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A new multiplicative decomposition of the resolvent matrix of the truncated
Hausdorff matrix moment (THMM) problem in the case of an odd and even
number of moments via new Dyukarev-Stieltjes matrix (DSM) parameters
is attained. Additionally, we derive Blaschke-Potapov factors of auxiliary
resolvent matrices; each factor is decomposed with the help of the DSM
parameters.

Keywords: Orthogonal matrix polynomial; Dyukarev-Stieltjes parameter;
Resolvent matrix; Continued fractions.

A6non Yoxke-Pisepo. MyabTUILIIKATUBHE 300parkeHHsSI Pe30JIbBEHTHOL
MAaTPUIIi ycideHOol MaTpuvHOI ITpobjieMu MOMEHTIB Xaycaopda B Tep-
MmiHax HoBux nmapamMmerpiB drokapesa-Crinbrbeca. OTpuMaHO MyJIBTUILII-
KATUBHUN PO3KJIJ PE30TBBEHTHOI MATPUI YCIUEHOT MaTPUIHOI IIPOOJIEMU MO-
MeHTiB Xaycopda y BUIaJIKy HEapHOro Ta MAPHOIO YUCIa MOMEHTIB B T€PMi-
HaX HOBUX MarpuwdHux mapamerpiB Hoxapesa-Crinbreeca. Kpim Toro, mu me-
perBoproeMo MHOXKHUKH bisrike-IloTamoBa qomoMi>kHuX PE30JbBEHTHAX MAT-
PUIIb; KOXKHUI MHOXKHUK ysIBJIeHO depe3d mapamerpu Jlokapesa-Crimbrheca.
Kaovo6i crosa: OpTOroOHANBHI MATPUYIHI MHOTOUIEHN; mapameTpu Jlokapesa-
CriibThECA; PE30JIbBEHTHA MATPHUIS; HEIIEPEPBHI APOOH.

A6on Yoke-Pusepo. MysIbTUMJIMKATUBHOE MPEJICTABJIIEHUE PE30Jib-
BEHTHOM MaTPHUIIbI YCEYEHHO MaTpUYHO mpobjeMbl MOMEHTOB Xa-
ycaopda B TepMHHAX HOBBIX mapaMeTrpoB liokapeBa-Crtuiarheca. Ilo-
JIy4€HO MYJIbTUILIMKATUBHOE PA3JIOKEHNE PE30JIbBEHTHON MATPHIIBI YCEIEHHON
MaTpUYHON pobJIeMbl MOMEHTOB Xayciopda B ciiydae HEYeTHOIO M YETHO-
ro Yncja MOMEHTOB B TepMHUHAX HOBBIX MaTPUYHBIX mapamerpos Jlrokapesa-
Cruirbeca. Kpome Toro, mbr mpeobpadyem muoxkutesn bismike-Iloramosa
BCIIOMOTATEJIbHBIX PE30JIbBEHTHBIX MATPHUIL; KAXKIbIH MHOYKUTEJIb BBIPAYKAET-
cs gepe3 mapamerpsl Jiokapesa-Cruirheca.

Karwuesvie cno6a: OpTOrOHAJIbHBIE MAaTPUYHBIE MHOIOYJIEHBI; I1apaMeTpPhI
IokapeBa-Cruirbeca; pe30JibBEHTHASI MaTPUIA; HEIIPEPBIBHBIE JIPOOH.
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1. Introduction

Throughout this paper, let ¢ and p be positive integers. We will use C, R, Ng
and N to denote the set of all complex numbers, the set of all real numbers, the
set of all nonnegative integers, and the set of all positive integers, respectively.
The notation C?*? stands for the set of all complex ¢ x ¢ matrices. For the null
matrix that belongs to CP*¢ we will write 0,x4. We denote by 0, and I, the null
and the identity matrices in C2%?, respectively. In cases where the sizes of the null
and the identity matrix are clear, we will omit the indices.

In the present work we introduce new matrix Stieltjes parameters, called
Dyukarev-Stieltjes matrix (DSM) parameters of the truncated Hausdorff matrix
moment (THMM) problem. With the help of the DSM parameters, we obtain a
new multiplicative representation of the resolvent matrix (RM):

A (z) oM (s
Um(z) = < 7<m>ézi §<m>((z)) )

of the THMM problem in the case of an odd and even number of moments. The
RM U™ is a 2¢ x 2¢ matrix polynomial, which we factorize as follows:

(2n+1) :D?,]l(_Q?H)m[()QnH) . ]1n2ff_1)11'n7(12"+1)352n+1)]31, (2)
where Dy, are anti-diagonal block matrices, Dy is a diagonal matrix, 852”), B§2n+1)a
11(.2"+1), 1m§.2n) are constant anti-triangular block matrices and 1m§-2n+1)> ]1;2”) are

affine on z and anti-triangular block matrices.

See Theorem 3 and Corollary 1.

The importance of the RM is explained by the fact that linear fractional
transformation

s(2) = (" (2)p(2) + B (2)a(2) (7" (2)p(2) + 6 (2)a(2)) !

describes the set of all associated solutions in the nondegenerate case of the
THMM problem. Here the column pair (p, q) satisfies certain properties in every
case; see Definitions [10, Definition 5.2] and [9, Definition 5.2].

Let us now summarize the notions appearing in the last two paragraphs.

Statement of the THMM problem. The THMM problem is stated as follows:
given an interval [a,b] on the real axis and a finite sequence of g x ¢ matrices,
(5510, describe the set M%[[a, b], BN[a, b]; (s;)7-] of all nonnegative Hermitian
g X q measures o defined on the o-algebra of all Borel subsets of the interval [a, 0]

such that
sj = / tIdo(t)

[a,b]
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holds true for each integer jf with 0 < j < m.

Solution set of the THMM problem. For describing the solution set of the
THMM problem with the help of the finite sequence (sj)?zo (resp. (sj)?fgl), we
construct the following Hankel matrices

Hoj = {5l+k}f,k:ov Hyj:= {Sl+k+1}ik:ov and  Hyj := {Sl+k+2}ik:o- (3)
Furthermore, denote
Hyj:= ﬁo,j, J=>0, Hyj 1:= —abﬁo,j—1 + (a+ b)ﬁl,j—l - ﬁQ,j—la j=1 (4)

and
Kl,j = le,j - Hl,j7 Kg’j = —(IHLJ' + Hl,j, j Z 0. (5)

In |9, Theorem 1.3| (resp. [10, Theorem 1.3|), it was demonstrated that there
is a solution to the THMM problem, that is, the set M [[a,b], B N [a, b]; (55)77]
(resp. M%[[a,b], BN]a,b]; (sj)iggl] is not empty if and only if the block matrices
Hi, and Hy,_1 (resp. K, and K3 ,) are both nonnegative Hermitian.

