀𝑗 and confining the
expansions to the linear terms,

𝐽 11
33

= 𝐽0
11 +

∑︁
𝑙

𝜓11𝑙𝜀𝑙 ± 𝜓114𝜀4 ± 𝜓116𝜀6,

𝐽 13
24

= 𝐽0
13
24

+
∑︁
𝑙

𝜓 13𝑙
24𝑙
𝜀𝑙 + 𝜓 134

244
𝜀4 + 𝜓 136

246
𝜀6,
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𝐽 12
34

= 𝐽0
12 +

∑︁
𝑙

𝜓12𝑙𝜀𝑙 ± 𝜓124𝜀4 ± 𝜓126𝜀6,

𝐽 14
23

= 𝐽0
14 +

∑︁
𝑙

𝜓14𝑙𝜀𝑙 ± 𝜓144𝜀4 ± 𝜓146𝜀6,

𝐽 22
44

= 𝐽0
22 +

∑︁
𝑙

𝜓22𝑙𝜀𝑙 ± 𝜓224𝜀4 ± 𝜓226𝜀6,

we obtain the term �̂�MF in the form

�̂�MF = 𝑁𝐻0 + �̂�𝑠, (5)

where

𝐻0 =
1

8
𝐽11(𝜂

2
1 + 𝜂23) +

1

8
𝐽22(𝜂

2
2 + 𝜂24)+

+
1

4
𝐽13𝜂1𝜂 + 𝐽24𝜂2𝜂4+

1

4
𝐽12(𝜂1𝜂2+𝜂3𝜂4)+

+
1

4
𝐽14(𝜂1𝜂4+𝜂2𝜂3) (6)

and

�̂�𝑠 = −
∑︁
𝑞

(︁
ℋ1

𝜎𝑞1
2

+ℋ2
𝜎𝑞2
2

+ℋ3
𝜎𝑞3
2

+ℋ4
𝜎𝑞4
2

)︁
. (7)

In formula (7), the following notations were used:

ℋ𝑓 =

4∑︁
𝑓 ′=1

1

2
𝐽𝑓𝑓 ′𝜂𝑓 ′ (𝑓 = 1÷4).

The fourth term in Eq. (1), �̂�𝐸 , describes the in-
teraction of pseudospins with electric fields,

�̂�𝐸 =

4∑︁
𝑓=1

𝐻𝐸𝑓
𝜎𝑞𝑓
2
, (8)

where

𝐻𝐸1,3 = ±𝜇𝑥
13𝐸1 + 𝜇𝑦

13𝐸2 ± 𝜇𝑧
13𝐸3,

𝐻𝐸2,4 = ∓𝜇𝑥
24𝐸1 − 𝜇𝑦

24𝐸2 ± 𝜇𝑧
24𝐸3,

and 𝜇𝑥,𝑦,𝑧
13 = 𝜇𝑥,𝑦,𝑧

1 = 𝜇𝑥,𝑦,𝑧
3 and 𝜇𝑥,𝑦,𝑧

24 = 𝜇𝑥,𝑦,𝑧
2 =

= 𝜇𝑥,𝑦,𝑧
4 are effective dipole moments per pseudospin.

When calculating the thermodynamic and dynamic
parameters of ferroactive compounds of the GPI type,
let us apply the two-particle cluster (TPC) approx-
imation. In this approximation, the thermodynamic

potential of GPI under the action of the shear stresses
𝜎5,6 looks like

𝐺 = 𝑁𝑈seed +𝑁𝐻0 −𝑁𝜐

6∑︁
𝑗=5

𝜎𝑗𝜀𝑗 −

− 𝑘B𝑇
∑︁
𝑞

⎡⎣2 ln Sp 𝑒−𝛽�̂�(2)
𝑞 −

4∑︁
𝑓=1

ln Sp 𝑒−𝛽�̂�
(1)
𝑞𝑓

⎤⎦. (9)

Here, �̂�(2)
𝑞 and �̂�

(1)
𝑞𝑓 are the two- and one-particle,

respectively, Hamiltonians given by the following ex-
pressions:

�̂�(2)
𝑞 = −2

(︁
𝑤1
𝜎𝑞1
2

𝜎𝑞2
2

+ 𝑤2
𝜎𝑞3
2

𝜎𝑞4
2

)︁
−

4∑︁
𝑓=1

𝑦𝑓
𝛽

𝜎𝑞𝑓
2
,

(10)

�̂�
(1)
𝑞𝑓 = −𝑦𝑓

𝛽

𝜎𝑞𝑓
2
, (11)

where the following notations were used:

𝑦𝑓 = 𝛽(Δ1 +ℋ𝑓 +𝐻𝐸𝑓 ), 𝑦𝑓 = 𝛽Δ𝑓 + 𝑦𝑓 .

