Взаимодействие смерчевых потоков в модели Бриана-Пиддака

В.Д.Гордевский, А.А.Гукалов

Харьковский национальный университет им. В.Н. Каразина пл. Свободы, 4, 61022, Харьков, Украина gordevskyy2006@yandex.ru, gukalex@ukr.net

Исследовано взаимодействие двух смерчевых потоков в газе из шероховатых сфер. Использовано бимодальное распределение с максвелловскими модами специального вида. Получены различные условия, достаточные для минимизации равномерно-интегральной невязки между частями уравнения Бриана-Пиддака.

Гордевский В.Д., Гукалов А.А. Взаємодія смерчових течій в моделі Бріана-Піддака. Досліджено взаємодію двох смерчових течій у газі з шорсткуватих куль. Використано бімодальний розподіл з максвелівськими модами спеціального виду. Отримані різні умови, які достатні для мінімізації рівномірно-інтегрального відхилу між частинами рівняння Бріана-Піддака.

Gordevskyy V.D., Gukalov A.A. Interaction of the eddy flows in the Bryan-Pidduck model. The interaction between the two eddy streams of a gas of rough spheres is investigated. A bimodal distribution with a Maxwellian modes of a special form is used. Different sufficient conditions for the minimization of the uniform-integral discrepancy between the sides of the equation Bryan-Piddack is obtained.

 $2000\ Mathematics\ Subject\ Classification\ 76P05,\ 45K05,\ 82C40,\ 35Q55.$

Введение

В данной статье рассматривается модель шероховатых сфер [1], которая впервые была введена в 1894г. Брианом; методы, развитые Чепменом и Энскогом для общих невращающихся сферических молекул, были в 1922г. распространены на модель Бриана Пиддаком. Преимущество этой модели перед всеми другими моделями, допускающими изменение состояния вращения молекул, состоит в том, что здесь не требуется никаких переменных, определяющих ориентацию молекулы в пространстве.

[©] Гордевский В.Д., Гукалов А.А., 2011

Указанные молекулы являются абсолютно упругими и абсолютно шероховатыми, что означает следующее. При столкновении двух молекул приходящие в соприкосновение точки не обладают в общем случае одинаковой скоростью. Предполагается, что две сферы зацепляют друг друга без скольжения. В начальный момент сферы деформируют друг друга, а затем энергия деформации возвращается обратно в кинетическую энергию поступательного и вращательного движения без каких-либо потерь. В результате относительная скорость сфер в точке их соприкосновения изменяется при ударе на обратную.

Уравнение Больцмана для модели шероховатых сфер (или уравнение Бриана-Пиддака) имеет вид [1-4]:

$$D(f) = Q(f, f); (1)$$

$$D(f) \equiv \frac{\partial f}{\partial t} + V \cdot \frac{\partial f}{\partial x}; \tag{2}$$

$$Q(f,f) \equiv \frac{d^2}{2} \int_{R^3} dV_1 \int_{R^3} d\omega_1 \int_{\Sigma} d\alpha B(V - V_1, \alpha) \times [f(t, V_1^*, x, \omega_1^*) f(t, V^*, x, \omega^*) - f(t, V, x, \omega) f(t, V_1, x, \omega_1)].$$
(3)

Здесь d — диаметр молекулы, который связан с моментом инерции I следующим соотношением:

$$I = \frac{bd^2}{4},\tag{4}$$

где b — параметр, $b \in \left(0,\frac{2}{3}\right]$, характеризующий изотропное распределение вещества внутри частицы газа; t — время; $x=(x^1,x^2,x^3)\in R^3$ — пространственная координата; $V=(V^1,V^2,V^3)$ и $w=(w^1,w^2,w^3)\in R^3$ — линейная и угловая скорости молекулы соответственно; $\frac{\partial f}{\partial x}$ — градиент функции f по переменной x; Σ — единичная сфера в пространстве R^3 ; α — единичный вектор из R^3 , направленый вдоль линии, соединяющей центры сталкивающихся молекул;

$$B(V - V_1, \alpha) = |(V - V_1, \alpha)| - (V - V_1, \alpha)$$
(5)

— столкновительный член.

Линейные (V^*, V_1^*) и угловые (w^*, w_1^*) скорости молекул после столкновения выражаются через соответствующие скорости до столкновения следующим образом:

$$V^{*} = V - \frac{1}{b+1} \left(b(V_{1} - V) - \frac{bd}{2} \alpha \times (\omega + \omega_{1}) + \alpha(\alpha, V_{1} - V) \right),$$

$$V_{1}^{*} = V_{1} + \frac{1}{b+1} \left(b(V_{1} - V) - \frac{bd}{2} \alpha \times (\omega + \omega_{1}) + \alpha(\alpha, V_{1} - V) \right),$$

$$\omega^{*} = \omega + \frac{2}{d(b+1)} \left\{ \alpha \times (V - V_{1}) + \frac{d}{2} \left[\alpha(\omega + \omega_{1}, \alpha) - \omega - \omega_{1} \right] \right\},$$

$$\omega_{1}^{*} = \omega_{1} + \frac{2}{d(b+1)} \left\{ \alpha \times (V - V_{1}) + \frac{d}{2} \left[\alpha(\omega + \omega_{1}, \alpha) - \omega - \omega_{1} \right] \right\}.$$
(6)

Как известно, общий вид максвелловских решений уравнения Больцмана для твердых сфер был получен в работах [5-7]; их описание и исследование можно найти также в [8-10]. Аналогичная задача для модели Бриана-Пиддака была окончательно решена только в работе [11]. В частности, там получен явный вид максвелловского распределения, описывающего смерчеобразное движение газа в этой модели.

Поиск явных приближенных решений кинетических уравнений, которые имели бы бимодальную структуру, осуществлялся рядом авторов. В частности, для интересующих нас моделей взаимодействия между молекулами этому вопросу были посвящены работы [12-13].

В работе [4] было исследовано взаимодействие двух "винтов" (стационарных неоднородных максвеллианов) в газе из шероховатых сфер, нашей же задачей в данной работе является исследование взаимодействия двух "смерчей" (нестационарных неоднородных максвеллианов) для модели Бриана-Пиддака.