The problem of finding the set M%[[a,b],B N [a,b]; (s7)72,] for m = 2n and
m = 2n + 1 is usually reduced to searching for the set of holomorphic functions

&L [[a. b],%B N [a, b]; (57)7]

— {s@:/[ d““),aeMgua,b],osm[a,m;(sjw}-

’b]t—Z

Definition 1 Let [a,b] be a finite interval on real axis R. The sequence (Sk)ij:[)

(resp. (sk)i]:_zl) is called a Hausdorff positive definite sequence if the block Hankel
matrices Hy j and Hy j_1 (resp. K1j and Ky j) are both positive definite matrices.

In the sequel, we will consider only Hausdorff positive definite sequences. In this
case the THMM problem is called a nondegenerate THMM problem.

Resolvent matrix of the THMM problem. In the present work we use the
following form of RM of the nondegenerate THMM problem, introduced in [5,
Formula (3.24)]:

" 03, (2,0)05  (a,a o1 (2,071, (a,b
UM (z,a,b) = 2, (* ), 2, 371 ) b=a 2L, (z,0)I'7,, (a,b) (6)
(Z - a)r2,n(zva)®2,n (CL,CL) 7]-11

and [5, Formula (3.27)]
U(2n+1) (Z, a, b)

_ Q3.u(2,0,0)Q3, (a, b, ) —Qiun@P @ ) g
*(z - a)(b - Z)PZ*,n(z’ a, b)QE,n ((L, b7 CL) Pl*,n—t—l(Z)Pl*,n+1(a)
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The ¢ x ¢ matrix polynomials Py ;, Q. j, I'r j and Oy ; for k = {1,2} are ¢ x g are
constructed via the given data: the sequence of moments (sj)?io (resp. (sj)iggl).
See Definition 6 and 7.

It should be mentioned that the THMM problem in the nondegenerate case
was first solved in [30].
Factorization strategy of the RM of the THMM problem. Our main
purpose is to factorize the RM U@ and Ut as their simplest factors. To
this end we pursue the following strategy consisting of three steps.

Step 1. We use the equality

AT, 0 I, sopz
7en) (4 :< ==t Yq > < g 50 >
( ) Oq Iq Oq Iq

~ (on— n b—a)(z—a)l 0
G Dapy (OTOET D
q b—a'q

and

1
U+ (5) — 7—=1q Oq ﬁ2(2n+1)(z)Ag2n+l) (b—2)I; 04 )
0, Iy 0g 1y

where ﬁém)(z), Agm)(z) for m = 2n — 2 (m = 2n + 1) are introduced in (27),
(A1), (28) and (31). Equalities (8) and (9) are the consequence of |9, Equality
(6.26)] and [10, Equalities (6.26),(6.27)].

Step 2. The auxiliary matrix ﬁé%ﬂ)
Corollary 1):

is written in the following form (as in

O =aWal) . d@r-glntD), (10)
~(2n—2) - .. 13(2n-2) . .
Instead of U, , the auxiliary matrix U, (as in (29)) is used. The
factorization
03" = d0a® .. =2 qem (11)

is employed to prove a new factorization of the RM U(?"~2) The 2¢ x 2¢ matrices
d@+D and d?) are affine on z. See Definition 8.
Step 3. We factorize every matrix d?*1) (resp. d(®+2)) as in the Theorem 2:

; I, r; 1 0 I, —r;
(25+1) () — g T q q q J
I =) ( 0 14 ) ( —(z—a)m; I > < 0, I )7 12)
; I, 0 I, (z—a)l I, 0
d(23+2)z_< q q)(t] J)(q q> 13
( ) —t; Iy Og I t; I, (13)

for 0 < j < n (resp. 0 < j < n—1) where the ¢ x ¢ matrices rj, t;, m; and 1; are
as in Definition 9.
Based on Steps 1 through 3, which involves algebraic identities and auxiliary
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results described in Sections 2-4, the multiplicative representations (106)
and (107) are found.

In [8], a similar strategy was employed to attain another factorization of the
RM U@ and U@t Namely, the following relations were used:

U@ = g 4@n)

and

(2n+1) _ z—a" 4 q (2n+1) 4(2n+1) Z—a)lg q
v ( Oq Iq ) Ul A ( Oq Iq > ‘

The auxiliary matrices [71(2n+1) and (71(2") are defined by [8, Formula (1.14) and
(1.32)]. The symbol A®™ (resp. AZ"+1D) denotes a 2¢ x 2¢ matrix depending on
a and b.

Observe that the auxiliary matrices (71(2n) and U'l(%’ﬂ) (resp. (72(%72) and

(72(2n+1)) are related to Hy p and Ky, (resp. Hap—1 and K ,), correspondingly.

The importance of the auxiliary matrices (72(2n+1) and [72(271_2) resides in the

fact that they belong to the Potapov class of matrix functions [42], [10, Lemma
6.3], |9, Proposition 6.3]:

0, il
—il, 0,
(00,0)}. A matriz-valued entire function W : C — CP*P is said to belong to the
Potapov class B, (1) if

Definition 2 Let J, := ( > . Furthermore, letI1; :={w € C:Imw €

Jg—W*(2)J,W(z) >0

is satisfied for all z € 1. A matriz-valued function W that belongs to B 5, (IL;)
is called a J-inner function of B, (ILy) if

Jg—W*(x)J,W(x) =0
holds for all x € R.

Matrix-valued functions belonging to the Potapov class can be factorized into
elementary factors, as seen in Corollary 2.

The determinateness of the TSMM problem was obtained in [25] with the help
of the Dyukarev-Stieltjes matrix parameters of the TSMM. The results obtained
in [25] were generalized in [26], [27], [28], [29] and [33]. In these papers, the Yu.M.
Dyukarev’s factorization of the matrix valued functions in the Stieltjes class [24]
and [23| were employed.