The quantities Δ𝑓 are effective fields created by
neighbor links located beyond the cluster boundaries.
In the cluster approximation, the fields Δ𝑓 are deter-
mined from the self-consistency condition

Sp𝜎𝑞𝑓𝑒
−𝛽�̂�(2)

𝑞

Sp 𝑒−𝛽�̂�
(2)
𝑞

=
Sp𝜎𝑞𝑓𝑒

−𝛽�̂�
(1)
𝑞𝑓

Sp 𝑒−𝛽�̂�
(1)
𝑞𝑓

. (12)

Then, on the basis of Eq. (12), we obtain expressions
for the average values of the pseudospin, ⟨𝜎𝑞𝑓 ⟩, in
the cases of two- and one-particle Hamiltonians. By
excluding the parameters Δ𝑓 , we obtain the following
relations:

𝜂 1
3
=

1

𝐷

[︂
sinh𝑛1 ± sinh𝑛2 + 𝑎2 sinh𝑛3 ±

± 𝑎2 sinh𝑛4 + 𝑎𝑎46 sinh𝑛5 +
𝑎

𝑎46
sinh𝑛6 ∓

∓ 𝑎𝑎46 sinh𝑛7 ±
𝑎

𝑎46
sinh𝑛8

]︂
,

𝜂 2
4
=

1

𝐷

[︂
sinh𝑛1 ± sinh𝑛2 − 𝑎2 sinh𝑛3 ∓

∓ 𝑎2 sinh𝑛4 ∓ 𝑎𝑎46 sinh𝑛5 ±
𝑎

𝑎46
sinh𝑛6 +

+ 𝑎𝑎46 sinh𝑛7 +
𝑎

𝑎46
sinh𝑛8

]︂
,
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𝐷 = cosh𝑛1 + cosh𝑛2 + 𝑎2 cosh𝑛3 +

+ 𝑎2 cosh𝑛4 + 𝑎𝑎46 cosh𝑛5 +
𝑎

𝑎46
cosh𝑛6 +

+ 𝑎𝑎46 cosh𝑛7 +
𝑎

𝑎46
cosh𝑛8,

where

𝑎 = exp

[︃
−𝛽

(︃
𝑤0 +

3∑︁
𝑙=1

𝛿𝑖𝜀𝑖

)︃]︃
,

𝑎46 = exp [−𝛽 (𝛿4𝜀4 + 𝛿6𝜀6)],

𝑛1 =
1

2
(𝑦1 + 𝑦2 + 𝑦3 + 𝑦4),

𝑛2 =
1

2
(𝑦1 + 𝑦2 − 𝑦3 − 𝑦4),

𝑛3 =
1

2
(𝑦1 − 𝑦2 + 𝑦3 − 𝑦4),

𝑛4 =
1

2
(𝑦1 − 𝑦2 − 𝑦3 + 𝑦4),

𝑛5 =
1

2
(𝑦1 − 𝑦2 + 𝑦3 + 𝑦4),

𝑛6 =
1

2
(𝑦1 + 𝑦2 + 𝑦3 − 𝑦4),

𝑛7 =
1

2
(−𝑦1 + 𝑦2 + 𝑦3 + 𝑦4),

𝑛8 =
1

2
(𝑦1 + 𝑦2 − 𝑦3 + 𝑦4),

and
𝑦𝑓 =

1

2
ln

1 + 𝜂𝑓
1− 𝜂𝑓

+
𝛽

2
𝐻𝑓 +

𝛽

2
𝜇𝑓E.

3. Thermodynamic Parameters of GPI

In order to obtain the dielectric, piezoelectric, and
elastic parameters of GPI, let us use formula (9) to
calculate the thermodynamic potential per primitive
cell,

𝑔 =
𝐺

𝑁
=𝑈seed +𝐻0−2

(︃
𝑤0+

∑︁
𝑙

𝛿𝑙𝜀𝑙

)︃
+

+2𝑘B𝑇 ln 2−𝑁𝜐

6∑︁
𝑗=5

𝜎𝑗𝜀𝑗 −
1

2
𝑘B𝑇

4∑︁
𝑓=1

ln
(︀
1− 𝜂2𝑓

)︀
−

− 2𝑘B𝑇 ln𝐷, 𝑙 = 1, 2, 3, 5. (13)

By differentiating this expression with respect to the
fields 𝐸𝑖, we obtain the following formulas for the
polarizations 𝑃𝑖:

𝑃1 = 𝑒014𝜀4 + 𝑒016𝜀6 + 𝜒𝜀0
11𝐸1 +

+
1

2𝑣
[𝜇𝑥

13(𝜂1 − 𝜂3)− 𝜇𝑥
24(𝜂2 − 𝜂4)], (14)

𝑃2 = 𝑒021𝜀1 + 𝑒022𝜀2 + 𝑒023𝜀3 + 𝑒025𝜀5 + 𝜒𝜀0
22𝐸2 +

+
1

2𝑣
[𝜇𝑦

13(𝜂1 + 𝜂3)− 𝜇𝑦
24(𝜂2 + 𝜂4)], (15)

𝑃3 = 𝑒034𝜀4 + 𝑒066𝜀6 + 𝜒𝜀0
33𝐸3 +

+
1

2𝑣
[𝜇𝑧

13(𝜂1 − 𝜂3) + 𝜇𝑧
24(𝜂2 − 𝜂4)]. (16)

The static isothermal dielectric susceptibilities
along the axes of a mechanically clamped GPI crystal
look like

𝜒𝜀
11 = 𝜒𝜀0

11 +

+
1

2𝜐
[𝜇𝑥

13(�̇�1𝐸1 − �̇�3𝐸1)− 𝜇𝑥
24(�̇�2𝐸1 − �̇�4𝐸1)], (17)