Используем при этом следующую невязку, впервые предложенную в [4]:

$$\Delta = \sup_{(t,x)\in R^4} \int_{R^3} \int_{R^3} dV d\omega \, |D(f) - Q(f,f)| \,. \tag{7}$$

Далее рассмотрим бимодальное распределение:

соответственно, в момент времени t = 0:

$$f = \varphi_1 M_1 + \varphi_2 M_2, \tag{8}$$

где функции $\varphi_i = \varphi_i(t, x), i = 1, 2$, а максвеллианы $M_i, i = 1, 2$ соответствуют смерчеобразному движению и имеют следующий вид [11]:

$$M_{i} = \rho_{i} \left(\frac{\beta_{i}}{\pi}\right)^{3} I^{3/2} e^{\beta_{i} \left[\overline{\omega}_{i} \times \left(x - \overline{x}_{0i} - \overline{u}_{0i}t\right)\right]^{2}} e^{-\beta_{i} \left(\left(V - \overline{V}_{i}\right)^{2} + I\omega^{2}\right)}$$

$$\tag{9}$$

здесь ρ_i – плотность газа, $\overline{\omega}_i$ – угловая скорость потока газа в целом; $\overline{V}_i(t,x)=\widehat{V}_i+[\overline{\omega}_i\times(x-x_{0i}-\overline{u}_{0i}t)]$ – массовая скорость; x_{0i},\overline{x}_{0i} – точки, через которые проходят оси скорости и плотности [4,8]

$$x_{0i} = \frac{1}{\overline{\omega}_i^2} \left[\overline{\omega}_i \times \widehat{V}_i \right], \quad \overline{x}_{0i} = \frac{1}{\overline{\omega}_i^2} \left[\overline{\omega}_i \times (\widehat{V}_i - \overline{u}_{0i}) \right].$$

 \overline{u}_{0i} – произвольный вектор, перпендикулярный к $\overline{\omega}_i$ (поступательная скорость этих осей);

 $\beta_i = \frac{1}{2T}$ – обратная температура газа;

 \widehat{V}_i – линейная скорость движения газа вдоль оси вращения.

В следующем разделе приведены результаты, дающие различные достаточные условия минимизации невязки (7) за счет подходящего выбора коэффициентных функций φ_i и параметров распределения.

Основные результаты

Теорема 1. Пусть для функций φ_i имеет место представление

$$\varphi_i = \psi_i e^{-\beta_i \overline{\omega}_i^2 r_i^2}, i = 1, 2 \tag{10}$$

где $\psi_i = \psi_i(t,x)$ и для любых $(t,x) \in R^4$ ограничены функции

$$\psi_{i}, \frac{\partial \psi_{i}}{\partial t}, \left| \frac{\partial \psi_{i}}{\partial x} \right|, \psi_{i} \left| \overline{\omega}_{0i} \times (x - \overline{u}_{0i}t) \right|,$$

$$\left| \frac{\partial \psi_{i}}{\partial x} \left[\overline{\omega}_{0i} \times (x - \overline{u}_{0i}t) \right] \right| \quad i = 1, 2,$$
(11)

при этом

$$r_i^2 = \frac{1}{\overline{\omega}_i^2} [\overline{\omega}_i \times (x - \overline{x}_{0i} - \overline{u}_{0i}t)]^2.$$
 (12)

Также пусть

$$\overline{\omega}_i = \overline{\omega}_{0i} \beta_i^{-m_i}, i = 1, 2, \tag{13}$$

где $m_i \geq \frac{1}{2}$, а $\overline{\omega}_{0i}$ – произвольный фиксированный вектор из R^3 .

Тогда существует такая величина Δ' , что

$$\Delta \le \Delta',\tag{14}$$

причем:

1) если

$$m_i > \frac{1}{2},\tag{15}$$

то выполняется неравенство:

$$\lim_{\beta_i \to +\infty, \quad i=1,2} \Delta' \leq \sum_{i=1}^{2} \rho_i \sup_{(t,x) \in R^4} \left| \frac{\partial \psi_i}{\partial t} + \widehat{V}_i \frac{\partial \psi_i}{\partial x} \right| + 4\pi d^2 \rho_1 \rho_2 \left| \widehat{V}_1 - \widehat{V}_2 \right| \sup_{(t,x) \in R^4} (\psi_1 \psi_2).$$

$$(16)$$

2) если

$$m_i = \frac{1}{2},\tag{17}$$

то вместо неравенства (16) будем иметь:

$$\lim_{\beta_{i} \to +\infty, \quad i=1,2} \Delta' \leq \sum_{i=1}^{2} \rho_{i} \sup_{(t,x) \in R^{4}} \left| \frac{\partial \psi_{i}}{\partial t} + \widehat{V}_{i} \frac{\partial \psi_{i}}{\partial x} \right| +$$

$$+ 4\pi d^{2} \rho_{1} \rho_{2} \left| \widehat{V}_{1} - \widehat{V}_{2} \right| \sup_{(t,x) \in R^{4}} (\psi_{1} \psi_{2}) +$$

$$+ \frac{4}{\sqrt{\pi}} \sum_{i=1}^{2} \rho_{i} \left| \overline{\omega}_{0i} \times \left(\widehat{V}_{i} - \overline{u}_{0i} \right) \right| \sup_{(t,x) \in R^{4}} \psi_{i}.$$

$$(18)$$

Доказательство. Для получения неравенства (14) сначала оценим модуль разности левой и правой частей уравнения (1), имея их представления (2) и (3), подставляя в них исследуемую функцию (8). При вычислении оператора D(f) воспользуемся тем, что M_i , i=1,2 представляют собой точные решения уравнения Бриана-Пиддака.

$$\begin{split} D(f) &= M_1 D(\varphi_1) + \varphi_1 D(M_1) + M_2 D(\varphi_2) + \varphi_2 D(M_2) = \\ &= M_1 \left(\frac{\partial \varphi_1}{\partial t} + V \frac{\partial \varphi_1}{\partial x} \right) + M_2 \left(\frac{\partial \varphi_2}{\partial t} + V \frac{\partial \varphi_2}{\partial x} \right), \\ Q(f,f) &= \frac{d^2}{2} \int_{R^3} dV_1 \int_{R^3} d\omega_1 \int_{\sum} d\alpha B(V - V_1,\alpha) \left[(\varphi_1 M_1(V_1^*,\omega_1^*) + \\ &+ \varphi_2 M_2(V_1^*,\omega_1^*)) \cdot (\varphi_1 M_1(V^*,\omega^*) + \varphi_2 M_2(V^*,\omega^*)) - (\varphi_1 M_1(V_1,\omega_1) + \\ &+ \varphi_2 M_2(V_1,\omega_1)) \cdot (\varphi_1 M_1(V,\omega) + \varphi_2 M_2(V,\omega)) \right] = \\ &= \frac{d^2}{2} \varphi_1 \varphi_2 \cdot \int_{R^3} dV_1 \int_{R^3} d\omega_1 \int_{\sum} d\alpha B(V - V_1,\alpha) \left[M_1(V_1^*,\omega_1^*) M_2(V^*,\omega^*) + \\ &+ M_2(V_1^*,\omega_1^*) M_1(V^*,\omega^*) - M_1(V_1,\omega_1) M_2(V,\omega) - M_2(V_1,\omega_1) M_1(V,\omega) \right] = \\ &= \varphi_1 \varphi_2 \left(Q(M_1,M_2) + Q(M_2,M_1) \right). \end{split}$$