In [31], by using a decomposition of the RM of the TSMM problem, the
following were demonstrated: necessary and sufficient conditions for the TSMM
problem to have a unique solution and infinitely many solutions for the Hamburger
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moment problem with the same moments. Note that in [47] and [14] the operator
approach was employed to solve the THMM problem.

In comparison to the DSM parameters My and Lj (8], the new DSM
parameters m; and 1; depend on both terminal points of the interval [a, b]. Other
DSM parameters which also depend on a and b were introduced in [4]. In turn
the aforementioned parameters are different from the ones studied in [8] (also in
[3]), where the parameters depend only on a. In Remark 8 by setting b — +oo
and a = 0 in the DSM parameters m; and 1;, we obtain the Dyukarev-Stieltjes
parameters of the TSMM problem [25].

Throughout the paper we decisively use the forms (6) and (7) of the RM
of the THMM problem obtained in [5] where the elements of the RM are given
with the help of four orthogonal polynomials and their second kind polynomials.
Orthogonal matrix polynomials (OMP) were first considered by M.G. Krein
in 1949 [39], [40]. Further investigations of OMP were made by J.S. Geronimo
[36], I.V. Kovalishina [37], [38], H. Dym [22], B. Simon [44], Damanik /Pushnitski/-
Simon [15] and the references therein. See also [17], [18], [19], [20], [21], [34], [16],
[41], [45], [31], [12], [13], [11], [6] and [7].

2. Notations and preliminaries

In this section we introduce some matrix notation which appear throughout
the work. In particular, we propose the auxiliary RM (72(2j ) which will be factorized
by elementary matrices. See Corollary 2.

The orthogonal matrix polynomials Py j, I'y ; on [a, b] as well as their second
kind polynomials @)y ;, ©j ; are recalled. The mentioned matrix polynomials

together with the connection between the auxiliary RM ﬁ2(2j+1), ﬁz(Zj) and the
RM U (™) play an important role in this work.

Auxiliary matrices

Let R : C — CUTDexG+14 be given by

Rj(2) = (Ij41) — 215)7", j >0, (14)
with
Ogxi 0
TO—O,T:<‘1XJ‘1 q >,]>1
! ! Ij quxq
Let

Vo = Iq, V5 1= Iq - =t ) VJ > 0. (15)
quxq Oq
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Furthermore, let

Sj
Sj+1 .
v =\ . |, 0=jisk<2n (16)
Sk
Let
UL =80, U0 := —S0,
0 - 0
Uy ;= 1 —b a , U= — '—|—a< a > 17
Lj = Y0,4) ( Yio,j1] ) 2,j Y[0,4] Y[0,j-1] (17)
for every 1 < j <n — 1. In addition, for 1 < j <n let
Yij:=byjjoi-1 — Yj+1,2j, Y25 = —ayj2i—1 + Yj+1.2) (18)

Let I?l,j (resp. I?QJ‘) denote the Schur complement of the block bsa; — s2;41
(resp. —asaj + s2j4+1) of the matrix K ; (resp. K ;). In addition, denote

K10 =bso — s1, K1 j :=bsaj — spj41 — V{5 K Y14, 1<j<n, (19)
KQ,O = —asp + S1, KQJ' = —asgj + 82541 — Y2*,jK27731—1YV2J’ 1<7<n. (20)

The quantities (19) and (20) have been defined in [16] for a = 0 and b = 1.
Let

uy,0 = Oq, U’Lj = < Oq > s 1 S j S n (21)
and
Pp— /U/Q’O y
ug0 = —(a+b)sg + 51, uzj:= ( - ) , 1 <j<2n. (22)
Moreover, let
:9\]' = —abs; + (a + b)8j+1 —Sjy2, 0<7<2n-2 (23)
and
55
N Sj+1 )
Yljk) = : ,0< 7 <k<2n—2.
Sk
Note that by (16) and (23)
Yk = —abypip + (@ 4 )Y ke1) — Yjjt2,k+2)-

We also denote

Yij=yyoj, 1<i<n, Yo;:=7yg-11<j<n—1 (24)
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Let H; j (resp. ng) denote the Schur complement of the block sa; (resp. 52;_2)
of the matrix Hy ; (resp. Ha ;): denote H1 0 = S0, HQ,[) = 350 and

Hy ji=s9; — Yi;Hy | Y1, 1<j <n, (25)
ﬁQJ‘ ::§2] YQJH;] 1Y27j, 1 S ] S n — 1. (26)

The quantities (25) and (26) have been defined in [16] for a =0 and b = 1.

In the following Definition, we recall the auxiliary RM (72(2j ) introduced
in |10, Formula (6.2)]. An additive expansion of the aforementioned matrix is
attained in Proposition 3. In Corollary 2, a multiplicative representation of the
auxiliary RM [72(2j 1 is achieved.

Definition 3 Let Ky ; be as in (5), and assume that K j is a positive definite
matric. Furthermore, let wy ;, Rj and vj be as in (17), (14) and (15). The 2q X 2q
matriz polynomial

GO () G

l~7 (2.7 1) . 2 2 . 7
zZ,a, b = . ~To , 2 S C, 1< < n, 2

with
ay” M (z,0,0) =1 — (2 — )it} ;B (2) Ky [ Ry (a)y;,
B (2, 0,0) i=(2 — )it ;B (2) K| Ry ()i,
7 (za,b) = (z — )i B} (D) K [ Ry(a)u
and

S§2j+1)(z, a,b) :=I, + (2 — a)”;R;(E)Ki}Rj(a)al’j

1s called the second auxiliary matrix of the THMM problem in the case of an even
number of moments.

