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Experiments have been carried out on the excitation of hydrodynamic flows in superfluid helium under forced vibrations of a quartz
tuning fork immersed in a liquid. Nonlinear oscillations that arise with an increase in the driving force are investigated and are manifested
by distortion of the shape of the resonant amplitude-frequency characteristic in comparison with Lorentz curves typical for an extremely
small force. Nonlinear resonance curves are described using the Duffing equation, the parameters of which are established by comparing
the theoretical calculation with the experimental data. Dependence of the velocity of vibrations of the tuning fork legs on the driving force
established with the use of the Duffing equation, is close to that previously obtained for the quasi-laminar flow of He II and containing a
cubic velocity contribution due to the mutual friction caused by scattering of phonons by quantized vortices in a turbulent flow.
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l. TpuueHko, T. Ay6uak, K. MuxanneHnko, I". LewwuH, C. Cokonos

ITpoBeACHO EKCHEPUMEHTH IO TOPYLICHHIO TiJPOANHAMIYHMX MOTOKIB Y HAAIUIMHHOMY Teiii MpH 3MYIISHHX KOJIMBaHHSX
KBapI[OBOr0 KAMEPTOHA, 3aHYPEHOTO B pianHy. JJ0CIiKeHO HeTiHIHI KOJTUBAHHSL, SIKi BAHUKAIOTh [IPU 301JIbIICHHI CHIIH, 1[0 3MYIIIYE,
i TIPOSIBISAIOTHCS MEPEKPyUyBaHHSIM (HOPMH PE30HAHCHOI AMIUTITYHO-4aCTOTHOI XapaKTepPUCTHKH B MOPIBHSHHI 3 JIOPECHLECBUMH
KPUBUMH, TUIIOBHMH JUIsl TPAaHUYHO Maioi cuiay. HemiHilHI pe3oHaHCHI KpWBI OmmcaHi 3 BHKOpPHUCTAHHsAM piBHsHHA [lyddinra,
[apaMeTpH SIKOTO BCTAHOBIICHI IIPY MOPIBHSHHI TEOPETHYHOTO PO3PAXyHKY 3 CKCIEPUMCHTAIbHUMHU JAaHUMH. 3aJIeXKHICTh IIBUAKOCTI
KOJIMBaHb HIKOK KaMEPTOHA BiJl CHIIM, IO 3MYIIY€, YCTAHOBJIEHA 3 BUKOPUCTAHHAM piBHAHHSA Jlyddinra, BUIBIAETHCS OIM3BKOI 10
3aJIeKHOCTI, paHilie OTpuMaHoi i kBasinaminapHoro mwmHy He 11 1 yrpumyrouoi KyOiuHMIA IO HIBUAKOCTI BHECOK Y CHITy B3a€EMHOTO
TepTs, 00yMOBJICHOI pO3CitoBaHHAM ()OHOHIB Ha KBAHTOBAHHUX BUXPaX Yy TypOyJI€HTHOMY MOTOLII.

KurouoBi ciioBa: kBapuoBuii kamMepToH; TypOyJISHTHICTb B PiJKOy Tellil; po3citoBaHHs (JOHOHIB Ha KBAHTOBAHUX BUXOpaX.