Как известно, интеграл столкновений (3) имеет представление [9,10]

$$Q(f,q) = G(f,q) - fL(q), \tag{19}$$

где G(f,g) называется прибыточным членом интеграла столкновений и имеет вид

$$G(f,g) = \frac{d^2}{2} \int_{R^3} dV_1 \int_{R^3} d\omega_1 \int_{\Sigma} d\alpha B(V - V_1, \alpha) \cdot f(t, x, V_1^*, \omega_1^*) g(t, x, V^*, \omega^*),$$
(20)

а L(g) – затратный член вида

$$L(g) = \frac{d^2}{2} \int_{R^3} dV_1 \int_{R^3} d\omega_1 \int_{\Sigma} d\alpha B(V - V_1, \alpha) g(t, x, V_1, \omega_1).$$
 (21)

В приложении будет доказано, что:

$$\int_{R^3} dV \int_{R^3} d\omega Q(M_i, M_j) = 0.$$
(22)

Из равенства (22) с учетом (19) очевидно, что:

$$\int_{R^3} dV \int_{R^3} d\omega G(M_i, M_j) = \int_{R^3} dV \int_{R^3} d\omega M_i L(M_j). \tag{23}$$

Для удобства дальнейших вычислений максвеллианы преобразуем к виду

$$M_i = e^{\beta_i \overline{\omega}_i^2 r_i^2} \widetilde{M}_i. \tag{24}$$

Теперь, имея вид выражений (2), (3) для функции (8) и обозначение (24), продолжим ранее начатую оценку:

$$\begin{split} &|D(f)-Q(f,f)| = \\ &= \left|\sum_{i=1}^2 D(\varphi_i) e^{\beta_i \overline{\omega}_i^2 r_i^2} \widetilde{M}_i - \varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \big(Q(\widetilde{M}_1,\widetilde{M}_2) + Q(\widetilde{M}_2,\widetilde{M}_1) \big) \right| = \\ &= \left|\sum_{i=1}^2 D(\varphi_i) e^{\beta_i \overline{\omega}_i^2 r_i^2} \widetilde{M}_i - \varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \left(G(\widetilde{M}_1,\widetilde{M}_2) - \widetilde{M}_1 L(\widetilde{M}_2) + \right. \\ &\left. + G(\widetilde{M}_2,\widetilde{M}_1) - \widetilde{M}_2 L(\widetilde{M}_1) \right) \right| \leq \\ &\leq \left|\sum_{i=1}^2 D(\varphi_i) e^{\beta_i \overline{\omega}_i^2 r_i^2} \widetilde{M}_i + \varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \left(\widetilde{M}_1 L(\widetilde{M}_2) + \widetilde{M}_2 L(\widetilde{M}_1) \right) \right| + \\ &\left. + \varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \left(G(\widetilde{M}_1,\widetilde{M}_2) + G(\widetilde{M}_2,\widetilde{M}_1) \right). \end{split}$$

Проинтегрируем полученную оценку по всему пространству линейных и угловых скоростей, и воспользуемся равенством (23)

$$\begin{split} &\int_{R^3} dV \int_{R^3} d\omega \, |D(f) - Q(f,f)| \leq \\ &\leq \sum_{i,j=1}^2 \int_{R^3} dV \int_{R^3} d\omega \, \left| D(\varphi_i) e^{\beta_i \overline{\omega}_i^2 r_i^2} + \varphi_i \varphi_j e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} L(M_j) \right| M_i + \\ &+ \varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \int_{R^3} dV \int_{R^3} d\omega \, \left(G(\widetilde{M}_1, \widetilde{M}_2) + G(\widetilde{M}_2, \widetilde{M}_1) \right) = \\ &= \sum_{i,j=1}^2 \int_{R^3} dV \int_{R^3} d\omega \, \left| D(\varphi_i) + \varphi_i \varphi_j e^{\beta_j \overline{\omega}_j^2 r_j^2} L(M_j) \right| e^{\beta_i \overline{\omega}_i^2 r_i^2} M_i + \\ &+ 2\varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \int_{R^3} dV \int_{R^3} d\omega G(\widetilde{M}_1, \widetilde{M}_2) \leq \end{split}$$

$$\leq \sum_{i=1}^{2} \int_{R^{3}} dV \int_{R^{3}} d\omega |D(\varphi_{i})| e^{\beta_{i}\overline{\omega}_{i}^{2}r_{i}^{2}} \widetilde{M}_{i} + 4\varphi_{1}\varphi_{2}e^{\beta_{1}\overline{\omega}_{1}^{2}r_{1}^{2} + \beta_{2}\overline{\omega}_{2}^{2}r_{2}^{2}}.$$

$$\cdot \int_{R^{3}} dV \int_{R^{3}} d\omega G(\widetilde{M}_{1}, \widetilde{M}_{2}) = \sum_{i=1}^{2} \rho_{i} \left(\frac{\beta_{i}}{\pi}\right)^{3/2} e^{\beta_{i}\overline{\omega}_{i}^{2}r_{i}^{2}} \int_{R^{3}} dV |D(\varphi_{i})| \cdot$$

$$\cdot e^{-\beta_{i}(V - \overline{V}_{i})^{2}} + 4\varphi_{1}\varphi_{2}e^{\beta_{1}\overline{\omega}_{1}^{2}r_{1}^{2} + \beta_{2}\overline{\omega}_{2}^{2}r_{2}^{2}} \int_{R^{3}} \int_{R^{3}} dV d\omega G(\widetilde{M}_{1}, \widetilde{M}_{2}).$$

Вычислим $D(\varphi_i)$, учитывая условие (10)

$$\frac{\partial \varphi_i}{\partial t} = \frac{\partial \psi_i}{\partial t} e^{-\beta_i \overline{\omega}_i^2 r_i^2} + \psi_i e^{-\beta_i \overline{\omega}_i^2 r_i^2} \frac{\partial}{\partial t} (-\beta_i \overline{\omega}_i^2 r_i^2).$$

Из выражения (9) и, принимая во внимание, что:

$$\overline{\omega}_i \perp \overline{u}_{0i},$$
 (25)

получаем:

$$\frac{\partial}{\partial t}(-\beta_{i}\overline{\omega}_{i}^{2}r_{i}^{2}) = -\beta_{i}\frac{\partial}{\partial t}\left(\left[\overline{\omega}_{i}\times(x-\overline{x}_{0i}-\overline{u}_{0i}t)\right]^{2}\right) =
= 2\beta_{i}\left(\left[\overline{\omega}_{i}\times(x-\overline{x}_{0i}-\overline{u}_{0i}t)\right]\times\overline{\omega}_{i},\overline{u}_{0i}\right) =
= 2\beta_{i}\left(x-\overline{x}_{0i}-\overline{u}_{0i}t,\overline{u}_{0i}\right)\overline{\omega}_{i}^{2} - 2\beta_{i}\left(\overline{\omega}_{i},\overline{u}_{0i}\right)\left(\overline{\omega}_{i},x-\overline{x}_{0i}-\overline{u}_{0i}t\right) =
= 2\beta_{i}\left(x,\overline{u}_{0i}\right)\overline{\omega}_{i}^{2} - 2\beta_{i}\overline{u}_{0i}^{2}\overline{\omega}_{i}^{2}t - 2\beta_{i}\left(\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right),\overline{u}_{0i}\right) =
= 2\beta_{i}\overline{\omega}_{i}^{2}\left(x,\overline{u}_{0i}\right) - 2\beta_{i}\overline{u}_{0i}^{2}\overline{\omega}_{i}^{2}t - 2\beta_{i}\left(\overline{\omega}_{i}\times\widehat{V}_{i},\overline{u}_{0i}\right).$$