In [10], Equality (9) was proved by using Bs; := (b — a)u; ;R (a )Ki}Rj(a)ﬂgyj
and

2j+1) . ( 1g Ba;
(B B -

In the subsequent Definition, we introduce the auxiliary RM [72(2]'). In
Proposition 2, an additive expansion of the indicated matrix is attained. A

multiplicative representation of the auxiliary RM ﬁ2(2j ) is given by equality (105).
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Definition 4 Let Hyj be as in (4), and assume that Hoj is a positive definite
matriz. Furthermore, let us j, R; and vj be as in (22), (14) and (15). The 2q x 2q
matriz polynomial

e ~(25) (24)
O o) = ( Ty @) Byt ) see 0<jn-1 (9
g b) 9y’ b)

with

s (z,a,b) =1, — (= — a)(uh ; + 2s00}) R}(2)Hy Ry (a)vy,
BP) (2, a,b) :=(z — a)(so + (u5 ; + zs0v}) R} (2) Hy ) Rj(a) (ug j + avjso)),
35 (2,a,b) = — (2 — a)vIR}(2) Hy  Ri(a)v;
and
557 (2, a,0) =1, + (= — )0} R} (2) Hy | Ry @) (uz, + avjso)
1s called the second transformed auxiliary matriz of the THMM problem in the

case of an odd number of moments. The adjective transformed in the sequel will
be omitted.

Let
Ny j:=—(b— a)_lv;R;(a)Hi}Rj(a)vj (30)

i I, —as I 0
A(QJ)::< q 0)( q q>‘ 31
2 Oq Iq NZ]’ Iq ( )

Remark 1 Let (s])ijo be a Hausdorff positive definite sequence and let U9,
U( D and U( 7 be as in (6), (A.1) and (29). The following equalities are valid:

a)
U(QJ)( ) Iq 250 ﬁ(zj)(z) Iq —aso (32)
Oq Iq 2 Oq Iq

and

and b)

Proof. Equalities (32) and (33) readily follow by direct calculations.
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Orthogonal matrix polynomials on [a, 0]

Let us reproduce some notions on OMP which were introduced in [12]. Let P be
a complex p X g matrix polynomial. For all n € Ng, let

ZIPL = [Ag, A1, ..., Ay,

where (Aj)]?’ozo is the unique sequence of complex px ¢ matrices such that for all z €
C the polynomial P admits the representation P(z) = Z;io zJ A;. Furthermore,
we denote by deg P :=sup{j € Ny : A; # Opxq} the degree of P. Observe that in
the case P(z) = Opxq for all z € C we thus have deg P = —oo. If k := deg P > 0,
we refer to Ay, as the leading coefficient of P. For all k € Ny and all K € Ng with

k <k, let Zy, :={n €Ny, k <n <k}

Definition 5 Let k € Ng U {oc}, and let (Sj)320 be a sequence of complex g X q
matrices. A sequence (Py)i_, of complex q x q matriz polynomials is called a
monic left orthogonal system of matrix polynomials with respect to (Sj)]zio if the

following three conditions are fulfilled:
(I) deg P, =k for all k € Zo ;

(II) Py has the leading coefficient I, for all k € Z ;

(111) ZT[LPj}Hn(Z,LPk])* = Ogxq for all j, k € Zy,, with j # k, where n := max{j, k}.

Remark 2 [12, Remark 3.6] Let n € No U {oo}, and let (sj)?;‘o be a Hausdorff
positive definite sequence: the corresponding Hankel block matrix H, is positive
definite. Denote by (Py)}_, the monic left orthogonal system of matriz polynomials
with respect to (sj)?io. Let o be a nonnegative Hermitian q x q measure on R
satisfying s; = f[a 0 t'do(t) for 0 < j < 2n. Thus,

. H. if i=k
P,doP; = Jr S ’
/[a,m ok {Oq, if j#k

for all 0 < 5,k < n where ﬁj denotes the Schur complement of H;_1 in Hj; see

(25).

In the following two Definitions, we recall matrix-valued polynomials Py j, Q. ;,
T, and O ;. With their help the RM U®™ and U™V (as in (6), (7)) as well
as the solution set of the THMM were described (as in [5, Propositions 4.4 and
4.5]).

Definition 6 Let (sk)zjzo be a Hausdorff positive definite sequence. Furthermore,
let Hy j, ugj, Yrj, for k=1,2, Rj andv; be as in (4), (21), (22), (24), (14) and
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(15), respectively. Let

Pio(z) =1y, Pap(z):=1; Qio(2):=04 Q20(2,a,b):=—(u20+ 2830),
Pyj(z) = (= Yl]Hljl L1 Rj(2)v;, 1<) <n, (34)

P (z,a,b) := (— YQJng LI R(2)v;, 1<j<n—1, (35)
Quj(2) == —(=Y{H [ 1, ) Rj(2)ury, 1<j<n

and
Qa,(2,a,b) := —(=Y5';Hy |, 1) Rj(2)(ugj + 2v550), 1<j<n—1. (36)

Definition 7 Let (sk) L bea Hausdorff positive definite sequence. Furthermore,
let Ky j, U j, ij, fork =1,2, Rj and vj be as in (5), (17), (18), (14) and (15),
respectively. Let

[10(2) == Iy, T2o(2) == Iy, ©O10(2) == 50, O20(2) := =50

forall z € C. For k € {1,2} and 1 < j <n, define

T1j(2,0) = (V15K 1, IRy (2)vy, (37)

Ty j(z,a) = (=Y5; Ky} 1, 1) Ry(2)v;, (38)

O15(2,b) == (=YK 1y, Iy Rj(2)in (39)
and

O2,(2,a) = (=Y5; Ky )y, 1) R;(2)Tia, (40)
for all z € C.

For k = 1,2, we usually omit the dependence of the polynomials P ;, Q. ;, I'x ;
and Oy, ; on the parameters a and b.

In [2], (resp. [46]) it was proved that polynomials Py ; (resp. I'y ;) for k = 1,2
are in fact OMP on [a,b]. In [12]| explicit interrelations between Py ;, I'y ; and
their second kind polynomials were studied.

For the sake of completeness in the following Remark, we reproduce explicit
interrelations between the matrices ﬁ[k,j, kk,j and the polynomials P ;, Q2 ;,
I'1 j, ©2; considered in [5, Corollary 3.4| and [5, Corollary 3.10].

