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GENERAL SOLUTION TO THE FOURTH ORDER LINEAR DIFFERENTIAL EQUATION

WITH COEFFICIENTS SATISFYING THE SYSTEM
OF THREE THE FIRST ORDER DIFFERENTIAL EQUATIONS

In this paper we obtain the general solution of the fourth order linear differential equation with coefficients satisfying the system of
three the first order differential equations.

1. Introduction

The analytical method of the integration of the fourth order linear differential equation, which is considered in this paper,
was proposed by N. A. Lukashevich [7] while studying the linear differential equation of the third order. The gist of this
method is as follows: the general solution of the linear equation is searched in the form of product

y=8&(x)- y (%), (1)
where y,(x) is arbitrary partial solution of the linear equation, &(x) is sufficiently smooth a function. Then, using a special

procedure [2,7,8], the linear differential equation of the third order is reduced to the second order nonlinear differential equa-
tion of the form

(12i+b(x))i" =151 = hy (x)i' = 8i° — by (x)i* = hy (x)i — by (x) )
with respect to the new unknown function i(x), which is connected with the function £(x) by means of Schwarzian deriva-
tive using the relation

2
" 3 ” .
g—,——[é—,j —i(x). @
g 2\¢

Remark 1. The using Schwarzian derivative is an effective means for solving many mathematical problems. Among them
let's mention a classical problem of conformal mapping of the polygons, sides of which are the arcs of circles, the theory of
univalent functions, the theory of quadratic differentials, problems of the nonlinear dynamics, etc. In the papers [5, 9] the appli-
cations of Schwarzian derivative to the studying of the dynamics of mappings of the segments are given. Application examples
of the generalized Schwarzian derivative in solving the problems about softness or stiffness of the Andronov-Hopf bifurcations
are given in the paper [13]. Some other applications of Schwarzian derivative are described in the papers [1, 10].

Remark 2. Under certain coefficient ratios the equation (2) can be reduced to the XXV Painlevé equation in the Ince
classification [6].

Detailed study of the homogeneous linear differential equation of the third order by the instrumentality of the relations
(1), (3) and the equation (2) is given in the paper [2]. There's also given the generalization of studying method on the fourth
order linear equations of the form

y(W)+p(x)y”'+q(x)y"+r(x)y’+s(x)y=0. 4)
In this case the appropriate nonlinear differential equation with respect to the function i(x) is the fourth order equation
and is quite cumbersome (denote it (A)). The explicit form of the equation (A) is given in the paper [2].

It should be noted, that if the functions £(x) and i(x) are known, then partial solution of the equation (4) can be found
as the general solution of the first order linear differential equation of the form [3]
yll (61'p4 - 3rp3 + 3q’p3 + 36in2 + qu2 - 32iqp2 - 6sp2 - 3r’p2 + 91'”p2 + 3q”p2 +20irp +14qrp + 20iq’p -
~10gq p—30ip" p—3qp" p+80i° —4q> +36ig* —18r* —150i% +6(6i —q) p > —96i>q —80is +16gs +
+12rql —40ir + Sqr’ +120ii — 24qi” +15i (p3 —4qgp + 3p'p +8r— 4q’ - 2p”) +1 8rp” - 12q,p” + 40iq” -
—8qq" + p (144> +18p?i —68¢i +10g> —3p*q—3pr—24s+6pq —12r +36i +12¢ ))2E +

+ ((6z'p4 - 3rp3 + 3qu3 + 361'2192 + qu2 - 32l'qp2 - 6sp2 - 3r'p2 + 91'”p2 + 3q”p2 +20irp +14qrp + 20iq’p -
~10gq p—30ip" p—3qp" p+80i° —4q> +36ig* —18r* —150i% +6(6i —q) p > —96iq —80is +16gs +
+12rq —40ir +8qr +120ii —24qi" +15i (p> —4qp+3p p+8r—dq —2p ) +18rp" —12¢ p" + (5)
+40ig" —8qq" + p (144i* +18p*i—684qi +10g* —3p*q—3pr—24s+6pq —12r +36i +12¢ )E +