Далее найдем слагаемое $\left(V, \frac{\partial \varphi_i}{\partial x}\right)$, зная условие (25) и принимая во внимание, что $\overline{\omega}_i \perp \left[\overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i}\right)\right]$:

$$\left(V, \frac{\partial}{\partial x} \left(-\beta_i \overline{\omega}_i^2 r_i^2\right)\right) = -2\beta_i \left(V, \left[\overline{\omega}_i \times (x - \overline{x}_{0i} - \overline{u}_{0i}t)\right] \times \overline{\omega}_i\right) =
= -2\beta_i \left(V, x - \overline{x}_{0i} - \overline{u}_{0i}t\right) \overline{\omega}_i^2 + 2\beta_i (V, \overline{\omega}_i) (\overline{\omega}_i, x - \overline{x}_{0i} - \overline{u}_{0i}t) =
= -2\beta_i \left(V, x - \overline{x}_{0i} - \overline{u}_{0i}t\right) \overline{\omega}_i^2 + 2\beta_i (V, \overline{\omega}_i) (\overline{\omega}_i, x).$$

Подставим полученные результаты в имеющуюся оценку:

$$\begin{split} &\int_{R^3} \int_{R^3} |D(f) - Q(f,f)| \, dV d\omega \leq \sum_{i=1}^2 \rho_i \left(\frac{\beta_i}{\pi}\right)^{3/2} e^{\beta_i \overline{\omega}_i^2 r_i^2} \int_{R^3} |D(\varphi_i)| \cdot \\ &\cdot e^{-\beta_i (V - \overline{V}_i)^2} dV + 4\varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega = \\ &= \sum_{i=1}^2 \rho_i \left(\frac{\beta_i}{\pi}\right)^{3/2} \int_{R^3} \left|D(\varphi_i) + 2\beta_i \psi_i \left(\overline{\omega}_i^2(x, \overline{u}_{0i}) - \overline{u}_{0i}^2 \overline{\omega}_i^2 t - \right. \\ &- \left(\overline{\omega}_i \times \widehat{V}_i, \overline{u}_{0i}\right) - (V, x - \overline{x}_{0i} - \overline{u}_{0i}t) \, \overline{\omega}_i^2 + (V, \overline{\omega}_i)(\overline{\omega}_i, x)\right) \right| \cdot \end{split}$$

$$\begin{split} &\cdot e^{-\beta_i (V-\overline{V}_i)^2} dV + 4\psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega = \\ &= \sum_{i=1}^2 \rho_i \left(\frac{\beta_i}{\pi}\right)^{3/2} \int_{R^3} \left|\frac{\partial \psi_i}{\partial t} + V \frac{\partial \psi_i}{\partial x} + 2\beta_i \psi_i \left(\overline{\omega}_i^2(x, \overline{u}_{0i}) - \overline{u}_{0i}^2 \overline{\omega}_i^2 t \right. - \\ &- \left(\overline{\omega}_i \times \widehat{V}_i, \overline{u}_{0i}\right) - (V, x - \overline{u}_{0i}t) \, \overline{\omega}_i^2 + \left(V, \overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i}\right)\right) + \\ &+ \left. (V, \overline{\omega}_i)(\overline{\omega}_i, x)\right) |e^{-\beta_i (V-\overline{V}_i)^2} dV + 4\psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega. \end{split}$$

Теперь сделаем замену переменных в интеграле, входящем в сумму:

$$V = \frac{p}{\sqrt{\beta_i}} + \overline{V}_i,$$

а якобиан такой замены составляет $J=\beta_i^{-3/2}.$ Итак, получаем:

$$\begin{split} &\int_{R^3} \int_{R^3} |D(f) - Q(f,f)| \, dV d\omega \leq \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \left| \frac{\partial \psi_i}{\partial t} + \right. \\ &+ \left. \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i \right) \frac{\partial \psi_i}{\partial x} + 2\beta_i \psi_i \left(\overline{\omega}_i^2(x, \overline{u}_{0i}) - \overline{u}_{0i}^2 \overline{\omega}_i^2 t - \left(\overline{\omega}_i \times \widehat{V}_i, \overline{u}_{0i} \right) - \right. \\ &- \left. \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i, x - \overline{u}_{0i} t \right) \overline{\omega}_i^2 + \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i, \overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i} \right) \right) + \right. \\ &+ \left. \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i, \overline{\omega}_i \right) (\overline{\omega}_i, x) \right) \left| e^{-p^2} dp + 4\psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega = \right. \\ &= \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \left| \frac{\partial \psi_i}{\partial t} + \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i \right) \frac{\partial \psi_i}{\partial x} + 2\beta_i \psi_i \left(\overline{\omega}_i^2(x, \overline{u}_{0i}) - \overline{u}_{0i}^2 \overline{\omega}_i^2 t - \right. \\ &- \left. \left(\overline{\omega}_i \times \widehat{V}_i, \overline{u}_{0i} \right) - \left(\frac{1}{\sqrt{\beta_i}} p + \widehat{V}_i, x - \overline{u}_{0i} t \right) \overline{\omega}_i^2 + \left(\frac{1}{\sqrt{\beta_i}} p, \overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i} \right) \right) + \\ &+ \left. \left(\overline{\omega}_i \times \widehat{V}_i, \overline{u}_{0i} \right) + \left(\overline{\omega}_i \times x, \overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i} \right) \right) - \left(\overline{\omega}_i \times \overline{u}_{0i}, \overline{\omega}_i \times \widehat{V}_i \right) t + \\ &+ \left. \left. \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i, \overline{\omega}_i \right) (\overline{\omega}_i, x) \right) \right| e^{-p^2} dp + 4\psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega. \end{split}$$