𝜒𝜀
22 = 𝜒𝜀0

22 +

+
1

2𝜐
[𝜇𝑦

13(�̇�1𝐸2
+ �̇�3𝐸2

)− 𝜇𝑦
24(�̇�2𝐸2

+ �̇�4𝐸2
)], (18)

𝜒𝜀
33 = 𝜒𝜀0

33 +

+
1

2𝜐
[𝜇𝑧

13(�̇�1𝐸3
− �̇�3𝐸3

) + 𝜇𝑧
24(�̇�2𝐸3

− �̇�4𝐸3
)], (19)

where �̇�1𝐸 , �̇�3𝐸 , �̇�2𝐸 , and �̇�4𝐸 are the solutions of the
following system of equations:⎛⎜⎜⎝
2𝐷 − κ11 −κ12 −κ13 −κ14

−κ21 2𝐷 − κ22 −κ23 −κ24

−κ31 −κ32 2𝐷 − κ33 −κ34

−κ41 −κ42 −κ43 2𝐷 − κ44

⎞⎟⎟⎠×

×

⎛⎜⎜⎜⎝
�̇�1𝐸𝛼

�̇�2𝐸𝛼

�̇�3𝐸𝛼

�̇�4𝐸𝛼

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
κ𝜒𝛼
1

κ𝜒𝛼
2

κ𝜒𝛼
3

κ𝜒𝛼
4

⎞⎟⎟⎟⎠. (20)

Here, the following notations were used:

κ𝑓1 = κ𝑓11(𝜙
+
1 + 𝛽𝜈+1 ) + κ𝑓12(𝛽𝜈

+
2 + 𝛽𝜈+2 )+

+κ𝑓13(𝜙
−
1 + 𝛽𝜈−1 ) + κ𝑓14𝛽(𝜈

−
2 + 𝛽𝜈−2 );

κ𝑓2 = κ𝑓12(𝜙
+
2 + 𝛽𝜈+3 ) + κ𝑓11(𝛽𝜈

+
2 + 𝛽𝜈−2 )+

+κ𝑓14(𝜙
−
2 + 𝛽𝜈−3 ) + κ𝑓13(𝛽𝜈

−
2 + 𝛽𝜈+2 ),

κ𝑓3 = κ𝑓11(𝜙
+
3 − 𝛽𝜈−1 ) + κ𝑓12(𝛽𝜈

+
2 − 𝛽𝜈+2 )−

−κ𝑓13(𝜙
−
3 − 𝛽𝜈+1 )− κ𝑓14(𝛽𝜈

−
2 − 𝛽𝜈−2 ),
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κ𝑓4 = κ𝑓12(𝜙
+
4 − 𝛽𝜈−3 ) + κ𝑓11(𝛽𝜈

+
2 − 𝛽𝜈−2 )−

−κ𝑓14(𝜙
−
4 − 𝛽𝜈+3 )− κ𝑓13(𝛽𝜈

−
2 − 𝛽𝜈+2 ),

κ𝜒𝑥
𝑓 = κ𝑓13𝛽𝜇

𝑥
13 + κ𝑓15𝛽𝜇

𝑥
24,κ

𝜒𝑦
𝑓 =

= κ𝑓11𝛽𝜇
𝑦
13 + κ𝑓12𝛽𝜇

𝑦
24,κ

𝜒𝑧
𝑓 =

= κ𝑓13𝛽𝜇
𝑧
13 + κ𝑓14𝛽𝜇

𝑧
24,

𝜙±
1,3 =

1

1− 𝜂21,3
+ 𝛽𝜈±1 ,

𝜙±
2,4 =

1

1− 𝜂22,4
+ 𝛽𝜈±3 ,

𝜙±
1,3 =

1

1− 𝜂21,3
+ 𝛽𝜈±1 ,

𝜙±
2,4 =

1

1− 𝜂22,4
+ 𝛽𝜈±3 ,

𝜈±𝑙 = 𝜈0±𝑙 +

3∑︁
𝑖=1

𝜓±
𝑙𝑖 𝜀𝑖 + 𝜓±

𝑙5𝜀5,

𝜈𝑙
± = 𝜓±

𝑙4𝜀4 + 𝜓±
𝑙6𝜀6,

𝜈0±1 =
1

4
(𝐽0

11 ± 𝐽0
13), 𝜓±

1𝑖 =
1

4
(𝜓11𝑖 ± 𝜓13𝑖),

𝜈0±2 =
1

4
(𝐽0

12 ± 𝐽0
14), 𝜓±

2𝑖 =
1

4
(𝜓12𝑖 ± 𝜓14𝑖),

𝜈0±3 =
1

4
(𝐽0

22 ± 𝐽0
24), 𝜓±

3𝑖 =
1

4
(𝜓22𝑖 ± 𝜓24𝑖),

κ 1
3 11

= (𝑙𝑐1+3 + 𝑙𝑐5+6)− 𝜂 1
3
(𝑙𝑠1+3 + 𝑙𝑠5+6),

κ 1
3 12

= (𝑙𝑐1−3 ∓ 𝑙𝑐7−8)− 𝜂 1
3
(𝑙𝑠1−3 + 𝑙𝑠7+8),

κ 1
3 13

= ±(𝑙𝑐2+4 + 𝑙𝑐7+8)− 𝜂 1
3
(𝑙𝑠2+4 − 𝑙𝑠7−8),

κ 1
3 14

= (±𝑙𝑐2−4 − 𝑙𝑐5−6)− 𝜂 1
3
(𝑙𝑠2−4 − 𝑙𝑠5−6),

κ 2
4 11

= (𝑙𝑐1−3 ∓ 𝑙𝑐5−6)− 𝜂 2
4
(𝑙𝑠1+3 + 𝑙𝑠5+6),

κ 2
4 12

= (𝑙𝑐1+3 + 𝑙𝑐7+8)− 𝜂 2
4
(𝑙𝑠1−3 + 𝑙𝑠7+8),

On the basis of relations (14)–(16), we obtain ex-
pressions for the isothermal coefficients of piezoelec-
tric strains in GPI, 𝑒1𝑗 , 𝑒2𝑙, and 𝑒3𝑗 :