W. TpuueHko, T. Ay6uak, K. Muxannenko, I". LewwuH, C. Cokonos

[TpoBeneHbI SKCTIEPIMEHTBI 110 BO30Y>KACHUIO THPOANHAMIYECKUX TOTOKOB B CBEPXTEKYYEM I'eITHH ITPH BBIHYKICHHBIX KOTEOaHUIX
KBapIIEBOTO KaMEPTOHA, MOTPYKEHHOTO B XKMAKOCTB. VccienoBaHbl HENHHEWHbIE KoleOaH!s1, KOTOpble BO3SHHKAIOT TPH YBEIMYEHUH
BBIHY)K/TQIOIICH CHIIBI M TPOSIBISIFOTCS WCKQKEHHEM (OpPMBI PE3OHAHCHOH aMILIUTY/I0-4aCTOTHON XapaKTePUCTHKU IO CPABHEHHIO C
JIOPEHLIEBBIMY KPUBBIMU, TUIIUYHBIMU UL [IPEICNIbHO Masloll cuibl. HenuHeliHble pe30HAHCHBIC KPHUBBIE OMUCAHBI C UCIOJIB30BAHUEM
ypasHeHus Jlyddunra, mapameTps! KOTOPOTO yCTaHOBJICHEI ITPU CPABHEHUH TEOPETHIECKOTO PACceTa C SKCIICPHIMEHTAILHBIMH JJAHHBIMH.
3aBHCHMOCTb CKOPOCTH KOJIeOAaHMH HOXKEK KaMEepTOHA OT BBIHYXJAIOIIEH CHIIB. yCTAHOBIEHHAs C WCIIONB30BAHMEM YPAaBHEHHMS
Hyddunra, okazsiBaeTcs OIM3KOH K 3aBUCHMOCTH, PaHee MOMy4YeHHOH U1 KBaswiamuHapHoro Tedenus He I u coneprxareit kyOnueckuit
I10 CKOPOCTH BKJIA/1 B CHITY B3aMMHOTO TPEHHs, 00YCIIOBICHHOH paccessHueM (POHOHOB Ha KBAHTOBAHHBIX BUXPSX B TYpOY/ICHTHOM ITOTOKE.

KoroueBble ciioBa: KBapIeBblli KAMEPTOH; TYPOYJICHTHOCTB B )KHAKOM I'e€JINH; paccesiHie (POHOHOB Ha KBAHTOBAHHBIX BUXPSIX.

Introduction and task statement
One of the mostly used methods of studying the
laminar and turbulent flow regimes in superfluid helium is
the method of a quartz tuning fork immersed in a liquid. The
quartz tuning fork differs favorably from the bodies of other
geometry, first of all with high quality factor which attains
~ 10°. Also essential is the availability of quartz tuning fork

(they are manufactured in industry), as well as their high
durability [1].

When working with tuning forks with the prongs of
different sizes, one can change the frequency of the resonances
and the form of the amplitude-frequency characteristic (AFC)
[2]. Moreover, as established during an experimental study of
the appearance and development of superfluid turbulence in
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the temperature range down to ~ 20 mK, under increasing the
velocity of movement of the tuning prongs up to 0.02 m/s the
shape of the resonant AFC starts to deform. This deformation
isexplained in [2,3] as aresult of the nonlinearity of tuning fork
oscillations. Turbulent flows in He II at higher temperatures,
140 and 150 mK, were investigated in Ref. 3 by the quartz
tuning fork method. It was shown that the deviation from the
linear dependence of the tuning fork velocity on the exciting
force was observed at oscillation velocities exceeding 0.04
m/s. The physical reason for the nonlinearity observed in
[2,4] is, probably, the effect of an attached mass associated
with quantum superfluid fluid vortices located in a thin layer
of a liquid near the surface of a tuning fork, and there are the
arguments [3] in favor of the fact that nonlinear deformations
of AFC are connected with the appearance of an additional,
nonlinear force of mutual friction due to the scattering of
thermal excitations on the quantized vortices.

The observation of nonlinear effects at the excitation of
the motion of He II by a quartz tuning fork calls an attention
to the adequate description of the fork nonlinear resonance.
The possibility of such a description appears when one uses
the equation of a nonlinear oscillator [4,5] in the presence of
an excitatory force. A separate case of the equation proposed
in [4] is the Duffing equation [5], in which, unlike [4], the
coefficient is set to zero with a quadratic displacement of the x
term in the left-hand side and only the cubic term is available:

@;(1)

2
TXO 4y O 4 ety + o =
dt dt
here x — deviation of the tuning fork leg from
equilibrium position in presence of the excitatory force
F(t)=F,cosawt, m, is resonance frequency of the tuning
fork, y = 2zAf is attenuation and Af is the width of the
resonance line. Here m being effective mass of tuning
prongs and ux® accounts the nonlinear behavior of the
oscillator with u being the coefficient of nonlinearity.
This term leads to a resonant frequency shift compared to
o,. Moreover, depending on the sign of u, the resonance
frequency of the oscillations is shifted toward higher or
lower frequencies.