Для дальнейших преобразований используем следующую формулу из векторной алгебры, справедливую для четырех произвольных векторов a,b,c,d из \mathbb{R}^3 :

$$([a,b],[c,d]) = (a,c)(b,d) - (a,d)(b,c).$$

Тогда:

$$\int_{R^3} \int_{R^3} |D(f) - Q(f, f)| dV d\omega \le \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \left| \frac{\partial \psi_i}{\partial t} + \frac{\partial \psi_i}{\partial t} \right| dV d\omega \le \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \left| \frac{\partial \psi_i}{\partial t} \right| dV d\omega$$

$$\begin{split} &+\left(\frac{1}{\sqrt{\beta_{i}}}p+\overline{V}_{i}\right)\frac{\partial\psi_{i}}{\partial x}+2\beta_{i}\psi_{i}\left(\overline{\omega_{i}^{2}}(x,\overline{u}_{0i})-\left(\frac{1}{\sqrt{\beta_{i}}}p,x-\overline{u}_{0i}t\right)\overline{\omega_{i}^{2}}-\right.\\ &-\overline{\omega_{i}^{2}}\left(\widehat{V}_{i},x-\overline{u}_{0i}t\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\overline{\omega_{i}^{2}}\left(x,\widehat{V}_{i}-\overline{u}_{0i}\right)-\right.\\ &-\left(\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)\left(\overline{\omega}_{i},x\right)-\overline{\omega_{i}^{2}}\left(\overline{u}_{0i},\widehat{V}_{i}\right)t+\left(\overline{\omega}_{i},\widehat{V}_{i}\right)\left(\overline{\omega}_{i},\overline{u}_{0i}\right)t+\right.\\ &+\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)+\left(\widehat{V}_{i},\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\\ &+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p+\overline{V}_{i}\right)\frac{\partial\psi_{i}}{\partial x}+2\beta_{i}\psi_{i}\left(-\left(\frac{1}{\sqrt{\beta_{i}}}p,x-\overline{u}_{0i}t\right)\overline{\omega_{i}^{2}}+\right.\right.\\ &+\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\\ &+\left.\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\\ &+\left.\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\\ &+\left.\left.\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\right.\\ &+\left.\left.\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\right.\\ &+\left.\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\right.\\ &+\left.\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\right.\right.\\ &+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\times\left(\widehat{V}_{i}-\overline{u}_{0i}\right)\right)+\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\left(\overline{\omega}_{i},x\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\right|e^{-p^{2}}dp+\left.\left.\left(\frac{1}{\sqrt{\beta_{i}}}p,\overline{\omega}_{i}\right)\right|e^{-p^{2}}dp+\left$$

Теперь, воспользовавшись предположением (13), имеем:

$$\begin{split} &\int_{R^3} \int_{R^3} |D(f) - Q(f,f)| \, dV d\omega \leq \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \left| \frac{\partial \psi_i}{\partial t} + \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i \right) \frac{\partial \psi_i}{\partial x} + 2\beta_i \psi_i \left(-\left(\frac{1}{\sqrt{\beta_i}} p, x - \overline{u}_{0i} t \right) \beta^{-2m_i} \overline{\omega}_{0i}^2 + \right. \\ &+ \left. \beta^{-m_i} \left(\frac{1}{\sqrt{\beta_i}} p, \overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i} \right) \right) + \beta^{-2m_i} \left(\frac{1}{\sqrt{\beta_i}} p, \overline{\omega}_i \right) (\overline{\omega}_i, x) \right) \right| e^{-p^2} dp + \\ &+ 4\psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega. \end{split}$$

В последнем неравенстве возьмем супремум от обеих частей, а затем сделаем оценку (14):

$$\Delta = \sup_{(t,x)\in R^4} \int_{R^3} \int_{R^3} dv d\omega |D(f) - Q(f,f)| \le \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \sup_{(t,x)\in R^4} \left| \frac{\partial \psi_i}{\partial t} + \left(\frac{1}{\sqrt{\beta_i}} p + \overline{V}_i \right) \frac{\partial \psi_i}{\partial x} + 2\beta_i \psi_i \left(-\left(\frac{1}{\sqrt{\beta_i}} p, x - \overline{u}_{0i} t \right) \beta^{-2m_i} \overline{\omega}_{0i}^2 + \right. \\ + \left. \beta^{-m_i} \left(\frac{1}{\sqrt{\beta_i}} p, \overline{\omega}_i \times \left(\widehat{V}_i - \overline{u}_{0i} \right) \right) + \beta^{-2m_i} \left(\frac{1}{\sqrt{\beta_i}} p, \overline{\omega}_i \right) (\overline{\omega}_i, x) \right) \right| e^{-p^2} dp + \\ + 4 \sup_{(t,x)\in R^4} \psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1, \widetilde{M}_2) dV d\omega.$$

Воспользовавшись доказанным в приложении к статье [4] равенством, имеем:

$$\begin{split} &\sup_{(t,x)\in R^4} \psi_1 \psi_2 \int_{R^3} \int_{R^3} G(\widetilde{M}_1,\widetilde{M}_2) dV d\omega = \\ &= \frac{d^2 \rho_1 \rho_2}{\pi^2} \sup_{(t,x)\in R^4} \psi_1 \psi_2 \int_{R^3} \int_{R^3} du du_1 e^{-u^2 - u_1^2} \left| \frac{u}{\beta_1} + \overline{V}_1 - \frac{u_1}{\beta_2} - \overline{V}_2 \right|. \end{split}$$

Теперь необходимо сделать предельный переход в полученой оценке, для обоснования возможности которого воспользуемся доказанной в статье [4] леммой, причем рассмотрим поочередно два случая (15) и (17).

1) итак, если выполнено неравенство (15), то:

$$\lim_{\beta_i \to \infty} \Delta' \leq \sum_{i=1}^2 \frac{\rho_i}{\pi^{3/2}} \int_{R^3} \sup_{(t,x) \in R^4} \left| \frac{\partial \psi_i}{\partial t} + \widehat{V}_i \frac{\partial \psi_i}{\partial x} \right| e^{-p^2} dp +$$

$$+ 4\pi d^2 \rho_1 \rho_2 \left| \widehat{V}_1 - \widehat{V}_2 \right| \sup_{(t,x) \in R^4} \psi_1 \psi_2 = \sum_{i=1}^2 \rho_i \sup_{(t,x) \in R^4} \left| \frac{\partial \psi_i}{\partial t} + \widehat{V}_i \frac{\partial \psi_i}{\partial x} \right| +$$

$$+ 4\pi d^2 \rho_1 \rho_2 \left| \widehat{V}_1 - \widehat{V}_2 \right| \sup_{(t,x) \in R^4} \psi_1 \psi_2.$$

и, таким образом, неравенство (16) выполняется.