𝑒1𝑗 =

(︂
𝜕𝑃1

𝜕𝜀𝑙

)︂
𝐸1

=

= 𝑒02𝑗 +
1

2𝜐
[𝜇𝑥

13(�̇�1𝜀𝑗 − �̇�3𝜀𝑗 )− 𝜇𝑥
24(�̇�2𝜀𝑗 − �̇�4𝜀𝑗 )],

(𝑗 = 4, 6), (21)

𝑒2𝑙 =

(︂
𝜕𝑃2

𝜕𝜀𝑙

)︂
𝐸2

=

= 𝑒02𝑙 +
1

2𝑣
[𝜇𝑦

13(�̇�1𝜀𝑙 + �̇�3𝜀𝑙)− 𝜇𝑦
24(�̇�2𝜀𝑙 + �̇�4𝜀𝑙)], (22)

𝑒3𝑗 =

(︂
𝜕𝑃3

𝜕𝜀𝑗

)︂
𝐸3

=

= 𝑒03𝑗 +
1

2𝜐
[𝜇𝑧

13(�̇�1𝜀𝑗 − �̇�3𝜀𝑗 ) + 𝜇𝑧
24(�̇�2𝜀𝑗 − �̇�4𝜀𝑗 )],

(𝑗 = 4, 6). (23)

Here, �̇�1𝜀𝑙 , �̇�2𝜀𝑙 , �̇�3𝜀𝑙 , and �̇�4𝜀𝑙 are the solutions of the
following system of equations:⎛⎜⎜⎝
2𝐷 − κ11 −κ12 −κ13 −κ14

−κ21 2𝐷 − κ22 −κ23 −κ24

−κ31 −κ32 2𝐷 − κ33 −κ34

−κ41 −κ42 −κ43 2𝐷 − κ44

⎞⎟⎟⎠×

×

⎛⎜⎜⎜⎝
�̇�1𝜀𝑙
�̇�2𝜀𝑙
�̇�3𝜀𝑙
�̇�4𝜀𝑙

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
κ𝑒𝑙
1

κ𝑒𝑙
2

κ𝑒𝑙
3

κ𝑒𝑙
4

⎞⎟⎟⎟⎠, (24)

where the following notations were applied:

κ𝑒𝑙
𝑓 = 𝛽(𝜓+

1𝑙κ𝑓11 + 𝜓+
2𝑙κ𝑓12)(𝜂1 + 𝜂3)+

+𝛽(𝜓+
2𝑙κ𝑓11 + 𝜓+

3𝑙κ𝑓12)(𝜂2 + 𝜂4)+

+𝛽(𝜓−
1𝑙κ𝑓13 + 𝜓−

2𝑙κ𝑓14)(𝜂1 − 𝜂3)+

+𝛽(𝜓−
2𝑙κ𝑓13 + 𝜓−

3𝑙κ𝑓14)(𝜂2 − 𝜂4)+

+2𝛽𝛿𝑙(𝜌𝑓1 + 𝜌𝑓2),

𝜓±
1𝑙 =

1

4
(𝜓11𝑙 ± 𝜓13𝑙), 𝜓±

2𝑙 =
1

4
(𝜓12𝑙 ± 𝜓14𝑙),

𝜓±
3𝑙 =

1

4
(𝜓22𝑙 ± 𝜓24𝑙),

𝜌 1
3 1

= −2(𝑙𝑠3±4 − 𝜂 1
3
𝑙𝑐3+4),

𝜌 1
3 2

= −𝑙𝑠5+6 ± 𝑙𝑠7−8 + 𝜂 1
3
(𝑙𝑐5+6 + 𝑙𝑐7+8),

𝜌 2
4 1

= 2(𝑙𝑠3±4 + 𝜂 1
3
𝑙𝑐3+4),

𝜌 2
4 2

= ±𝑙𝑠5−6 − 𝑙𝑠7+8 + 𝜂 1
3
(𝑙𝑐5+6 + 𝑙𝑐7+8),

𝜌 1
3 𝑗

= 𝑙𝑠5+6 ± 𝑙𝑠7−8 + 𝜂 1
3
(𝑙𝑐5+6 − 𝑙𝑐7+8),

𝜌 2
4 𝑗

= ∓𝑙𝑠5−6 + 𝑙𝑠7+8 + 𝜂 2
4
(𝑙𝑐5+6 − 𝑙𝑐7+8),
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𝑙𝑠3±4 = 𝑎2 sinh𝑛3 ± 𝑎2 sinh𝑛4,

𝑙𝑐3+4 = 𝑎2 cosh𝑛3 + 𝑎2 cosh𝑛4.