+E (40pi® +4p3i +8pqi® —112ri* +80q i* —8p i* =14 pg’i+4p>qi —14 p*ri+ 64qri—40 psi+ 6 p>q i —
—164q i +20pri—160si+60pi i—20gp i+40r i+40i"i+3pr’ —75pi > —6rp* —4q*r + p*qr —
—9p3s +32pgs —48rs+3p3r, —10pqr’ +12r7 —12p2sl +32qs, + 6p3i” —18pqi” +12ri —3prp” +
+48sp —12r p" —12i"p" +i Bp* +24ip*> —6qp* —15p" p+80i* —12¢* +18p? — 64ig +240s + (9 p* +
+96i +6q)p —60r —60i Y +3p*r —8qr +3p*i"—8qi" + p (12pi* + 6 pqi —56ri +24q i =3 p*r +
+10gr —12ps+6pr —48s +18pi +12r +12i"))) = 0.
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2. Problem statement and preliminaries
In this paper we'll solve the problem of integration of the fourth order linear differential equation (4), coefficients of which
satisfy the conditions

1 , 2 1 3 1
"+—p ——=q=0, ¢+—pg——=r=0, r'+—pr—4s=0. 6
p 4 p 3 q q 4 Pq 5 4 p (6)
Let use the result of the paper [2] according to which the equation (A) for the equations (4), (6) has the form

20-(8 21502412 i-i")~z‘av) —280i-i"’2+20~(42 ivi"-56 izi')~i"'+504 B4

(7)
+192 2 -i"2+(448 it +2040 0% )-i"-1275i"‘—560i3 % +64i° =0.

The equation (7) was studied in detail in [2, 4,11,12]. In particular, there was proved, that equation (7) has one- and two-
parametric families of solutions, which are contained among the functions

PN 1C) SN 1 €Y
= " e

where P, (x), P,(x), B (x) are polynomials of the second, fourth and eighth degrees with certain coefficients. Respectively
for example, such family of solutions is the function
i = (6(=24x(6C,2 +6C,* —=3C,(2C, + C3) —2C,C, + C,C,) —4x> (18C,(2C, —C3) +
+9C,* —6C,C, +4C,(-3C, +C,)) —12x* (18C* + C, (9C; —6C, ) +2C,* —3C,(3C; +2C,)) -
3x*(12C,7 +3C —2C,(3C; +2C,) + C, (—6C; +4C,)) +3(=12C,* —3C;* + C,(6C, —4C,) +
+C,(6C; +4C,))))x (6(1+ 2x +3x1)Cy +6(=1+ x> +2x°)Cy + X(3(-2 —x +x°)C; —2x(3+ 2x+x2)C,)) 2.
Note also, that the equation (7), using substitutions
Wi = () expC 1), T=exp0), u' (1) = g(w),
can be reduced to the differential equation of the second order of the form [2]
(A+u)*(8+3u) +(56u-(8+3u’)+36u° (8 +3u’))g +(1072u* +422u*)g* +
(160u +5961° ) g* —40u g* + (101> (8 +3u” ) g + 80(8u” +u)g? +400u° g ) g '+
(200 (8 +3u?)g —40u* g?) g+ 20((8u> +3u’ ) g* +12u* g*)g" = 0.
Let consider the function & in the form of the polynomial of the third degree
E(x) = Cx° + Cox* + Cyx + Cy, 8)

where C; (i :1,_4) are arbitrary constants. Such choice of the functions £(x) allows us to find the family of solutions of the
equation (7). Really, substituting the equality (8) into the equation (3), we find the function

) = 6(6C2x* +Cy)* + C,(4C,x - Cy))

A (BCx? +2C,x +Cy) '
Theorem 1. Function (9) defines the two-parametric family of solutions to the equation (7).
Proof. Fact, that function (9) is the solution is verified by substituting it into the equation (7). Fact, that it's the two-

parametric family is proved by the fact, that the function (9) defines the general solution of the second order nonlinear dif-
ferential equation in the form

©)

2048i° +5000i%i" +375i"* —1024i*i" +1500ii"%i" —96i%i"* +72i"> =0 . (10)
3. Solution of the problem
Let find the partial solution y, (x) for the equations (4), (6). To do this we use the formula (5). Substituting (6), (8) and (9)
into the equality (5) we obtain the differential equation of the form
Py (0)+4y(x) =0. (1)
Integrating the equation (11) and substituting found function y,(x) into the relation (1) we obtain