2) если имеет место равенство (17), то получаем:

$$\lim_{\beta_{i}\to\infty} \Delta' \leq \sum_{i=1}^{2} \frac{\rho_{i}}{\pi^{3/2}} \int_{R^{3}} \sup_{(t,x)\in R^{4}} \left| \frac{\partial \psi_{i}}{\partial t} + \widehat{V}_{i} \frac{\partial \psi_{i}}{\partial x} + \frac{1}{2} \psi_{i} \left(p, \overline{\omega}_{0i} \times \left(\widehat{V}_{i} - \overline{u}_{0i} \right) \right) \right| e^{-p^{2}} dp + 4\pi d^{2} \rho_{1} \rho_{2} \left| \widehat{V}_{1} - \widehat{V}_{2} \right| \sup_{(t,x)\in R^{4}} \psi_{1} \psi_{2} \leq \sum_{i=1}^{2} \rho_{i} \sup_{(t,x)\in R^{4}} \left| \frac{\partial \psi_{i}}{\partial t} + \widehat{V}_{i} \frac{\partial \psi_{i}}{\partial x} \right| + 4\pi d^{2} \rho_{1} \rho_{2} \left| \widehat{V}_{1} - \widehat{V}_{2} \right| \sup_{(t,x)\in R^{4}} \psi_{1} \psi_{2} + 2\sum_{i=1}^{2} \frac{\rho_{i}}{\pi^{3/2}} \int_{R^{3}} \left| \left(p, \overline{\omega}_{0i} \times \left(\widehat{V}_{i} - \overline{u}_{0i} \right) \right) \right| e^{-p^{2}} dp \sup_{(t,x)\in R^{4}} \psi_{i} \leq \sum_{i=1}^{2} \rho_{i} \sup_{(t,x)\in R^{4}} \left| \frac{\partial \psi_{i}}{\partial t} + \widehat{V}_{i} \frac{\partial \psi_{i}}{\partial x} \right| + 4\pi d^{2} \rho_{1} \rho_{2} \left| \widehat{V}_{1} - \widehat{V}_{2} \right| \sup_{(t,x)\in R^{4}} \psi_{1} \psi_{2} + \int_{R^{3}} \left| p \right| e^{-p^{2}} dp \cdot 2 \sum_{i=1}^{2} \frac{\rho_{i}}{\pi^{3/2}} \left| \left(\overline{\omega}_{0i} \times \left(\widehat{V}_{i} - \overline{u}_{0i} \right) \right) \right| \sup_{(t,x)\in R^{4}} \psi_{i}.$$

Последний интеграл можно легко вычислить, переходя к сферической системе координат:

$$\int_{R^3} |p| e^{-p^2} dp = 2\pi.$$

Значит, в случае (17) справедливо следующее неравенство:

$$\lim_{\beta_i \to +\infty, \ i=1,2} \Delta' \leq \sum_{i=1}^2 \rho_i \sup_{(t,x) \in R^4} \left| \frac{\partial \psi_i}{\partial t} + \widehat{V}_i \frac{\partial \psi_i}{\partial x} \right| + 4\pi d^2 \rho_1 \rho_2 \cdot \left| \widehat{V}_1 - \widehat{V}_2 \right| \sup_{(t,x) \in R^4} (\psi_1 \psi_2) + \frac{4}{\sqrt{\pi}} \sum_{i=1}^2 \rho_i \left| \overline{\omega}_{0i} \times \left(\widehat{V}_i - \overline{u}_{0i} \right) \right| \sup_{(t,x) \in R^4} \psi_i,$$

что и доказывает верность оценки (18). Теорема доказана.

Теорема 2. Пусть остается в силе представление (13), но вместо (10) предположим, что:

$$\left[\overline{\omega}_{0i} \times \left(\widehat{V}_i - \overline{u}_{0i}\right)\right] = 0, \tag{26}$$

а также ограничены следующие функции:

$$\varphi_{i}e^{\beta_{i}\omega_{i}^{2}r_{i}^{2}}, \quad \frac{\partial\varphi_{i}}{\partial t}e^{\beta_{i}\omega_{i}^{2}r_{i}^{2}}, \quad \left|\frac{\partial\varphi_{i}}{\partial x}\right|e^{\beta_{i}\omega_{i}^{2}r_{i}^{2}},
\varphi_{i}\left|\overline{\omega}_{0i}\times(x-\overline{u}_{0i}t)\right|e^{\beta_{i}\omega_{i}^{2}r_{i}^{2}}, \quad \left|\frac{\partial\varphi_{i}}{\partial x}\left[\overline{\omega}_{0i}\times(x-\overline{u}_{0i}t)\right]\right|e^{\beta_{i}\omega_{i}^{2}r_{i}^{2}} \quad i=1,2.$$
(27)

Тогда, как и в первой теореме, имеет место оценка (14), при этом:

$$\lim_{\beta_i \to +\infty, i=1,2} \Delta' = \sum_{i,j=1}^{2} \rho_i \sup_{(t,x) \in R^4} \left| \left(\frac{\partial \varphi_i}{\partial t} + \widehat{V}_i \frac{\partial \varphi_i}{\partial x} \right) \mu_i(t,x) + \right.$$

$$\left. + \varphi_1 \varphi_2 \mu_1(t,x) \mu_2(t,x) \pi d^2 \rho_j \left| \widehat{V}_i - \widehat{V}_j \right| \right| +$$

$$\left. + 2\rho_1 \rho_2 \pi d^2 \left| \widehat{V}_1 - \widehat{V}_2 \right| \sup_{(t,x) \in R^4} \left[\mu_1(t,x) \mu_2(t,x) \varphi_1 \varphi_2 \right],$$

$$(28)$$

 $\epsilon \partial e$

1)
$$\mu_i(t,x) = exp\left\{ [\overline{\omega}_{0i} \times (x - \overline{u}_{0i}t)]^2 \right\}$$
, если $m_i = \frac{1}{2}, i = 1, 2;$

2)
$$\mu_i(t,x) = 1$$
, ecau $m_i > \frac{1}{2}$, $i = 1, 2$.

Доказательство. Как показано в доказательстве Теоремы 1, имеем:

$$\begin{split} &\int_{R^3} dV \int_{R^3} d\omega \, |D(f) - Q(f,f)| \leq \sum_{i=1}^2 \rho_i \left(\frac{\beta_i}{\pi}\right)^{3/2} e^{\beta_i \overline{\omega}_i^2 r_i^2} \cdot \\ &\cdot \int_{R^3} dV \, |D(\varphi_i)| \, e^{-\beta_i \left(V - \widehat{V}_i\right)^2} + 4\varphi_1 \varphi_2 e^{\beta_1 \overline{\omega}_1^2 r_1^2 + \beta_2 \overline{\omega}_2^2 r_2^2} \int_{R^3} \int_{R^3} dV d\omega G\left(\widetilde{M}_1; \widetilde{M}_2\right). \end{split}$$

Теперь сделаем такую же замену переменных, как и при доказательстве предыдущей теоремы, в интеграле первых двух слагаемых и продолжим ранее начатую оценку:

$$\sum_{i=1}^{2} \rho_{i} \left(\frac{\beta_{i}}{\pi}\right)^{3/2} e^{\beta_{i}\overline{\omega}_{i}^{2}r_{i}^{2}} \frac{1}{\beta_{i}^{3/2}} \int_{R^{3}} dp \left| \frac{\partial \varphi_{i}}{\partial t} + \left(\frac{1}{\sqrt{\beta_{i}}}p + \widehat{V}_{i}\right) \frac{\partial \varphi_{i}}{\partial x} \right| e^{-p^{2}} + 4\varphi_{1}\varphi_{2}e^{\beta_{1}\overline{\omega}_{1}^{2}r_{1}^{2} + \beta_{2}\overline{\omega}_{2}^{2}r_{2}^{2}} \int_{R^{3}} dV d\omega G\left(\widetilde{M}_{1}; \widetilde{M}_{2}\right),$$

вспоминая обозначение (12) и учитывая условие теоремы (26), получаем что $\beta_i \overline{\omega}_i^2 r_i^2 = \beta_i \left[\overline{\omega}_i \times (x - \overline{u}_{0i} t) \right]^2$.