The molar entropy of the proton subsystem equals

𝑆 =
𝑅

4

{︂
−2 ln 2 +

4∑︁
𝑓=1

ln (1− 𝜂𝑓 ) + 2 ln𝐷−

− 2
{︀
𝛽𝜈+1 (𝜂1 + 𝜂3)

2 + 𝛽𝜈+1
[︀
𝜂1(𝜂1 + 𝜂3)+

+ 𝜂3(𝜂1 − 𝜂3)
]︀
+ 2𝛽𝜈+2 (𝜂1 + 𝜂3)(𝜂2 + 𝜂4)+

+2𝛽𝜈+2 (𝜂1 − 𝜂3)(𝜂2 + 𝜂4) + 𝛽𝜈+3 (𝜂2 + 𝜂4)
2 +

+𝛽𝜈+3 [𝜂2(𝜂2 + 𝜂4) + 𝜂4(𝜂2 − 𝜂4)] +

+𝛽𝜈−1 (𝜂1 − 𝜂3)
2 +

+𝛽𝜈−1 [𝜂1(𝜂1 − 𝜂3) + 𝜂3(𝜂1 + 𝜂3)] +

+2𝛽𝜈−2 (𝜂1 − 𝜂3)(𝜂2 − 𝜂4)+

+2𝛽𝜈−2 (𝜂1 + 𝜂3)(𝜂2 − 𝜂4) + 𝛽𝜈−3 (𝜂2 − 𝜂4)
2 +

+𝛽𝜈−3 [𝜂2(𝜂2 − 𝜂4)− 𝜂4(𝜂2 + 𝜂4)]
}︀
+

4𝑤

𝑇𝐷
𝑀

}︂
. (25)

Here, 𝑅 is the universal gas constant. The heat ca-
pacity of the proton subsystem in a GPI crystal at
a constant pressure can be found by differentiating
entropy (25).

4. Comparison of the Results of Numerical
Calculations with Experimental Data

The values of some microscopic parameters are re-
quired to numerically calculate the temperature de-
pendences of the dielectric and piezoelectric param-
eters of GPI. These are the parameter of the short-
range interaction 𝑤0; the parameters of long-range
interactions 𝜈0±𝑓 (f = 1, 2, 3); the deformation po-
tentials 𝛿𝑖 and 𝜓±

𝑓𝑖 (i = 1, ..., 6); the effective dipole
moments 𝜇𝑎

13, 𝜇𝑎
24, 𝜇𝑏

13, 𝜇𝑏
24, 𝜇𝑐

13, and 𝜇𝑐
24; the “seed”

dielectric susceptibilities 𝜒𝜀0
𝑖𝑗 ; the “seed” piezoelectric

strain coefficients 𝑒0𝑖𝑗 ; and the elastic constants 𝑐𝐸0
𝑖𝑗 .

In order to determine the required values, we used
the experimental temperature dependences of the fol-
lowing physical parameters of GPI: 𝑃𝑠(𝑇 ) [8], 𝐶𝑝(𝑇 )
[9], 𝜀𝜎11, 𝜀𝜎33 [1], 𝑑21, and 𝑑23 [10]. The volume of the
primitive GPI unit cell was taken equal to 𝜐0.0 =
= 0.601× 10−21 cm3.

The optimal values obtained for the parameters
𝜈0±𝑓 = 𝜈0±𝑓 /𝑘B of long-range interactions are 𝜈0+1 =

= 𝜈0+2 = 𝜈0+3 = 3.065 K and 𝜈0−1 = 𝜈0−2 = 𝜈0−3 =

= 0.05 K. The parameter of the short-range interac-
tion 𝑤0 in the GPI crystal was calculated to equal
to 𝑤0/𝑘B = 800 K. The optimal values found for the
deformation potentials 𝛿𝑖 = 𝛿𝑖/𝑘B are 𝛿1 = 500 K,
𝛿2 = 600 K, 𝛿3 = 500 K, 𝛿4 = 150 K, 𝛿5 = 100 K, and
𝛿6 = 150 K; and the optimal values for 𝜓±

𝑓𝑖 = 𝜓±
𝑓𝑖/𝑘B

are 𝜓+
𝑓1 = 93.6 K, 𝜓+

𝑓2 = 252.5 K, 𝜓+
𝑓3 = 110.7 K,

𝜓+
𝑓5 = 22.7 K, 𝜓+

𝑓4 = 𝜓+
𝑓6 = 𝜓−

𝑓4 = 𝜓−
𝑓6 = 79.5 K,

𝜓−
𝑓1 = 𝜓−

𝑓2 = 𝜓−
𝑓3 = 𝜓−

𝑓5 = 0 K.
The effective dipole moments in the paraphase are

𝜇13 = (0.4, 4.05, 4.3) × 10−18 esu cm and 𝜇24 =
= (−2.3,−3.0, 2.2)×10−18 esu cm. In the ferrophase,
the 𝑦-component of the first dipole moment equals
𝜇𝑦
13ferro = 3.82× 10−18 esu cm.
The values of the “seed” piezoelectric strain coef-

ficients 𝑒0𝑖𝑗 , the “seed” dielectric susceptibilities 𝜒𝜀0
𝑖𝑗 ,

and the “seed” elastic constants 𝑐𝐸0
𝑖𝑗 are as follows:

𝑒0𝑖𝑗 = 0.0 esu/cm2, 𝜒𝜀0
11 = 0.1, 𝜒𝜀0

22 = 0.403, 𝜒𝜀0
33 = 0.5,

𝜒𝜀0
31 = 0.0, 𝑐0𝐸11 = 269.1 kbar, 𝑐𝐸0

12 = 145 kbar,
𝑐𝐸0
13 = 116.4 kbar, 𝑐𝐸0

15 = 39.1 kbar, 𝑐𝐸0
22 = [649.9−

− 0.4(𝑇 − 𝑇𝑐)] kbar, 𝑐𝐸0
23 = 203.8 kbar, 𝑐𝐸0

25 =
= 56.4 kbar, 𝑐𝐸0

33 = 244.1 kbar, 𝑐𝐸0
35 = −28.4 kbar,

𝑐𝐸0
55 = 85.4 kbar, 𝑐𝐸0

44 = 153.1 kbar, 𝑐𝐸0
46 = −11 kbar,

and 𝑐𝐸0
66 = 118.8 kbar.

Now, let us consider how the thermodynamic pa-
rameters of the GPI crystal are changed, when the
shear stresses 𝜎5 and 𝜎6 and the electric field 𝐸1 are
applied simultaneously. The main mechanism of the
influence of the shear stresses 𝜎5 and 𝜎6 on the ther-
modynamic parameters of the GPI crystal is associ-
ated with a specific temperature behavior of the order
parameters 𝜂𝑓 at various stresses. The stress 𝜎5 in the
𝑋𝑍-plane of the crystal does not affect the symme-
try of the parameters, which are only shifted along
the temperature axis in this case. On the other hand,
the action of the stress 𝜎6 in the 𝑋𝑌 -plane of the
crystal leads to the relations 𝜂1 = 𝜂2 ̸= 𝜂3 = 𝜂4. Fur-
thermore, the order parameters become smeared,
which testifies to the disappearance of the phase tran-
sition from the ferroelectric phase into the paraelec-
tric one.

If the shear stress 𝜎6 is applied in the absence of the
electric field (curves 620 in all figures), the crystal sym-
metry decreases, and two sublattices (chain A and
chain B) become non-equivalent (see work [7]). As a
result, the interactions between pseudospins become
stronger in chain A and weaker in chain B. The en-
hancement of interactions in either sublattice at a cer-
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tain stress 𝜎6 initiates a phase transition into the fer-
roelectric phase and elevates the temperature 𝑇𝑐. In
the figures to follow, the curves marked with the num-
bers 5 and 6 correspond to the applied mechanical
stresses 𝜎5 and 𝜎6, respectively, the superscripts in-
dicate the stress values (in kbar units), and the sub-
scripts mean the field strength magnitudes (in MV/m
units).

The temperature dependences of the GPI crystal
polarization 𝑃2 at various values of the stress 𝜎5,
𝜎6 and the electric field strength 𝐸1 are shown in
Fig. 2 (left panel). The combined action of those fac-
tors only leads to a shift of the curve 𝑃2(𝑇 ) along
the temperature axis. The polarization curve corre-
sponding to a field strength of 4 MV/m and the stress
𝜎5 = 0 (curve 504) is the most shifted toward low tem-
peratures, whereas curve 520 is the most shifted toward
high temperatures. The growth of the field strength
𝐸1 shifts the curves 𝑃2(𝑇 ) to the left from curve 500,
and the growth of the stress 𝜎5 to the right from it.

If the stress 𝜎6 and the electric field 𝐸1 are ap-
plied, the phase transition becomes smeared (Fig. 2,
right panel). If only the field or the stress is applied,
the polarization curves 𝑃2(𝑇 ) – curves 504 and 520, re-
spectively – are zeroed at the phase transition tem-
perature. At the same time, the combined action of
the field 𝐸1 and the stress 𝜎6 results in the disap-
pearance of the phase transition temperature and the
phase transition smearing.

If the stress 𝜎6 and the electric field 𝐸1 are applied
to the crystal, the polarizations 𝑃1 and 𝑃3 are induced
(Fig. 3). If only the stress 𝜎6 is applied, those polar-
izations are zeroed at the phase transition tempera-
ture. If only the field 𝐸1 is applied or the stress 𝜎6 and
the electric field 𝐸1 are applied together, the polar-
izations 𝑃1 and 𝑃3 are smeared at this temperature.

Under the action of the stress 𝜎6 and the electric
field 𝐸1, the curves 𝑃1(𝑇 ) are positive and increase
with the temperature. Then they reach a maximum
and, afterward, decrease. The polarizations 𝑃3 in this
case are negative. They at first decrease to a min-
imum and then increase as the temperature grows
further. The simultaneous growth of the field and the
stress leads to an increase of the polarization mag-
nitude. The induced polarization 𝑃3 is much larger
than the polarization 𝑃1 obtained at the same val-
ues of the stress 𝜎6 and the electric field 𝐸1. The in-
duced polarizations arise because two sublattices be-
come non-equivalent under the action of the stress

Fig. 2. Temperature dependences of the GPI crystal polar-
ization 𝑃2 at various values of the stresses 𝜎𝑗 and the electric
field 𝐸1

Fig. 3. Temperature dependences of the GPI crystal polar-
izations 𝑃1 and 𝑃3 at various values of the stress 𝜎6 and the
electric field 𝐸1

𝜎6. Therefore, the dipole moments of two sublattices
in the 𝑋𝑍 and 𝑋𝑌 , respectively, planes are not com-
pensated.