In this paper, for the analysis and adjusting of
experimental data we apply the Eq. (1), which provides
almost the same results as the more general equation [5],
but at the same time is more convenient in calculations. The
aim of the analysis is finding out the connection between
the nonlinear mode of oscillation of the tuning fork prongs
and the change in the dependence of the velocity of
oscillation on the excitatory force. The aim of actual work
is the establishment and research of such a connection, as
well as the clarification of the possible influence of the
nonlinear force of mutual friction in the superfluid fluid on
the nonlinear behavior of the resonator - quartz tuning fork.
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Measurement procedure and experimental results

We used a miniature quartz tuning fork, kindly provided
to us by the laboratory of Lancaster University, with a
resonant frequency in the vacuum of 24983.72 Hz, length
of the leg is 71,8107 m, thickness and width of the legs are
75 and 90 mkm, respectively. The cell and the measurement
procedure were previously described in detail [3,6,7]. The
studies were made with the solution fridge working at two
operating regimes. In one of them we pumped out “He from a
one-Kelvin bath whereas a working solution was condensed
in the solution refrigerator. This mode was used to determine
the constant of the tuning fork in the experimental cell cooled
down to T = 1.4 K. In other measuring mode the solution
fridge worked providing the temperature of the cell and the
test fluid of /40 + I mK.

The resistance thermometers of RuO, were used to
determine the temperature. They were placed on the plate of
the dissolution chamber and directly in the fluid under study.
The thermometers were calibrated using a crystallization
thermometer based on the pressure measurement along the
’He melting curve. The accuracy of the measurement and
temperature stabilization was =/ mK being provided by the
heater connected by the feedback with the resistance sensor
CryoBridge S72A.

In the beginning of the experiment, we measured the
quartz tuning fork frequency in a vacuum under different
excitatory forces and 7 = /.4 K. Sine-wave constant
amplitude U, which is fed from the generator to one of
the electrodes of the tuning legs, set the magnitude of the
excitatory force, which was determined as F, = aU/2.
On the other electrode, the frequency dependence of the
amplitude of the ac current / was measured. This quantity
is connected with the oscillation velocity of the tuning legs
v as v = I/a. The piezoelectric constant of the tuning fork
was determined from the AFC measured in a vacuum [6].

In Fig. 1 we show typical AFC for a tuning fork in a
vacuum obtained with different excitatory forces.
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Fig. 1. Velocity of the oscillation of tuning legs in
vacuum at different excitatory forces, bottom-up:
151101, 1,51<101%; 6,05¢107'%; 1,21<10° N. [6].
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It is clearly seen in Fig. 1 that at high excitatory
forces and, consequently, high voltage amplitudes U one
observes a nonlinear oscillation regime that manifests
itself in the deformation of the form of the frequency
response. Also the resonance frequency decreases with an
increase in the excitatory force. Maximum excitatory force
in Fig. 1 is 7,2910” N, while the oscillation velocity in
the resonance maximum was 0.4 m/s, and the resonance
frequency was decreased by 0.048 Hz comparing with the
value at the minimum excitory force. After measuring in
vacuum, the solution refrigerator was cooled down to 7 <
1 K, to study the flows in “He. Passing through the nitrogen
trap, helium traps and filling capillary, helium attained the
experimental cell and condensed there.

Experimental dependences of the oscillation velocity
of the tuning fork legs in presence of the excitatory force at
temperature of /40 mK, obtained in various experiments,
are shown in Fig. 2. As is seen in Fig. 2, at oscillation
velocities v > 0.046 m/s one observes a noticeable
deviation from the linear dependence v(F',) shown by the
solid line. As was suggested in Ref. 6, this deviation may
be explained by the appearance of an additional frictional
force that arises due to an increase of the density of
quantum vortices and the scattering of thermal excitations
- phonons - on their cores (mutual friction) [8]. The flow
of helium characterized by the deviation the dependence
o(F,) from the linear one was called a quasi-laminar in
the work [6]. This flow is characterized by the above-
mentioned new dissipative mechanism [8].