Благодаря наложенным условиям об ограниченности функций можем перейти к супремуму. Таким образом, имеем:

$$\Delta \leq \sum_{i=1}^{2} \rho_{i} \frac{1}{\pi^{3/2}} \sup_{(t,x) \in R^{4}} e^{\beta_{i} \overline{\omega}_{i}^{2} r_{i}^{2}} \int_{R^{3}} dp \left| \frac{\partial \varphi_{i}}{\partial t} + \left(\frac{1}{\sqrt{\beta_{i}}} p + \widehat{V}_{i} \right) \frac{\partial \varphi_{i}}{\partial x} \right| e^{-p^{2}} + 4 \sup_{(t,x) \in R^{4}} \left(\varphi_{1} \varphi_{2} e^{\beta_{1} [\overline{\omega}_{1} \times (x - \overline{u}_{01} t)]^{2}} e^{\beta_{2} [\overline{\omega}_{2} \times (x - \overline{u}_{02} t)]^{2}} \right).$$

$$\cdot \sup_{(t,x) \in R^{4}} \int_{R^{3}} \int_{R^{3}} dV d\omega G\left(\widetilde{M}_{1}; \widetilde{M}_{2} \right).$$

Вновь воспользовавшись приложением к статье [4] и вспоминая условие (13), получаем:

$$\begin{split} & \triangle \leq \sum_{i=1}^{2} \rho_{i} \pi^{-3/2} \sup_{(t,x) \in R^{4}} e^{\beta_{i}^{1-2m_{i}} \left[\overline{\omega}_{0i} \times (x-\overline{u}_{0i}t)\right]^{2}} \int_{R^{3}} dp \left| \frac{\partial \varphi_{i}}{\partial t} + \left(\frac{1}{\sqrt{\beta_{i}}} p + \widehat{V}_{i}\right) \frac{\partial \varphi_{i}}{\partial x} \right| e^{-p^{2}} + 4 \sup_{(t,x) \in R^{4}} \left(\varphi_{1} \varphi_{2} e^{\beta_{1}^{1-2m_{1}} \left[\overline{\omega}_{01} \times (x-\overline{u}_{01}t)\right]^{2} + \beta_{2}^{1-2m_{2}} \left[\overline{\omega}_{02} \times (x-\overline{u}_{02}t)\right]^{2}} \right) \cdot \\ & \cdot \frac{d^{2} \rho_{1} \rho_{2}}{\pi^{2}} \int_{R^{3}} \int_{R^{3}} du du_{1} e^{-u^{2} - u_{1}^{2}} \left| \frac{u}{\beta_{1}} + \widehat{V}_{1} - \frac{u_{1}}{\beta_{2}} - \widehat{V}_{2} \right| . \end{split}$$

Делая предельный переход под знаком неравенства, когда $\beta_i \to +\infty$ (i=1,2), получаем:

$$\lim_{\beta_{i} \to +\infty, \quad i=1,2} \Delta' = \sum_{i=1}^{2} \sup_{(t,x) \in R^{4}} \rho_{i} \left| \frac{\partial \varphi_{i}}{\partial t} + \widehat{V}_{i} \frac{\partial \varphi_{i}}{\partial x} \right| \lim_{\beta_{i} \to +\infty} e^{\beta_{i}^{1-2m_{i}} \left[\overline{\omega}_{0i} \times (x-\overline{u}_{0i}t)\right]^{2}} +$$

$$+ 4 \frac{d^{2} \rho_{1} \rho_{2}}{\pi^{2}} \left| \widehat{V}_{1} - \widehat{V}_{2} \right| \pi^{3} \cdot \lim_{\beta_{i} \to +\infty} \sup_{(t,x) \in R^{4}} \left(\varphi_{1} \varphi_{2} e^{\beta_{1}^{1-2m_{1}} \left[\overline{\omega}_{01} \times (x-\overline{u}_{01}t)\right]^{2}} \cdot \right.$$

$$\cdot e^{\beta_{2}^{1-2m_{2}} \left[\overline{\omega}_{02} \times (x-\overline{u}_{02}t)\right]^{2}} \right)$$

и. В случае $m_i=\frac{1}{2},\ i=1,2$ в точности имеем (28), где $\mu_i(t,x)=\exp\left\{\left[\overline{\omega}_{0i}\times(x-\overline{u}_{0i}t)\right]^2\right\}$, а если $m_i>\frac{1}{2}$, то получаем это же самое выражение при $\mu_i(t,x)=1$. **Теорема доказана.**

Доказаные теоремы позволяют сформулировать в виде следствий из них условия, достаточные для бесконечной малости невязки (7).

Следствие 1. Пусть выполнены условия Теоремы 1. В случае (15) предположим, что $\psi_i = C_i \left(x - \widehat{V}_i t \right) -$ произвольные неотрицательные непрерывно-дифференцируемые функции и $\widehat{V}_1 = \widehat{V}_2$. Тогда имеет место следующее утверждение:

$$\forall \varepsilon > 0, \exists \beta_0 : \forall \beta_i > \beta_0, \Delta < \varepsilon. \tag{29}$$

При выполнении равенства(17) для справедливости утверждения (29) необходимо также наложить условие (26).

Справедливость этого следствия очевидным образом вытекает из неравенств (16), (18), учитывая, что функции ψ_i обращают в ноль первое слагаемое, а дополнительные условия относительно скоростей $\widehat{V}_i, \overline{\omega}_{0i}$ и \overline{u}_{0i} обнуляют оставшиеся слагаемые.

Следствие 2. Если выполнены условия Теоремы 2 (функции φ_i в точности совпадают с функциями ψ_i из Следствия 1) и также остается верным равенство $\widehat{V}_1 = \widehat{V}_2$, то по-преженему выполняется утверждение (29).

Доказательство этого следствия следует из равенства (28), где первое слагаемое обнулится из-за вида функции φ_i , а второе и третье – ввиду условия совпадения скоростей \hat{V}_i .