1
y=(Cx* +Cyx? + Cyx + C4)exp(—zjlx p(t)d1) . (12)
Theorem 2. The general solution of the equation (4), (6) has the form (12).
. 1 ex
Proof. Functions x' exp(—zj1 p(1)dr),i=0,1,2,3 are the partial solutions of the equation (4), (6), which is easily veri-

fied by direct calculations. These functions form the fundamental system of solutions. Therefore, their linear combination of
the form (12) gives the general solution of the equation (4), (6).
Example. Let the first coefficient of the equation (4), (6) has the form

p(x) =sn(x/m), (13)
where sn(x/m) is the Jacobi elliptic function with the parameter m . Solving (6), we find the other three coefficients of the
equation, namely
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q(x) = %(4 en(x/m) dn(x/m) +sn(x/m)*), (14)
r(x) = %sn(x/m) (12 en(x/m) dn(x/m) —16 (2dn(x/m)* + m—1) +sn(x/m)*) , (15)
s(x)= g16 (8cn(x/m)dn(x/m) (6 dn(x/m) (cn(x/m)—8dn(x/m)) +3sn(x/m)* —8m + 40) — (16)
—64(2dn(x/m)?* +m—1)sn(x/m)* +sn(x/m)*),
where cn(x/m), dn(x/m) are the Jacobi elliptic functions.
Substituting (13) into the general solution (12), we obtain
1
y(x) = (Cx* + Cyx? + Cyx + Cy) (dn(x/m) —~/m en(x/m)) “m . (17)

Expression (17) defines the general solution of the equation (4) with the coefficients (13) — (16).
Remark 3. As noted above, the choice of the function &(x) in the form of (8) is not random. It is connected to the fact,

that obtained from the equation (3) function i(x) is the solution of equation (7). Following functions &(x) of the form (18) —
(20) also satisfy the similar property
CxX* +Cx* +Cyx +Cy

&(x) = . . (18)
Cx* +Cox? + Cyx+C,
&(x) = = , (19)
3 2
&(x):qx +Cyx 3+C3x+C4. (20)
X

These functions correspond to the functions i(x) of the form

6(C2x* +4C,Cyx+ C,C,)

i(x)=— , (21)
(C, - Cyx? —2C,x°)?
. 6(C,C.x* +4C,C,x° +C,2
I(X):— ( 12 3 1“4 - 421 )) (22)
X" (2C,+Cyx—Cix7)
2 2 2
l,(x):_6((C3 C,C)x* +4C,C,x +6C, )’ 23)

X2 (Cyx? +2C5x +3C,)?

which are also the solutions of the equation (7).
Let prove, that the choice of the function &(x) in the form of the one of the functions (18) — (20) doesn't change the

structure of the general solution (12). Really, let choose, for example, the function &(x) in the form (18). Then correspond-
ing function i(x) has form (21). Substituting relations (6), (18) and (21) into (5), we obtain the differential equation

(P =0 _
4x '

» () + (24)

Integrating the equation (24) and substituting found function y,(x) into the relation (1), where the function &(x) has the

form (18), we obtain equality (12), which was to be proved above. In the other two cases (19) and (20), carrying out analo-
gous reasoning, we get the general solution of the equation (4), (6) again in the form (12).

4. Conclusions

1) Relation (9) from the theorem 1 defines two-parametric family of the solutions of the equation (7).

2) Relation (9) from the theorem 1 also defines the general solution of the differential equation (10).

3) Theorem 2 indicates the general solution of the equation (4), (6).

4) Found functions (21) — (23) are also two-parametric families of the solutions of the equation (7).

5) Considered method of finding the solutions can be applied not only to the equation (7), which is connected to the lin-
ear equation (4), (6). It can be used for investigating the subclasses of the fourth order nonlinear equation of the form (A)
(given in [2, p.70-71]), which is connected to the linear equation (4).
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0.4YuuypiH, A-p ¢is.-maT. Hayk, Aou., npod.,

KYI, NMo6niH, Nonbwa, CHY imeHi INeci YkpaiHku, Jlyubk, YkpaiHa
I'. CTenaHok, cT. nab.

CHY imeHi Ileci YkpaiHku, JlyLbk, YkpaiHa

NPO 3ArAllbHUA PO3B'A30K NIHINHOMO AN®EPEHLUIANBHOIO PIBHAHHA YETBEPTOIO NOPAOKY,
KOE®ILIEHTU AKOIo 3A00BOJIbHAOTbL CUCTEMY
TPbOX ANPEPEHUIANBHUX PIBHAHD MEPLUOIO NOPAOKY

Y po6omi 3HalideHO 3a2anbHull po38'a30K NiHiliIHo20 dugepeHyianbHO20 Pi6HSIHHSA Yemeepmo20 nopsioKy, KoegiyieHmu siko2o 3a0080JIbHSI-
romb cucmemMy mpbox dugpepeHyianbHUX PieHSIHBL Nepuo20 MopsioKy.