The force of mutual friction is proportional to the
cube of the velocity of the legs: F, ~ v’, which is typical
for a turbulent flow (dotted line in Fig. 2). As a result, the
total friction force has the form F, = /qu + nv’ (solid and

9

Fig. 2. Dependence of the oscillation velocity of the
tuning fork legs on the excitatory force at 7' = /40 mK.
Solid line is linear dependence v ~ F,. Dotted line is for
turbulent flow mode (v’ ~ F,), dot-dash line is calculation
accounting the force of mutual friction [3]. Bar-dashed
dotted line is the calculation based on the solution of the
non-linear Duffing equation, described below in the text.
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dotted lines) [3, 6] where 4 =1.32+1 07 kg/s and n = 4,62+10°
kg-s/m’, and well describes the experimental data. At the
experimental temperature of /40 mK, the first term, as
shown in Ref. 3, is completely determined by the force of
friction in the quartz tuning fork material and is due to the
bending oscillations of its prongs.

All the amplitudes of the oscillation velocity were
measured at the maximum of the resonance curves. At
the same time, the resonance curves, at increase in the
excitatory force, are deformed due to a nonlinear additional
frictional force. In this connection, in [3, 6], we were to
analyze the types of AFC curves in the quasi-laminar
flow regime. It was shown that the dependence v(F))
of Fig. 2 may be conveniently divided into five ranges
characterized by a specific type of AFC (characteristic
AFCs for each range are given in the works [3, 6]): (I)
— region of laminar potential flow He II. Characteristic
AFC of this region is shown in Fig. 1 of Ref. 3 and is
approximated by Lorentzian. AFC for region II is shown in
Fig. 2a of Ref. 3. As was noted, this region is characterized
by spontaneous jumps between laminar potential and
turbulent currents. Region III was previously depicted
in Ref. 6 in Fig. 3 and is characterized by the fact that
the AFC starts to be asymmetric relatively the maximum
of the resonance curve, and there is a "collapse" towards
the lower frequencies. The asymmetry of the AFC curve
increases with increasing applied excitatory force until
the instability does appear on the resonance curve, being
the characteristic feature of the nonlinear behavior of
the oscillating body. It should be emphasized that in the
region III, regardless of the measurement conditions, one
observes both quasi-laminar and turbulent flows. Fig. 3 of
present paper and work [6] shows the AFC, measured at a
stable quasi-laminar flow regime without the transition to
turbulence.
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Fig. 3. Amplitude-frequency characteristic of tuning fork
for region III with excitatory force F) = 2,510’ N. Solid
curve - calculation using non-linear Duffing equation.
1 and 2 are the points of the beginning and end of the
instability on the resonance curve.
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In the regions IV and V, the shapes of the resonance
curves are qualitatively identical, and in these regions the
breakdown in the turbulent flow was observed, in each of
the experiments carried out, in the form of a sharp decrease
- a jump from the quasi-laminar to turbulent flow. For
region IV the curve is shown in Fig. 2b of Ref. 3 and for
area V - in Fig. 4 of Ref. 6. As can be seen in Fig. 4 of
Ref. 6, in the region V the shape of the resonance curve
is strongly deformed in comparison with Lorentzian, and
in Fig. 2 it is evident that at the maximum of AFC, the
velocity of oscillation of the tuning legs ceases to depend
on the applied force.

The fact that the nonlinearity of the oscillation of the
tuning fork legs in the regions II-V arises, probably, because
of the appearance of an additional nonlinear force of mutual
friction in He II, is supported by the measurements made
in vacuum. When measured in a vacuum, the amplitude
of the velocity was almost three times higher than that at
the maximum amplitude of oscillation in He II (see Fig.
1), but there was no markedly expressed nonlinearities of
oscillations (deformation of the form of AFC). Thus, it can
be argued that the nonlinearity of the oscillations of the
tuning fork legs observed in He II, is due to the nonlinear
friction force in the liquid, in which the tuning fork is
immersed. A similar conclusion was made in the work [2].