Замечание. При достаточно низких температурах потоков и замедлении их вращения, а также при совпадении линейных скоростей бимодальное распределение (8) удовлетворяет уравнению Больцмана со сколь угодно высокой степенью точности (в смысле минимизации невязки (7)).

Приложение

Проверим выполнение утверждения (22). Подставляя вместо функций f, g глобальные максвеллианы M_2 и M_1 соответственно в формулы (20), (21), можно получить следующие равенства:

$$\begin{split} L(M_1) &= \frac{d^2}{\sqrt{\pi}} \rho_1 \int_{R^3} \left| V - \overline{V}_1 - \frac{w_1}{\sqrt{\beta_1}} \right| e^{-w_1^2} dw_1; \\ \int_{R^3} dV \int_{R^3} d\omega G(M_i, M_j) &= \\ &= \frac{d^2 \rho_1 \rho_2}{\pi^2} \int_{R^3} \int_{R^3} du du_1 e^{-u^2 - u_1^2} \left| \frac{u}{\sqrt{\beta_1}} + \overline{V}_1 - \frac{u_1}{\sqrt{\beta_2}} - \overline{V}_2 \right|, \end{split}$$

которые получены в статье [4].

Для проверки верности утверждения (22) достаточно убедиться, что

верно равенство (23), т.е.

$$\begin{split} & \int_{R^3} \int_{R^3} dV d\omega M_2 L(M_1) = \int_{R^3} \int_{R^3} dV d\omega \rho_2 I^{3/2} \left(\frac{\beta_2}{\pi}\right)^3 \cdot \\ & \cdot e^{-\beta_2 \left(\left(V - \overline{V}_2\right)^2 + I\omega^2\right)} \cdot \frac{d^2}{\sqrt{\pi}} \rho_1 \int_{R^3} \left|V - \overline{V}_1 - \frac{w_1}{\sqrt{\beta_1}}\right| e^{-w_1^2} dw_1 = \\ & = \frac{d^2 \rho_1 \rho_2}{\sqrt{\pi}} I^{3/2} \left(\frac{\beta_2}{\pi}\right)^3 \int_{R^3} dV \int_{R^3} e^{-\beta_2 \left(\left(V - \overline{V}_2\right)^2\right)} \left|V - \overline{V}_1 - \frac{w_1}{\sqrt{\beta_1}}\right| e^{-w_1^2} dw_1 \cdot \\ & \cdot \int_{R^3} e^{-\beta_2 I\omega^2} d\omega. \end{split}$$

Для вычисления последнего интеграла сделаем замену:

$$\sqrt{\beta_2 I}\omega = s;$$

$$J = \left(\frac{1}{\beta_2 I}\right)^{3/2},$$

после которой он сводится к трехкратному интегралу Эйлера-Пуассона и даёт результат: $\left(\frac{\pi}{\beta_2 I}\right)^{3/2}$. Далее имеем:

$$\begin{split} & \int_{R^3} \int_{R^3} dV d\omega M_2 L(M_1) = \\ & = \frac{d^2 \rho_1 \rho_2}{\beta_2^{3/2} \sqrt{\pi}} \left(\frac{\beta_2}{\pi} \right)^3 \pi^{3/2} \int_{R^3} dV \int_{R^3} e^{-\beta_2 \left(V - \overline{V}_2 \right)^2 - w_1^2} \left| V - \overline{V}_1 - \frac{w_1}{\sqrt{\beta_1}} \right| dw_1. \end{split}$$

Сделаем тут еще одну замену:

$$V = \frac{u}{\sqrt{\beta_2}} + \overline{V}_2, \qquad w_1 = u_1,$$
$$J = \frac{1}{\beta_2^{3/2}}.$$

Таким образом, получаем:

$$\begin{split} &\int_{R^3} \int_{R^3} dV d\omega M_2 L(M_1) = \\ &= \frac{d^2 \rho_1 \rho_2}{\pi^2} \beta_2^{3/2} \frac{1}{\beta_2^{3/2}} \int_{R^3} du \int_{R^3} du_1 e^{-u^2 - u_1^2} \left| \frac{u_1}{\sqrt{\beta_2}} + \overline{V}_2 - \overline{V}_1 - \frac{u}{\sqrt{\beta_1}} \right| = \\ &= \frac{d^2 \rho_1 \rho_2}{\pi^2} \int_{R^3} \int_{R^3} du du_1 e^{-u^2 - u_1^2} \left| \frac{u}{\sqrt{\beta_1}} + \overline{V}_1 - \frac{u_1}{\sqrt{\beta_2}} - \overline{V}_2 \right| = \\ &= \int_{R^3} \int_{R^3} dV d\omega G(M_1, M_2). \end{split}$$

Следовательно, утверждение (22) доказано.

ЛИТЕРАТУРА

- 1. С. Чепмен, Т. Каулинг. Математическая теория неоднородных газов, пер. с англ. Е.В.Малиновской, М.: 1960г. гл. 11 С. 240-249.
- 2. Cercignani C, Lampis M. On the kinetic theory of a dense gas of rough spheres. J. Statist. Phys. 1988; **53**, P. 655-672.
- 3. Gordevsky V.D. Explicit approximate solutions of the Boltzmann equation for the model of rough spheres Dop. NAN Sci.Ukr.(2000), 4, P. 10-13(Ukrainian)
- 4. Gordevskyy V.D. Approximate Billow Solutions of the Kinetic Bryan-Pidduck Equation Math. Meth. Appl. Sci. -2000. 23. P. 1121-1137.
- 5. Карлеман Т. Математические задачи кинетической теории газов.-М. : ИИЛ, (пер. с франц.). 1960. 118c.
- 6. Grad H. On the kinetic theory of racefied gases.//Comm. Pure and Appl. Math.. -1949.-2, N-4 P. 331-407.
- 7. Фридлендер О.Г. Локально-максвелловские решения уравнения Больцмана //Прикладная математика и механика.-1965. -29, №5. С. 973-977.
- 8. Gordevskyy V.D. On the non-stationary Maxwellians // Math. Meth. Appl. Sci. -2004. 27. P. 231-247.
- 9. Черчиньяни К. Теория и приложения уравнения Больцмана. М. : Мир, 1978. 495c.
- 10. Коган М.Н. Динамика разреженного газа. М.: Наука, 1967. 440с.
- 11. Гордевский В.Д., Гукалов А.А. Максвелловские распределения в модели шероховатых сфер // Укр. мат. журн.-2011. **63**. №5. С.629-639.
- 12. Gordevskyy V.D. An approximate biflow solution of the Boltzmann equation. Theoret. Math. Phys. 1998; **114**. №1. P. 126-136.
- 13. Gordevskyy V.D., Sysoyeva Yu.A. Interaction between non-uniform flows in a gas of rough spheres // Matem. fiz., analiz, geom. 2002. 9. N^2 2. P. 285-293.

Статья получена: 15.02.2010; окончательный вариант: 19.11.2011; принята: 22.11.2011.