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On stabilization of neutral type
nonlinear indirect scalar processes

By employing the direct Lyapunov method, using
Lyapunov-Krasovskii functional approach,
stabilization problem of nonlinear scalar Lurie-type
indirect control systems of neutral type is
considered. Conditions are constructed in terms of
matrix algebraic inequalities.
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1 Introduction

One of the problems of stability motion is the
problem of absolute stability. It arise in solving
practical tasks. In some technical control systems,
the control function is the nonlinear function of
one variable located between two lines in the first
and third quarters of the coordinate plane.
Originally, the control systems of ordinary
differential equation were considered [1-5].

Time-delay naturally appears in many real
control processes, and it is frequently a source of
instability. But the systems with deviating
arguments better describe the real systems. In
recent years, the absolute stability problem of
nonlinear control systems with aftereffect is a
topic of great practical importance which has
attracted a lot of interests [3-7]. Some neutral
type nonlinear systems with indirect regulation are
considered in [6-10]. The sufficient conditions of
absolute stability are derived in the papers [8-10]
by direct Lypunov method with using Lyapunov-
Krasovskii functionals in the type of the sum of
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the quadratic form from current coordinates plus
the integral from delay coordinates and the
integral of nonlinear components of the
considered system. And the coefficients of the
exponential decay of solutions are calculated. All
results [7-10] has unified form of matrix algebraic
inequalities.

But reasonable question has arise. What we
will do in case if there is no any positive answer
on absolute stability of investigated systems,
using all previous results. There are two
traditional next steps:

we need to change method of investigation
(radical decision) — for example we will use
Popov-Yakubovich frequency method [11,12];

we need to change Lyapunov function or
functional.

But there is other new interesting way: we
can try to introduce new linear control and to
stabilize close-loop system at previous chosen
Lyapunov function or functional. There are some
interesting papers devoted to investigation of
stability and stabilization tasks in this rezone [12-
17].
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Present article is direct extension of [14-16].
Using the techniques of paper [17], the regulatory
processes that can be described by scalar equation
of neutral type was considered. It is believed that
the solution is not absolutely stable, or could not
find the correct parameters of Lyapunov-
Krasovskii functional to establish this fact. We
gives the solution to the stabilization problem to
absolute stability state in the selected class of
Lyapunov-Krasovskii functionals, by introducing
feedback for phase coordinates, taken in the
present and previous points in time.

2 Problems formulation and main results
Main goal of this article is consider a

n—dimensional regulation process x described
by the system of n+1 equations,

%[x(t) — Dx(t - 7)] = AX(t) + Bx(t — 7) + bf (o (t))
o) =c"xO - potd),
where t>t; >0, X=(X,Xy,....X,)" is the

n —dimensional column vector of the state, o is
the scalar function of the control defined on

[t,©), A, B and D are nxn-constant
matrices, |D|<1, b=(b,b,,...b,)" is an
n—dimensional constant column  vector,

c=(c,,C,,...,C,) IS an n—dimensional constant
row vector, z>0 and p>0 are constants, f (o)

is continuous function on R satisfying so-called
linear sector condition.

But for the results visibility, all next
investigation will present for one-dimensional
case. And its generalization is not so difficult to
do by himself.

Therefore, let us consider an indirect control
process described by a system of two scalar
equations with delay argument of neutral type in
the form

%[x(t) —dX(t — 7)]= a,X(t) + a,x(t — 7) + bf (o (1))
%G(t) = cx(t) - pfo(t) (1)

where t>t, >0, X is the state function, o is the
control defined on [t,,«), a,, a,, b, ¢, d,
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p>0, r>0 are constants, |[d|<1, f(o) is

continuous nonlinear function on R satisfying
sector condition

k,o? < f(o)o <k,o?,

)
where k,,k;, —const: k, >k, >0.

Definition 1 The continuous vector function
(x,0): [t, —7,90) — R is said to be a solution of
(1) on [t;,) if (x,0) is continuously
differentiable on [t,,) and satisfies the system
(1) on [ty, ).

Definition 2 The system (1) is called
absolutely stable if the trivial solution
(x,0)=(0,0)of the system (1) is globally

asymptotically stable for an arbitrary function
f (o) satisfying (2).