Remark 3 Let I/‘.;de', I?k,jy fOT k= 1,2, Pl,jf QQJ‘, F17j and @27]' be as in (25),
(26), (19), (20) and Definitions 6 and 7, respectively. The following equalities then
hold:

ﬁl,j =— P1,(a)05 ;(a), ﬁ2,j = —Q2,j(a)T] j11(a), (41)
Ky; =T1;(a)Q3 (a), Kzj=0s;(a)P;(a) (42)
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3. Algebraic identities

In this section we will single out essential identities concerning the block
matrices introduced in Section . Let

Ll,n = ((SJ k-i—lI ) 0,..., n and Lg}n = ((5] kI ) 77777 n y (43)

where ;. is the Kronecker symbol with 0; :=11if j =k and §;; := 0 if j # k.
Furthermore, let

- K+ Y1,
B = ( l}ql M) (44)
and .
- —Hy; 1Y
B3 = < Z,JIql J ) : (45)

In the following two remarks important identities are attained which will we
mainly use in the proof of Preposition 1. In turn Preposition 1 is employed in
Theorem 1 which is the main result of Section .

Remark 4 Let v;, Lo j, uij;, Rj, Tj, Hij, w1y, Kij, H{(J and = HQ be defined
as in (15), (43), (1’7) (14), (4), (,21) (5), (44) and (45), respectwely Then the

following identities are valid:
_1— L} =0, (46)
Uy -1 — L5 juy; =0, (47)
Loj— RS (2)LayR;_4(2) =0, (48)
LyjLy; —T5 =0, (49)
H, ij" — T-HL]- — ul,jv; + vjug; =0, (50)
T, Ky ;2 ]Hl J =0, (51)
T;Hs ;=2 ]_2 i =0. (52)
Proof. Equalities (46), (47), (48), (49) are proved by direct calculations. Identity
(50) was considered in [10, Proposition 2.1]. We prove equality (51). Let \; :=

Tj=1 0ja x4 ) By using the

(0g,0qs, - -.,0q4,1;) be a g x jq matrix. Thus T; = (
)‘j Og

last equality and equality

Kii_ Y1
g (S, ) e
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Equality (52) can be proved in a similar manner to (51) with the aid of Hy; =

Hy,;i 1 Yo,
< 2j-1 T2 ), (44) in place of (53), (45), respectively.
Y2,j 525

Remark 5 Let uyj, v;, Hy;, T, Laj, L1, Rj, IA{/QJ', ﬁl,j and ﬁ&j be defined
as in (21), (15), (4), (43), (14) and (3), respectively. The following identities are
valid:

uy j +viHy T =0, (54)
viHyj — v Hijy1laj11 =0, (55)
TiaLlyjor + (T Ty — I Lo ji1 — LojiaLla jL7 ; =0, (56)
T Ly T) — Tj Loy Ly L7 = 0, (57)
Tji1Loj+1 — Lojy1Lo LT ; =0, (58)
Tjy Loy T) — Tj 1 Lo jyr Lo LT ; =0, (59)
(I = 275 1) Lo jr (T;T — 1) — (TjaTjyq — I)Laj1 = 0, (60)
(I — 2T} 1) Lojy1 (I + (z— a)Tf R} (2)) — (I — aT}y ) Lojy1 =0, (61)
vivia sl gre — I Higen + Ly Ty Hajen = 0, (62)
jvieoHjraLo e + L oy Ty Hyjon — L o Hyja =0, (63)
TiL7 j Hijvr — L;,j+1T1,j+1ﬁ1,j+l =0, (64)
- Lz,j+1Tj+1fI0,j+1 +T5L5 i1 Hijrn =0, (65)
—Tipi(Lager —bLaji1) — (T Tjq — I)Laj41R;(a)

+ (I —aTf 1) Loja(Ly — bLoj) L} R:(a) = 0. (66)

Proof. Identities (54)-(65) follow from a straightforward calculation. Equality
(66) follows from (56)-(59).

Now we derive coupling identities between the block Hankel matrices K ;
and Ko j (resp. Hy; and Haj ). These identities are crucially used in the proof of
Theorem 1. Note that other coupling identities were attained in [10, Proposition
2.2, 9, Proposition 2.5| and |5, Proposition 6.2].

Proposition 1 Let T}, Ly, Lo, R;, vj, H1;, and Ho; be defined as in (43),
(14), (15), (4) and (45), respectively. The following identities are valid:
— * * * * * w1
R4 (a)Ky g1 LYy — Ly K TS + Ly jTE0 — Ly jTiKo jR; (a) =0, (67)
— Rj(a)vjvjioHyjro(Ljra —bLlojyo) + (LY jy1 — 0L 50 Hy
+ L3 1 Rj+1(a)Tj11Ha j1 = 0. (68)

Equality (67) follows by a straightforward calculation. Identity (68) follows from
(62)-(65).
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4. The Blaschke-Potapov factors

In this section we obtain a multiplicative representation (10), (11) of the
second auxiliary matrices (72(2n+1) and [72(271_2) via the Blaschke-Potapov factors
d+1) and d®) defined in (73)-(75).

Since the matrices Hj ; and K7 ; are positive definite matrices for 0 < j <n—1
and 0 < j < n, respectively, their inverses can be written as

H;Y oo0; —H7Y Y5\ A

—1 — —1¥2, —

H, ; =< 02”,1 ngq > +< 2’} 175 >H (= YQJHQJ Ll (69)
qxJq q q

and

_ K} 0 ~K;l 7 S 1, o
® 1_< O;xjqu quq:qq>+< Q%ql v >K1’ 1, Kl] vlo)- (70)

Remark 6 Due to Lemma 2 of the appendiz, ﬁQJ‘ (resp. I?Lj) 1S a positive
definite matriz if and only if Haj (resp. K1 ;) is a positive definite matriz.

In the following two propositions, we prove an additive property of the block
elements of the auxiliary RM UQ(QJ )(z) and U2(2] Jrl)(z). These properties give an
indication in the form of the Blaschke-Potapov factors d(?)) and d(2/+1).

Proposition 2 Let Hy ; be as in (4), and assume that Hs j is a positive definite
matriz. Furthermore, let the polynomials P ; and Q2 j be as in Definition 6 and

ﬁ—Q’j be defined as in (26). The block elements of the matrix [72(2j)(z) defined by

(29) can be written in the form

as?(2) = al ™ (2) + (2 — @)@ ;(2)Hy L P (a),
B (2) = BT (2) + (2 — a)@3,(2) Hy 1 Qa i(a),

357 (2) = aff*% — (2 - a)PQ,j@HQ,j Py j(a)
and

597 (2) = 8972 (2) — (= — ) P5(2) Hy | Q2 a).