Results and discussion

As was noted above and as was shown in Fig. 2 of
Ref. 3, as well as in Figs. 3 and 4 of this work, an increase
in the excitatory force causing the oscillation of the legs
of the tuning fork, leads to the nonlinearity of oscillations,
which manifests itself in the deformation of the shape of the
AFC until the appearance of instability of the oscillations
and reduction of their resonance frequency. To describe
these effects, we solve the equation (1) with respect to the
modulus of amplitude of the oscillation velocity v. The
result is

[0

v=to
mn \/(a)ﬁ —w’ - a)bu2)2 +o’y’

;@

where @, and o are the resonance frequency of the tuning
fork in the vacuum and the current frequency, respectively,
bv? is the factor which, according to [5], is proportional
to the square of the amplitude of the oscillation velocity
and the coefficient b is connected with the coefficient of
nonlinearity in Eq. (1) by the relation x=2ab.

The dependence of the velocity on the frequency
of nonlinear oscillations calculated by Eq. (2), is shown
in Fig. 4 using a constant value b = 40 s/cm?, which, as
will be shown later, is close to the average value in all the
experiments carried out. It can be seen that even for low
excitatory forces the frequency dependence of velocity
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demonstrates a slight asymmetry caused by the nonlinearity
of oscillations (dashed line, F, = 1,5°10""" N). With the
increase in the excitatory force, the velocity also increases,
and the nonlinearity of oscillations is expressed more and
more (a dashed-and dotted curve for /) = 310" N), which
leads to a decrease in the resonance frequency and the
appearance of instability (points 1 and 3). Instability appears
at point 1 if one moves from the left to the right towards to
point 1, further movement in frequency continues to the
right from the point 2. When moving in frequency in the
opposite direction, i. e. from the right to the left, instability,
as one might expect, should appear at point 3, with further
motion towards lower frequencies from point 4 (hysteresis).
However as it was shown in Ref. 2, the measurement of
AFC when moving from high frequencies to lower ones
and back, give practically identical result. The reason for
this is unclear and additional research is needed to clarify
the problem. It can be assumed that the nonlinear behavior
of the system tuning fork - superfluid is described by the
nonlinear term in (2), which origin is mainly connected
with the fluid and processes in it. If the nonlinear behavior
is related with the properties of the tuning fork itself, then
instability at point 3 of Fig. 4 with decreasing frequency
would be observed.
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Fig. 4. Amplitude-frequency characteristics, calculated
using Eq. (2): dashed line - calculation for F) = 1,5¢10""°
N and b = 40 s/cm’; dashed-and-dotted line - for F =
310" N and b = 40 s/sm’. Arrows show the jumps of
the amplitude of oscillations in the event of instability.

It should also be noted that the value of b in Eq. (2)
strongly affects the form of the frequency response of
velocity, which is determined by this equation. Value of b
was estimated by comparing the calculated dependence with
the experimental data for the AFC, measured at different
excitatory forces for the corresponding experimental
data @, w, y, m and F,. The b is the only adjustable
parameter. Thus, selecting the value of the coefficient b
one can attach the agreement with experimentally obtained
resonance curves. Solid lines in Fig. 3 is the result of such
calculations.
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Note also that at excitatory forces corresponding to
the regions II, III, and IV, the resonance curves are well
described completely, and for the excitatory forces of the
region V, the coefficient b was determined from the part
of the curve to the left of point 1. In this frequency range,
when the instability finished at point 1 of Fig. 4 of Ref. 6,
the velocity value was always below than that at point 2 of
Fig. 4 and did not coincide with the values corresponding to
the right side of the calculated resonance curve. One should
remember that, as it follows from the Fig. 2, the velocity at
point 2 of region V is practically constant being and does
not depending on the force.