For this case Lyapunov-Krasovskii
functional, which was used for investigation
in papers [8-10], will present in next form

o(t)
VIx(t),o(t).t]=hx* (1) + 8 | f(o)do +
0

b e g (s) + 0,2(5))ds

t-r

®)

where h>0, g,>0, g,>0, >0, ¢>0 are
constants, (X,o) is a solution of (1), and
t>t, >0. Define, using the coefficients of the
functional (3), auxiliary numbers

1 2 1
S, =—2a,h-9,-a;9,, s,=-ha,-aa,0,,

1
Si3

=-hd-adg,, si,= —hb—algzb—%ﬂc,

S3 =€ 0, -850,  S;3=-aa,0,,
1
Sy4 =—8,0,b,
S§3 =e'g, _dng’ 5§4 =—dg,b,
54114 = _b292 - pBp
and the matrix

Silh, 91,92, B,s]=
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1
Si4
1
S24 |
1
S34

1
Sas

1
Si3
1
S3
1
S33

1
S34

1
Sio
1
2,
1
S3

1
S24

Sty

S12

Si3

Sti4

Our first result is the theorem on absolute
stability for the considered system (1).

Theorem 1 Suppose that there exist constants

h>0,9,>0,9,>0, >0, ¢>0,

such that the matrix S,[h,g,,9,,/8,¢] is positive
definite. Then the system (1) is absolutely stable.

Proof of this theorem follows directly from
the corresponding Theorem 1 [8-10].

As follows from the Sylvester criterion
[15,16] the necessary and sufficient condition for
positive definite of the matrix S,[h,9,,9,,/8,¢] is
its main diagonal elements positivity, i.e.

All = 5111 >0, (4)
1 1.1 142
A, =81385, —(S1,)° >0, (5)
11 1
Si1 S12 Sp3
1 11 1
Ay =[S, S Sa>0, (6)
11 1
Si3 Sz Sa3
11 1 1
S;1 Sip Si3 Sis
11 1 1
S S S S
AL = 112 iz i_s i4 >0 )
Si3 Sz S3z Sy
11 1 1
Sia Spa S3a Sua

After investigating inequalities (4) - (7) we
make conclusion about absolute stability of the
system (1).

Let us consider another approach which
based on a study of block matrices. We will need
some auxiliary results from the theory of matrices.

Lemma 1 [16] Let A be a regular nxn
matrix, B be an nxq matrix, and C be a gqxq

regular matrix.. Let a Hermitian matrix S be

represented as
A B
S=| .
e
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Then the matrix S is positive definite if and only

if the matrices A and C—B"A™B are positive
definite.

Lemma 2 [15, Frobenius formula] Let A be
aregular nxn matrix, B be an nxq matrix, C

bea gxn matrix D bea qxq matrix, and the

matrix
A B
M =
C D
be regular. Then the matrix is
regularR=D—-CA™B and
ML A"t +A'BR'CAT -ATBR™
-R'cA? R |
Now we can formulate next stability

conditions.
Theorem 2 Suppose that there exist constants
h>0,9,>0,9,>0, >0,¢>0,

such that the inequalities (4), (5) hold and next
matrix

& S35 Sau
Si[h,9:,9,,8,6,v]= gl -

1
34 Sas
1 1 [ 1 1
_ 1 {313 514}>< S22 _312j|x
1.1 T2 | ol 1 1 1
$11870 —(S12)“ [S14 S24| |—S12  Sia
1 1]
Si3 Sis
X{ T (8)
Si4 So4

is positive definite Then the system (1) is
absolutely stable.
Proof. Let be matrix S,[h,9,,9,,/0¢]

presented in next block form
h S
S[h.g,g,ﬁ,gl{ = “]
s (Sh)" Sk

where

11
sl Si1 Si2
=i 1|’

Sip Sy
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1 1
gl — S13 Sis
12 7| 1 1|

Sz So4

1 1
S S33 Sz
22 — Sl Sl '
34 44
Then according to Lemma 1, for positive

definite of matrix S;[h, g,,9,,/,¢] necessary and
sufficient that matrices

St $2—(812)" (81) 7S,

will be positive definite too. In other words, need
to be true inequalities (4), (5) and matrix (8) be a
positive definite.

The crucial assumption in Theorem 2 is the
assumption of positive definiteness of the matrix
S,[h,9,,9,,6,¢]. If we cannot find suitable
constants h>0, g, >0, g, >0, f>0,¢>0 to

ensure positive definiteness, or such constants do
not exist, Theorem 2 is not applicable. In such
case, we can modify the control function in
system (1) by adding a linear combination of the
state function at moment t and t—z we will
consider modified system

%[x(t) — dx(t - 7)]=ayx(t) + a,x(t — 7) +
+bf (o(t) + u(t),

%g(t) =cx(t) — ofo(t) + v(t), )

where
u(t) =cx(t) +c,x(t—7),
v(t) = cyx(t),

C,, C,, Cy are suitable constants.
Let us rewrite system (9) in next form

%[x(t) —dx(t —7)]=(a; + ¢, )x(t) +
+(a, +C,)X(t —7) + bf (o (1)),

%a(t) = (C+Cy)X(t) — pf (o (t)). (10)