A.YnuypiH, A-p du3s.-maT. Hayk, Aol,., npod.

KYN, Mo6nuH, NMonbwa, BHY nmenu Necu Ykpainku, Iyuk, YkpanHa
I'. CTenaHok, cT. nab.

BHY umenu Necu YkpaiHku, Jlyuk, YkpanHa

OB OBLLEM PELLEHWUW IMHENHOIO AU®®EPEHLMAINIBHOIO YPABHEHUSA YETBEPTOIO NOPAOKA,
KO3®®ULMEHTbI KOTOPOI'O YOOBJIETBOPAIOT CUCTEME
TPEX AN®OEPEHLUUAIBbHLIX YPABHEHUWX NMEPBOIO NOPAOKA

B pabome HalideHo obujee peweHue nuHeliHo20 ugghepeHyuarbHO20 ypasHeHUs1 Yemeepmoz20 nopsioka, KoaghguyueHmsl KOMopoz2o yo0oe-
Jslemeopsitom cucmeme mpex ougpghepeHyuanbHbIX ypasHeHuli nepeo2o nopsioka.

YOK 517.98
M. F'opopaHin, A-p dis.-maT. Hayk,
KHY imeHi Tapaca LeB4eHka, Kuie
A. CupoTeHkKo, acuct.,
HTYY "KNI", Kuis
IHTErPOBHI 31 CTENEHEM p PO3B'A3KU PIBHULIEBOIro PIBHAHHA

3 HENEPEPBHUM APF'YMEHTOM

OmpumaHo HeobxiOHi i docmamHi yMmoeu, Npu 8UKOHaHHI SIKUX Pi3HUUeee Pi@HSIHHS 3 HEMepepPeHUM ap2yMeHIMoM Mae eOUHUU iH-
mezposHuli 3i cmeneHem p (ob6MexeHull) po3e’a30K Ons creyianbHO20 Kiacy "exiOHux" ¢yHKUil.

BCTYI. Hexain B — komnnekcHui 6aHaxiB NpocTip 3 HOpPMOto |||| i HynboBUM enemeHTom 0, A — niHINHWMIA Henepe-

PBHWIA onepaTop, Wo die i3 B B B . Noknagemo npu p €[1,0)

1
[,(B)= f:{xn :neZ}cB|)_c|p ::(Z ||xk||pjp <oy i lw(B)::{f:{xn :neZ}cB
keZ

%], = suplfx, | < oo
neZ

Badikcyemo p €[1,0]. Bigomo [1,2,4], Wwo pisHMLEBE PIBHSAHHS
X, =A4Ax,+y,, nel, (1)
Ma€ Anst AOBINbHOIO y = {yn ‘ne Z} IS lp (B) eOvHWIN po3B'A30K X = {x,, ‘ne Z} y npocTopi lp (B) Toai i nuwe Togi, konu
ans cnektpa o(A) onepatopa 4 BUKOHYETLCSH yMOBaA
o(d)n{zeC|s=1}=2. )

Y BMNagKy, Konm ymoBa (2) He BUKOHYETbCS, Y [6] OTpMMaHo pe3ynbTaT Npo iCHYBaHHS Ta BNacTMBOCTI PO3B'A3KIB Pi3HU-
ueBoro piBHAHHSA (1). Cchopmynoemo el pesynbTaT, OCKINbKM BiH BUKOPUCTOBYETHCS B NMOAANbLIOMY.

Hexan V, — Habip ycix Takux enemeHTis y € B, WO pisHuUeBe piBHAHHA (1) mae npn y, =y, ¥, =0, n# 0, eanHni
pO3B's30K B NpocTopi /,(B) . Liei po3s'si3ok y noAasnbLIOMy NosHayaTuMemo X, .
Teopema 1 [6]. Hexan mHOXMHa V; MICTUTb X04a 6 OOUH HEHYNbOBUI EMEMEHT Ta BUKOHYIOTbCA HACTYNHi yMOBK:

1) swwo {y; v, :m=1} <V, i |y, —y|—>0 npn m— oo, 7o ans poss'siskie X, X,

b X, piBHSIHHA (1), Wo BignoeigawTb

y Ta y,, , BAKOHyETbCA

X, =X, p—)O npu m —» oo .

2) onsi [oBiNbHOT NOCMiIAOBHOCTI {yn ‘ne Z} <V, wo HanexwuTs [,(B), piBHsHHS (1) Mae eanHuin poss'sasok B /,(B) .
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