Proof. Use (15), (69) and
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Proposition 3 Let Ky ; be as in (5), and assume that K1 ; is a positive definite
matriz. Let the polynomials ©1; and I'1 j be as in Definition 7. The block elements

of the matriz ﬁ(QjH)(z) defined by (27) can then be written in the form
ay ™ (2) = @ V(2) — (2 — )05 ;(2) K 1T14(a),
23“ (2) = (2] V() + (2 — )0} ;(2) K1 101(a),
2”1 (2) = ~<23 V(2) = (2 — )T ;(2) Ky 1T 5(a)

z

z

and

(2541 =(2j-1 . NP
57 (@) =577V + (2 - )T (K01 4(a).
Proof. Use (15), (70), the first equality of (71) and equality

~ ﬂLj_l
a < —bsj1+3; > ()
for j > 2.

Definition 8 Let ﬁQJ, [?l,j; Pg’j, QQJ, @1’]' and Fl,j be as in (26), (19), and
Definitions 6, 7, respectively. Define

dO(z) := < éz (2 —Iqa)So ) , (73)

d@12) ()
_ ( I+ (2= Q3 (A Poyla) (2= 0)@3,(0) ) Qay@) ) )
. —(z — )P2,g( )H23P2J( a) Iq_(z_a)PQ*,]( ) Q2J( )
for0<j<n-—1, and
A1) (2)
_ ( ly= (2= 0O (@) (2= 0)8i (@)K 01,00 ) 75)
@RI Tt (- (0K 0, (a)

for0<j<n.
The matriz function d 2j (resp. d (25+1) ) is called the Blaschke-Potapov factor
of the auxiliary matrix U2 (resp. U2(2k+1) ).

Now we prove the main result of this section.

Theorem 1 Let the matriz U2 (resp Uy (2j+1) ) be as in (29) (resp. (27)). Let
d®) | d@tY) be defined as in (73)-(75), then

00 () =d9(2)d®(z), T(z) = dV(2), (76)
U (2) =U 72 (2)d%42(z), z€C, 1<j<n-—1 (77)

and

0370 () =037 D (2)d* 0 (z), z €€, 1<j<n (78)
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Proof. Equality (76) readily follows from direct calculation. Now we demonstrate
(77). Denote

Gil(a) = Q5 ;(a) Hy | Py j(a), (79)

GJ*(a) == Q5 ;(a) Hy | Q2 i(a), (80)

G3'(a) = Pﬁ‘,j(a)Hz,jPQ,j( a) (81)
and

G7*(a) := P5;(a)Hy ) Q2 (a) (82)

for1<j<n-—1.
Now we prove equality (77). By using (73), (74), (79), (80), (81) and (82), Eq.
(77) can be written in the equivalent form

( af{')(z) 352?‘)(2) ) - ( a2 () 552{—2)(2) )
30 (2) 859(2) A (2) 6P ()
I, + (z — a)GY(a) (z —a)G'2(a) B
| ( (- a)G(a) Iy — (2 — A)G2(a) ) =0 (83

The left-hand side of (83) is equivalent to the following four equalities:

Ti1; =as (2) — a5 (2)
+ (2= a) (- V()61 a) + 47 ()63 (@)
Tio; =057 (2) — B P(2)

and

By taking into account (79) and (81), we have

Y11 =(2 — a)Y1;Hy } Paja), Tioj=(z—a)T1,;Hy Qo (a),

~ ~

To1; =(z — a) Yo, Hy } Paj(a), Tazj=(z—a)To,H; Qs ;(a)
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where

Y11 =Q5111(2) — Q5 111 (a) + (2 — a)(ub; + 2800} R} (2) Hy | Ry (a)v;
- Q31(a) + (2 — a)(so + (ub; + zs0v)) R} (2) Hy ; R;(a)
~(ug,; + a“jso))Pﬁk,jH(a)a

Tojp1 == P31 (2) + P (a) + (2 — a)vj R} (2) Hy | Ry(a)v;Q5 414 (a)
+ (2 — a)v;R;(Z)HQj;Rj(a)(uQJ + avjso) Py ;11 (a).

Now we verify that

To;=0, Lke{l,2}, 1<j<n-—L. (84)
By using (36), (35) and (45), we have

Y141 = (—(ug 1+ 28005 41) R4 1(2) + (u2j11 + asoviy ) Ry (a)+

—(z—a)(uz; + zsov;)R;(Z)Hi}Rj (a)(u3 j+1 + asoviyg) Ry (a)
(2= a) (0 + (w3, + 25007 5 (2) H3 ) Ry (a) (15 + avyso)
v Ry (a) 22
=(z — a)vj 1o H1 j42 R 15(2) (=T} 2(Ly a2 — bLo j42)
— ((I = 2T 9) Lo jra(Lujo — bLojur) + (2 — a)(I — 2Ty 1) Lo jro
- R} (2)T5 1 (L1 — bLa jy1)) Hy § Ri(a)vjvl o Hyjyo
“(Lajyr —bLojin) — (I = 2151 ) Lo jyo(Tin T — I Rj 4 (a)
+ ((I = 2T, 9) Lo jyo(Lyjs1 — bLoji1) 4+ (2 — a)(I — 2T 9) Lo j 1o
R 1 ()T} (Lje1 — bLajtn))
: <L17j+1R;+1(@) + Hy (L} 1 — bL;,jH)HLJ‘H)) =5
=(2 — a)vj o H1 js2 R 19(2) (=T oLy g1 — bLoji) — (Tj42T) o — 1)
Ly jraRji(a) + (I — aTjyy) Lo ja(Ly i — bLji1) Ly ji Rjpq(a)
— (I = aT}y9)Lajya(L1jy1 — bLojp1)Hy | Ri(a)vjvf o Hi jio
“(Lyjyr = bLoj1) + (I — aTy o) Lo jra(Lujy1 — bLoji1)Hy
: ( T,j+1 - bL;,j+1)H1,j+1) Ei’j
= — (2= a)vj o H1 12 R} 5(2)(I — a7} o) Loja(L i1 — bLoj1)Hy,
: Lz,j—&—lTj+1H2,j+1Egj
=0.