The obtained values of b are shown in Fig. 5 for
AFCs which are the result of all measurements. Interval
of the excitatory force in Fig. 6 corresponds to the range of
values of the excitatory forces in Fig. 2. The figure clearly
shows that there is a huge scatter of the values of b. The
solid line corresponds to the root-mean-squared value
in the studied range, the mean value of the coefficient of
nonlinearity coefficient g is 9.2¢10'% s?m~?. At the same
time the measurement accuracy of the frequency strongly
affects the value of b. The nonlinearity coefficient can
also be determined from the data of Ref. 3 presented as
1 =nle; fm). In this case u = 2,5410' s2m? which is more
than three times less than the above value obtained in the
actual article. Such a noticeable difference between our
values of u and those of Ref. 3 may be attributed to the
fact that the dependence of the damping coefficient y on
the geometry of the problem was not taken into account in
Ref. 6.
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Fig. 5. The values of b, determined from the experimental
data on the dependence of the velocity of oscillations
on the excitatory force using the non-linear Duffing
equation. The solid line is the average value throughout
the range of exciting forces. The dotted line is done for
b =50 s/m’.
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To determine the effect of the excitatory force on
the amplitude of the velocity of the tuning fork prongs
in the nonlinear regime, using the Eq. (2), the frequency
dependences of velocity were calculated for different
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excitatory stresses and forces. The value of the velocity
corresponding to the end of the instability was determined
- point 2 in Figs. 3 and 4, corresponding to the maximum
velocity. For low excitatory forces, if the instability was
absent (regions I and II), the velocity was taken at the
maximum at the resonance frequency of the frequency
dependence of velocity. Thus, the dependence v(F,) was
obtained allowing comparison with experimental data. The
best agreement between the estimated and experimental
data was achieved at b = 50 s/m’, calculation is shown
in Fig. 2 by bar-dashed-and-dotted line. Dot-dash line on
Fig. 2 shows the dependence accounting the contribution
of mutual friction force, cubic in velocity, in addition to
the linear contribution [3], the dotted line corresponds
to the turbulent flow when F, ~ v’. As is seen from the
figure, when considering the nonlinearity of oscillations
(deformation of the shape of the resonance curve), the
amplitude of the velocity is a nonlinear function of the
applied force. One observes also a rather good agreement
between experimental data and the calculation made using
the Duffing equation (bar-dashed dotted line in Fig. 2).
Note that mean value is within the scatter of the values of
b. Thus, one concludes that the experimental data in Fig.
2 can be described both with the solution of the Duffing
equation (1), and with the consideration of the cubic term
in the expression for the force of mutual friction.

Experimental data indicate that the velocity does
not depend on the excitatory force in the region V with
relatively high these forces (see Fig. 2). The frequency
dependence using the Duffing equation can be described
only to the left from the point 1 of the beginning of
instability (see Fig. 4).

Conclusions

In present paper, the study is carried out of nonlinear
phenomenaaccompanyingthe oscillations ofa quartztuning
fork, submerged in superfluid helium. The nonlinearity
of the oscillations of the tuning fork legs is manifested
by the deformation of the shape of the resonance curve
for the amplitude-frequency characteristic of the tuning
fork. It is shown that the nonlinear frequency response is
well described using the Duffing equation for a nonlinear
oscillator, by which the dependence of the oscillation
velocity of the legs on the excitatory force is treated. It
is shown that the same dependence can be obtained by
adding a term, cubic in velocity, to the expression for the
mutual friction force in the quasi-laminar flow regime.
This term is due to the scattering of phonons by quantized
vortices of He II, whose density increases with increasing
velocity of oscillations. In addition, such a behavior may
also indicate an increase in the attached mass or a decrease
in the plasticity of the tuning fork due to the appearance of
quantum vortices fixed to the surface of the quartz tuning
fork.
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Thus, the results of our research indicate that the
nonlinearity of the tuning fork oscillations is mainly due
to the dissipative processes in the superfluid fluid, in which
the tuning fork oscillated, which is accompanied by the
appearance of a nonlinear term in the dependence of the
velocity of oscillations on the excitatory force.
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discussions. We are also grateful to the ultra-low
temperature group from the University of Lancaster (UK)
for the quartz tuning fork. The research was partially
supported by the research project of youth scientists of the
National Academy of Sciences of Ukraine (Ne 2/H-2017).
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