2013,4

81

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

In this case matrix of total derivative takes from
functional along solution will have next form

Sy[h,91,92,¢1,¢5,C5,8,6]=
2 2 .2 .2
Si1 S1p Si3 Sy

2 .2 2 2
Sip Sy Sz Sy

2

Si3
2

Si4

2

Sy3
2

Sa4

1
S33
1
S34

1
S34
1
Sas

where
5121 = 5111 —2hc, —(2ac; + Clz)g2 )

2 1
S;, =1, — (e, +a,C, +a,C; +¢,C,) 05,

2 1 2 1 1
Si3 =813 —C,0,d, Si, =S, _Clgzb_zﬂc?ﬂ
2 1 2
S5, = S5, —(2a,C, +¢5)0,,
2 1
S53 = Sp3 —(CLa + €@, +C,C1)Ty,

2 1
Sy4 =S, — 9,

Finding of the stabilization conditions
(option 1).

As follows from the Sylvester criterion [14,15]
the necessary and sufficient condition for positive
definite of the matrix S,[h,9,,9,.¢,,C,,C3, 5,¢]

is its main diagonal elements positivity, i.e.

AT =s;; —2he —(2ac, +¢7)g, >0, (11)
, |sh sZ 1 2
A% =1 12 = [sh —2he, —(2ac; +¢7)g,]x
S12 S22

X [5%2 —(2a,c, + C% -
—[s1, — (hc, +a,c, +a,c, +¢,¢,)]>0, (12)

2 2 2
S;1 S Sy3

Azs = S122 352 353 >0, (13)

2 L2 2
Si3 Sz S33



Bicnux Kuiscokozo nayionansnozo ynigepcumemy
imeni Tapaca Lllesuenxa
Cepis: ¢izuxo-mamemamuyni HAyKu

2 2
Sz Sis
2
So3

1
S33

2
Sp
2
Sz,

2
S3

2
S11
2
S
245 0.

2

2 _ IS
AN, = 1
S34

2
S13

(14)

2 2
S1a Sy Sé4 54114

And stabilization task consist from finding
parameters c,, C,, C,, such that the system (10)

will be absolute stable. Set of such parameters is
defined by inequalities (10) - (14).

Finding of the stabilization conditions
(option 2).

Using the result of Theorem 2, we will give
next formulation of positive definiteness. Before,
let rewrite matrix S,[h,9,,9,,C;,C,,C5,5,6] at

next block form

82 SZ
11 12
S,[h,91,9,,6,,C5,C3, B,61=| , 5 ¢ 2 |
(S12) S5
where
2 .2
52 _ S;1 S
117 2 2 |
12 S22
-, -
52 Si3 Sia
127 2 2 |
| S23 Sa
-, T
52 — S33 Sz
22 — S1 Sl !
| S34 Saa |

As follows from condition of positive
definiteness of block matrices (Lemma 1), for
positive definiteness of matrix
S,[h,9,,9,.,¢,,C,,C5, 5,61 necessary and
sufficient that the matrices

2
Sll'

S222 - (S:LZZ)T (8121)7l S122
will be positive definite too.
3 Conclusions

In this brief, we deal with the stabilization
problem for a class of nonlinear control systems
with state deviating argument of neutral type.
Based on direct Lyapunov method (Lyapunov-
Krasovskii approach) several stabilization criteria
have been given in terms of a set of matrix
algebraic inequalities. A new sufficient condition,
which guarantees the close-loop system is
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absolutely stable, is presented. In recent years, the
absolute stability problem of nonlinear control
systems with aftereffect and, in particular, the
stabization problem of the same system are a topic
of great practical importance which has attracted a
lot of interests. Author presented some of the
same results at scientific conferences [20-22], and
it aroused a great interest.The results can be
extended to the case of multidimensional neutral
type nonlinear control process.

Acknowledgements

The author would like to thank for support to
the budget program 2201250 of The Ministry of
Education and Science of Ukraine "Study and
training of students, scientist and teachers on
abroad" of 2012/2013.

References

1. Lur’e A. Some Problems in the Theory of
Automatic Control. H.M. Stationary Office, Lon-
don, 1957

2. Aizerman M., Gantmacher F. Absolute Sta-
bility of Regulator Systems. Holden-Day, San
Francisco, 1964.

3. Chukwu E.N. Stability and time-optimal
control of hereditary systems with application to
the economics dynamics of US. 2™ Edition.
World Sc. Publ. Co. — 2001. — 495p.