1
7]

In the second equality we used (54) and (55), in the third equality we employed
(60) and (61). The penultimate equality follows from (66) and (68). The last
equality follows from identity (52). Equality (84) for £ = 2 is proved by using
(35), (36), (46), (49), (68) and (52).
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To prove (78), we used the following equalities:

01,(2) ~ O1,(0) + (= — )i,y Ry (KT L Ry1(@); 107 5(a)
= (2 = )it} jy R}y ()R Ry (@) 1 T (@) = 0 (85)

and

1;(2) =T (@) + (z — a)vj_, R 1(Z)Ki;_le_l(a)vj_l@ij(a)
(2= )T (KT Ry (@)1 T (0) = 0. (36)

In turn (85) and (86) are demonstrated by using (37), (39), (47), (44), (49), (46),
(50), (67) and (51). The Theorem is proved.

Corollary 1 Let the auxiliary matrices ﬁ2(2n+1) and (72(%72) defined as in (27)
and (29). Furthermore, let d?, d®+Y be as in (73)-(75). Then equalities (10)
and (11) hold.

The proof follows immediately from Theorem 1.

5. Representation of the RM via DSM parameters

In this section we introduce new DSM parameters; see Definition 9. In contrast
to the DSM parameters introduced in [3| (see Definition 10) which depend on the
left terminal point of the interval [a, b], the new DSM parameters depend both on
a and b.

With the help of the new DSM parameters and the OMP on [a, b] we obtain
a multiplicative representation of the RM U™ U(2"+1) of the THMM problem.
This representation is a generalization of a similar one attained by Yu. Dyukarev
in [25, Theorem 7].

Definition 9 Let a and b be real numbers such that a < b. Let Hy ;, K1 ;, R, vj,
ug; be defined by (4), (5), (14), (15), (17) and (22), respectively. Furthermore,
let so, Ha j, K1 be positive definite matrices. For 1 < j <n —1, denote by

ro :=s0, rj(a,b):=so+ (u3;+ asov;f)R;(a)HQ_’;Rj(a)(ugd + av;sp)

(87)
to(D) ::véRé(a)KiéRo(a)vo, tj(a,b) := ’U;R;( a)K; 1R (a)vyj, (88)
1y :=s0, lo(a,b):= (760 + aSOUS)Hz_,(% (u2,0 + CWOsO)v (89)

L (a,b) :=(u5 ; + asov}) Rj(a)Hy | Rj(a)(uz,; + avjso)
- (U27j—1 + aSOUj—l) j—l( )HQ_,}ARJ'—I(G)(UZJ—I +avj_1s0) (90)
and
mo(b) IZto(b),
m;(a,b) :=v; R} (a) K| j Rj(a)v; — vj_ Rj_;(a) K7} 1 Rj-1(a)vj1 (91)
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for 1 < j < n. The matrices 1j(a,b) and m;(a,b) are called the second type
Dyukarev-Stieltjes matriz parameters of the THMM problem.

Below we shall usually omit the dependence on a and b of the matrices (87)-(91).
Observe that from (69), (70), (71), (72), (36), (37), (39) and (35) the following
identities are valid:

1 =Q§,j(a)ff{,}Q2,j(G)a m; = FT,j(a)f(f,;FLj(a)’ (92)
r; :Fi}(a)@l,j(a), tj = Qijl (CL)PQJ(CL). (93)

Remark 7 Letr;, t;, l; and m; be as in (87)-(91). Thus, the following equalities
hold:

lj =rj1—r;, j=0, (94)
rnj :tj - tj—17 j Z 1. (95)

Moreover, the matrices 1; and m; are positive definite matrices.

Proof Equalities (94)-(95) follow by direct calculation from (87)-(91).
By the second equality of (41) and the fact that K ; and H 2,j are positive definite
matrices, we obtain that 1; and m; are too.

Let us recall DSM parameters M; and L; first introduced in [3].

Definition 10 Let a be a real number. Let Hyj, Ko, Rj, v;, ua; be defined by

5), (14), (15) and (17), respectively. Furthermore, let Hq ;, K1 ; be positive
(4), (5), ; , Tesp y ; g» K15 bep
definite matrices. For 1 < j < n, denote by

Mo(a) :=s5 ", Lo(a) := 5 o K5 tiay, (96)
M (a) :=v} R} (a)Hy j Rj(a)v; — vj_ R (a)Hi | Rj-1(a)vj1, (97)
Lj(a) :=u3 ;R;(a) Ky Rj(a)ta; — U5 ;_ Rj_1(a)Ky, Rj1(a)iaj 1. (98)

The matrices Mj(a) and Lj;(a) are called Dyukarev-Stieltjes matriz parameters of
the THMM problem.

In the sequel we usually omit the dependence of the DSM parameters M; and L;
on the parameter a.

It should be mentioned that the notion Dyukarev-Stieltjes parameters was
first introduced by B. Fritzsche, B. Kirstein and C. Médler in [35] for the TSMM
problem, that is, for M;(0) and L;(0).

In |25, Theorem 7| Dyukarev introduced the Stieltjes parameters for the
Stieltjes matrix moment problem which in our notations are given by Mjg(0),
Lo(0), M;(0) and L;(0). The following Remark gives the interrelation between
the aforementioned Stieltjes parameters [25, Theorem 7| and the DSM parameters
studied in the present work.
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Remark 8 Let M and L; be the DSM parameters as in (96)-(97). Furthermore,
let the DSM parameters be as in (89), (90) and (91). Thus, the following relations
are valid:

M,(0) = lim bm;(0,b), L;(0) = lim b '1(0,b). (99)

b—+o00 b—+o00
This Remark can be verified by direct calculations.
We continue considering Hausdorff positive definite sequences (sj)?io and

(sj)iggl. The following Theorem shows an explicit representation between the

Blaschke-Potapov factors d®), d(27+1) and the matrices rj, t;, 1; and m;.

Theorem 2 Let d29), dZtD) pe as in (73)-(7}) and rj, t;, 1;, m; be defined by
(87)-(91), respectively. The identities (12) and (13) then hold for 0 < j < n.