Figure 4 (left panel) demonstrates the temperature
dependences of the inverse dielectric permittivity 𝜀−1

22

of the GPI crystal, if the stress 𝜎5 and the electric field
𝐸1 are applied. The combined action of those factors
only shifts the 𝜀−1

22 (𝑇 ) curves along the temperature
axis. The growth of the field strength 𝐸1 shifts the
𝜀−1
22 (𝑇 ) curves to the left and the growth of the stress
𝜎5 to the right from curve 500. In the absence of the
field and the stress, the longitudinal permeability di-
verges at the point 𝑇𝑐, but if they are applied, the
maxima of 𝜀22 become finite.

If the stress 𝜎6 and the electric field 𝐸1 are applied
to the crystal (Fig. 4, right panel), then curves 600, 602,
and 640 for the inverse permeability 𝜀−1

22 are zeroed at
𝑇 = 𝑇𝑐. The combined action of the stress 𝜎6 and the
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Fig. 4. Temperature dependences of the inverse dielectric con-
stant 𝜀−1

22 of the GPI crystal at various values of the stresses
𝜎𝑗 and the electric field 𝐸1

Fig. 5. Temperature dependences of the dielectric constant
𝜀11 of the GPI crystal at various values of the stresses 𝜎𝑗 and
the electric field 𝐸1

Fig. 6. Temperature dependences of the dielectric constant
𝜀33 of the GPI crystal at various values of the stresses 𝜎𝑗 and
the electric field 𝐸1

field 𝐸1 changes the permeability 𝜀22. In this case, the
permeability 𝜀22 decreases with the increasing stress
at a constant field and with the increasing field at a
constant stress.

Fig. 7. Temperature dependences of the piezoelectric strain
coefficient 𝑒21 of the GPI crystal at various values of the
stresses 𝜎𝑗 and the electric field 𝐸1

Fig. 8. Temperature dependences of the piezoelectric strain
coefficient 𝑒1𝑗 of the GPI crystal at various values of the
stresses 𝜎𝑗 and the electric field 𝐸1

Fig. 9. Temperature dependences of the piezoelectric strain
coefficient 𝑒3𝑗 of the GPI crystal at various values of the
stresses 𝜎𝑗 and the electric field 𝐸1

If the stress 𝜎5 and the field 𝐸1 are applied to the
crystal, there arises a jump of the permittivities 𝜀11
and 𝜀33 at the phase transition temperature. These
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jumps decrease and shift to higher temperatures with
the growth of the stress 𝜎5 (Figs. 5 and 6). As was
found in work [6], the reduction of 𝑇𝑐 and the growth
of 𝜀33 in the ferroelectric phase occur due to a partial
disordering of protons in the chain of type B (see
Fig. 1) under the action of the field 𝐸1.

If only the field 𝐸1 is applied, each of the perme-
abilities 𝜀11 and 𝜀33 has a jump, and their maxima
become smaller and more round as the stress 𝜎6 in-
creases (Figs. 5 and 6). At the stress magnitudes
exceeding 1 kbar, the curves 𝜀11(𝑇 ) and 𝜀33(𝑇 ) are
smeared and there appear two maxima in them. If
only the stress 𝜎6 is applied to the crystal, the perme-
ability curves 𝜀11(𝑇 ) and 𝜀33(𝑇 ) behave as for the lon-
gitudinal permeability. The joint action of the stress
𝜎6 and the field 𝐸1 makes the permeabilities 𝜀11 and
𝜀33 finite, and their values decrease with the increas-
ing field.

The temperature dependences of the piezoelectric
strain coefficient 𝑒21 for the GPI crystal under the
action of the stress 𝜎5 and the field 𝐸1 are shown in
Fig. 7. If only the field 𝐸1 is applied to the crystal, the
curves 𝑒21(𝑇 ) shift to lower temperatures and become
finite. At the combined action of the stress 𝜎5 and
the field 𝐸1, the curves 𝑒21(𝑇 ) shift toward higher
temperatures as the stress 𝜎5 grows, and the negative
𝑒21-maxima become some smaller.

The temperature dependences of the piezoelectric
moduli 𝑒1𝑗 (Fig. 8) and 𝑒3𝑗 (Fig. 9) under the action of
the stress 𝜎5 and the field 𝐸1 are similar. At temper-
atures close to the phase transition one, the combined
action of the stress 𝜎5 and the field 𝐸1 leads to a dras-
tic increase of the negative values of 𝑒1𝑗 and the posi-
tive values of 𝑒3𝑗 . At the combined action of the stress
𝜎6 and the field 𝐸1, the curves for the piezoelectric
moduli 𝑒1𝑗 and 𝑒3𝑗 are smeared, and the paraphase
values of those parameters are induced. Another spe-
cific feature consists in the change of the signs of the
transverse piezoelectric coefficients 𝑒1𝑗 and 𝑒3𝑗 near
𝑇𝑐, which is associated with an almost complete dis-
ordering of protons in chain B near 𝑇𝑐.