4. Liao X., Wang L., Yu P. Stability of Dy-
namical Systems. Monograph. Series on Nonline-
ar Science and Complexity. Elsevier. Amsterdam,
2007.

5. Liao X., Yu P. Absolute stability of nonlin-
ear control systems. — New York: Springer Sci-
ence + Business Media B.V., 2008.

6. Khusainov D.Ya., Shatyrko 4.V. Lyapunov
Functions Method in Investigation of Function-
Differential Systems. KNU Publ., Kiev, 1997. (in
Russian).

7. Shatyrko 4.V., Khusainov D.Ya. Stability of
Nonlinear Control Systems with Aftereffect. In-
form.-Analit. Agency Publ., Kyiv, 2012. (in
Ukrainian).

8. Shatyrko A.V., Khusainov D.Ya., Diblik J,
Bastinec J, Rivolova A. Estimates of perturbations
in neutral type nonlinear indirect control systems
/Il J. Cybernetics and Computer Engineering —
2010. 1s5.160, P.72-85. (in Russian)



Bicnux Kuiscokozo nayionansnozo ynigepcumemy
imeni Tapaca Lllesuenxa
Cepis: ¢izuxo-mamemamuyni HAyKu

9. Shatyrko A.V., Khusainov D.Ya., Diblik J,
Bastinec J, Rivolova A. Estimates of perturbation
of nonlinear indirect interval control system of
neutral type // International Sc.-Tech. J. «Prob-
lems of control and informatics» - 2011, Nel. C.15
—-29.

10. Shatyrko A.V., Khusainov D.Ya., Diblik J,
Bastinec J, Rivolova A. Estimates of perturbation
of nonlinear indirect interval control system of
neutral type // Journal of automation and infor-
mation science. — 2011. VVol.43, Iss.1, P.13-28.

11. Popov V.M. Hyperstability of Control
Systems. New York: Springer, 1973.

12. Yakubovich A., Leonov G., Gelig A. Sta-
bility of Stationary Sets in Control Systems with
Discontinuous Nonlinearities. World Scientific.
Singapore, 2004.

13. Dong Y., Liu J. Exponential stabilization
of uncertain nonlinear time-delay systems // Ad-
vances in Difference Equations.
d0i:10.1186/1687-1847-2012:180.

14. Shatyrko A., Diblik J., Khusainov D.,
Ruzickova M. Stabilization of Lur’e-type nonline-
ar control systems by Lyapunov-Krasovski func-
tionals // Advances in Difference Equations. —
d0i:10.1186/1687-2012-229.

15. Shatyrko A. Stabilization in Lurie-type
nondirect control systems by Lyapunov-
Krasovsky’s funktional // Bull. of Taras
Shevchenko National University og Kyiv, Series:
Phys.&Math. Iss.1, Kyiv, 2012. P243-246. (in
Ukrainian).

16. Shatyrko A. Stabilization problem of Lu-
rie-type direct control system by Lyapunov-
Krasovskiy’s functional // Bull. of Taras
Shevchenko National University og Kyiv, Series:
Phys.&Math. Iss.2, Kyiv, 2012. P.257-260. (in
Ukrainian).

17. Shatyrko A., Khusainov D. Stabilization
of scalar processes of direct regulator of neutral
type // Bull. of Taras Shevchenko National Uni-
versity og Kyiv, Series: Phys.&Math. 1ss.2, Kyiv,
2013. C.241-244 (in Ukrainian).

18. Hornn R.., Johnson C. Matrix Analysis.
Cambridge University Press, Cambridge. 1985.

19. Gantmacher F. Theory of Matrices. Nau-
ka, Moscow. 1968. (in Russian).

20. Shatyrko A. Stabilization in Lurie-type
nonlinear  control systems by Lyapunov-
Krasovsky’s functional / Abstracts. Conference
CDDEA-2012. Terchova, Slovak Republic, 2012.
P.47-48.

21. Shatyrko A.V. Stabilization of nonlinear
control systems with time-delay to absolute stabil-

2013,4

83

Bulletin of Taras Shevchenko
National University of Kyiv
Series: Physics & Mathematics

ity state / V International Conference «Calculus
and Applied Mathematics», Abstracts. Kyiv-2012,
P.91. (in Ukrainian).

22. A. Kolechkina, Ronald R.P. van Nooijen,
A. Shatyrko. Stabilization of nonlinear Lurie-type
control processes of neutral type in scalar case //
XVI International Conference “DSMSI-2013”.
Abstract. Kiev, Ukraine. 2013. P.335.

Hapittnura go peaxosnerii 15.07.2013



	Algebra_tutyl.pdf
	Algebra.pdf
	Borysenko3 2013a