Proof. We prove (12). For j = 0 the proof can be checked by a direct calculation.
Let 1 < j < n. Denote
. dil qi?
A = ( 21 b )
i 4

The relation (12) is equivalent to the following four equalities:

100
101

102
103

djl1 —I,+ (z —a)rjm; =0,
djl2 — (Z - a)rjmjrj = 0,

(100)
(101)
d?-l + (2 —a)m; =0, (102)
(103)

d?Q —I;— (z —a)m;r; = 0.
Let us now prove (100). By the (1,1) element of d2*1 | (92) and (93), we have

djl-1 —I;+ (2 —a)rjm;

* >— * 1 * >—
=—(z— a)(al,j(a)Kl,}FLj(a) + (2 — a)@l,j(a) 1,5 (a) 1,j(a)K1,}FLj(a)
= 0.

The equalities (101) and (103) are proved in a similar way. Observe that (102)
is verified by definition. To prove (13) one uses (74), the first equality of (92)
and the second equality of (93). Thus Theorem 2 is proved. Let n € N, and let

Ag, ..., Ay be complex g X ¢ matrices. Let
' s
[14) = 4041+ An 14, and []A4) = Andp 1 A4
j=0 j=0

then denote the right and left product of the matrices Ag, A1, ..., A,, respectively.

The following Corollary readily yields by employing (94), (95), Theorem 2 and
Corollary 1.
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Corollary 2 Let (72(%_2) and [72(2n+1) be as in (29) and (27), respectively.
Furthermore, let my, 1i, tp and rp be as in Definition 9. Thus, the equalities

[72(271—2)
=
_ H I, (z—a)lx I, 0, I, (z—a)l,— I, 04
o0 Oq Iq —my Iq Oq Iq tn—l Iq
(104)
and
K
~ I, 1,_ 1 0 I, -r
U(?n—i—l) _ |:< q k-1 > ( q q ):| < q n ) 105
2 kI;IO 0q I —(z—a)my I, 0 I (105)
are valid.

Now we derive a new representation of the RM of the THMM problem via DSM
parameters in both cases for odd and even number of moments. We also reproduce
an analogue representation given in [8, Corollary 3|.

Theorem 3 Let Py ;, Qrj, I'vj and Oy ; be as in Definitions 6 and 7. Let the
RM U™ U@+ of the THMM problem be as in (6), (7), respectively.

a) Let 1, my, be as in Definition (89)-(91). Thus, the following representations
of the RM in the case of odd and even number of moments hold

U™ (2, a,b)

b) Moreover, let My, Ly be as in (96)-(98). Thus the following representations
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hold:

Ll

o= TL{( o, ) (5] (e, )

[e=]

k
<Iq Qi (@)Pr,) (a) + 525 in<a>Fi;<a>> (108)
0Oq 1y

and

Proof. We prove part a). Equality (106) is proved by using (8), (33), (30) and
(104). In a similar manner one proves equality (107) by using (9), (105) and (28).
Part b) is proved in [8, Corollary 3|. Observe that Q2,—1(a), O2,(a), I'1 »(a),
P ,(a) are invertible matrices due to Remark 3 and the fact that ﬁl,n, ﬁzyn,h
K 1ms I?Zn are positive definite matrices.

Let us introduce some additional notation:

(S )= () oo
e () = (S ) 0
(8 (N L) o
() () o
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and
o= (G T ) D= (g, ) 0
Ds '=<3j bicff)’ P ‘:<(z—0qa>fq é) )
(W ) m (), o
8= (1 QP @+ L@@ ) o
B = (3 @050 - (- P @ ) e
5= (1 Q@0+ 05 @) ) e
5 = (0 e - 0 0 @ ) O

Lemma 1 Let the RM U®" and UC™Y be defined as in (6) and (7).
Furthermore, let ]1,(6271), n’n,(fn), ]1’(€2n+1); m}(€2n+1)7 ]Ll(fn), M,(fn), ]L,(fnﬂ), IMl(an),
Dj, forj =1,2,3,4, B§2n), Bj@n“) forj=1,2 and Dj forj =1,2 be as in (110)-

(113), (114)-(115), (119), (120) and (116), respectively. The identities (1), (2),

U = ML | pnen g (121)

and
[r(ent) _ DQM(()Q”H)]L(()Q”H) o M7(12n+1)IL7(12n+1)B§2n+1)D4 (122)

hold.

Proof. We prove (1). By using (114), (110) and (119) clearly the following
equalities are valid:

n — L 1 0 I —a)l_
73111(,21) _ < (bfz)E)zfa) q I‘Z > < Oq (Z Ia) 1 >
q q q q
@n)p2n) _ [ I Og Iy (z—a)lg
T _<_mk Iq><0q I 7

BS™MD _< .
2 QQ,Ll(a)Pzn 1() %

O
()

The latter equalities along with (106) imply
(2), (121) and (122).

*

a)l'sn(a) (}Z )

‘ 0‘

CL
1). In a similar manner ones proves

AO“
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Appendix
In this appendix we reproduce some results from [9] and [8], which are used

in the present work.

Definition 11 /9, Formula (6.2)] Let Hy j be as in (4), and assume that Hs ; is
a positive definite matriz. Furthermore, let us j, Rj and vj be as in (22), (14) and
(15). The 2q x 2q matriz polynomial

U (2,a,b) := ( %é:;g Z Z; %z))((jzz)) > e
with
0452])(2,&, b) :=I, — (2 — a)us ;R (2)Hy | Rj(a)v;,
52 (z, a,b) :=(z — a)uj jR*»(Z)Hg;R(a)uzJ,
%Zj)(z,a,b) = — (2 — a)v; R;(2) Q;R (a)v;
and

05 (2,a,0) :==I; + (2 — a)vR}(2) Hy } Rj(a)uz,

1s called the second auxiliary matriz of the THMM problem in the case of an odd
number of moments.

Remark 9 /8, Equalities (1.30) and (1.31)] The following identities are valid:
* /= w1 * ok [ = —
F2,j<zv a)927j (a,a) = — U'R'(Z)HL}RJ(G)”J‘,
* —\ p* 1 * — ~
Q1,j+1(Z)P1,j+1( a) = usz (z )Kz,;Rj(a)uZ%

Finally, let us recall the following well-known result below.

A A
Aly A

m) X (n + m) matriz. Therefore, the following statements are equivalent:
i) A>0.
i) A1 >0 and AT, AT Ajp < Ags.

Lemma 2 [1, Proposition 8.2.4] Let A = < > be a Hermitian (n +

iii) Agg > 0 and A12A2721A12 < A1r.
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