As one can see from Figs. 8 and 9 (curves 620),
the temperature dependences 𝑒1𝑗(𝑇 ) and 𝑒3𝑗(𝑇 ) di-
verge at the 𝑇𝑐 point. It occurs because, if the stress
𝜎6 ̸= 0, small strain changes 𝑑𝜀4 and 𝑑𝜀6 are ac-
companied by a temperature change 𝑑𝑇𝑐 and a shift
of the curves 𝑃1(𝑇 ) and 𝑃3(𝑇 ) to higher tempera-
tures. Since 𝑑𝑃𝑖/𝑑𝑇 → ∞ near the phase transition
temperature, 𝑑𝑃𝑖/𝑑𝜀4 → ∞ and 𝑑𝑃𝑖/𝑑𝜀6 → ∞.

Fig. 10. Temperature dependences of Δ𝐶𝑝 of the GPI crystal
at various values of the stresses 𝜎𝑗 and the electric field 𝐸1

The temperature dependences of Δ𝐶𝑝 of the GPI
crystal, when the stress 𝜎5 and the field 𝐸1 are ap-
plied, are shown in Fig. 10 (left panel). In this case,
the curves Δ𝐶𝑝(𝑇 ) become shifted toward lower tem-
peratures and their maxima decrease. The reduction
of the field 𝐸1 leads to the growth of the Δ𝐶𝑝(𝑇 )
maximum.

If the stress 𝜎6 and the field 𝐸3 are applied, the
jump of Δ𝐶𝑝 becomes smeared as the stress 𝜎6 in-
creases (Fig. 10, right panel).

5. Conclusions

In this work, the influence of the combined action
of the stresses 𝜎5 and 𝜎6 and the electric field 𝐸1

on the phase transition in and the physical param-
eters of the quasi-one-dimensional GPI ferroelectric
has been studied. The research was performed in the
framework of a modified model for the proton order-
ing in quasi-one-dimensional ferroelectrics with hy-
drogen bonds of the GPI type with regard for the
piezoelectric coupling with the strains 𝜀𝑗 in the fer-
roelectric phase in the two-particle cluster approxi-
mation. It is found that the application of the shear
stress 𝜎5 substantially increases the strain 𝜀5 and in-
significantly the strain 𝜀3, whereas the stress 𝜎6 in-
creases only the strain 𝜀6. It is also found that the
action of the stresses 𝜎5 and 𝜎6 and the field 𝐸1 af-
fects the thermodynamic parameters of the GPI crys-
tal by changing the temperature behavior of the order
parameters.

The results of numerical calculations show how the
changes in the temperature dependences of the ther-
modynamic parameters depend on the signs of the

ISSN 2071-0186. Ukr. J. Phys. 2021. Vol. 66, No. 1 77



A.S. Vdovych, I.R. Zachek, R.R. Levitskii

stresses 𝜎𝑗 and the electric field 𝐸1 under the com-
bined action on those factors. In particular, if the
stress 𝜎5 and the field 𝐸1 are applied to the crystal,
the temperature dependences of thermodynamic pa-
rameters become shifted along the temperature axis
toward lower temperatures. The combined applica-
tion of the stress 𝜎6 and the field 𝐸1 results in the
appearance of a number of interesting effects, e.g.,
the smearing of the polarization 𝑃2 and the disap-
pearance of the phase transition, the emergence of
the transverse polarizations 𝑃1 and 𝑃3 in the ferro-
electric and paraelectric phases, the emergence of the
dielectric permittivity 𝜀22 and the piezoelectric stress
coefficient 𝑒21, and the smearing of the piezoelectric
strain constant ℎ21.

No additional parameters are used when carrying
out the numerical calculations of thermodynamic pa-
rameters accounting for the shear stresses and the
field 𝐸1, as compared with the calculations performed
for the case without the account for those external
factors. Therefore, the temperature dependences ob-
tained in this work for the thermodynamic parame-
ters of the GPI crystal have a predictive character.
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A.С.Вдович, I.Р. Зачек, Р.Р.Левицький

ВПЛИВ НАПРУГ 𝜎5, 𝜎6 I ЕЛЕКТРИЧНОГО
ПОЛЯ 𝐸1 НА ТЕРМОДИНАМIЧНI
ХАРАКТЕРИСТИКИ СЕГНЕТОАКТИВНИХ
МАТЕРIАЛIВ GPI

Для дослiдження ефектiв, що виникають пiд дiєю зовнiш-
нiх зсувних напруг 𝜎5, 𝜎6 i електричного поля 𝐸1, викори-
стано модифiковану модель кристала GPI шляхом врахува-
ння п’єзоелектричного зв’язку структурних елементiв, якi
впорядковуються, з деформацiями 𝜀𝑗 . В наближеннi дво-
частинкового кластера розраховано вектори поляризацiї та
компоненти тензора статичної дiелектричної проникностi
механiчно затиснутого кристала, їх п’єзоелектричнi та те-
пловi характеристики. Дослiджено одночасну дiю напруги
𝜎5 i поля 𝐸1, а також напруги 𝜎6 i поля 𝐸1 на фазовий пе-
рехiд та фiзичнi характеристики кристала.

Ключовi слова: сегнетоелектрики, фазовий перехiд, дiе-
лектрична проникнiсть, п’єзомодулi, зсувна напруга.
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