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The problem of stabilizing the Rossler system in finite time by bounded control
is considered. We employ V. I. Korobov’s controllability function method, which
involves a Lyapunov-type function. The controllability function is the solution
of an implicit equation. A family of bounded controls which solve the problem
is explicitly computed. Besides, the time that it takes the trajectory to reach
the desired equilibrium is estimated.
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Yoke-Pisepo A. E., Touzanec I'paciena A., Kpys Mysiicaka E. Meron, dyH-
K1ii kepoBaHocTti KopoboBa, 3acTocoBaHmMil 10 crabimizamii cumcremn
Poccaepa 3a obMmexkeHmMil 4ac 3a JOIOMOTOI0 OOMeXKeHUX KepyBaHb.
Posrnanryro 3amaqy crabinizamnii cucremu Poccepa 3a ckimdeHHuit 9ac 3a m10-
TOMOTOI0 OOMEXKEHUX KepyBaHb. Mu 3aCTOCOByEMO MeTO, (DYHKINT KEPOBAHOCTI
B. I. Kopoboga, skuii BukopuctoBye dbyukiiio tumy JlgmynoBa. @yHKINS Ke-
POBAHOCTI € PO3B’SI3KOM HESIBHOTO DIBHSHHS. 3AMPOIOHOBAHO CiM’I0 SBHO 00-
YUCTIOBAHUX OOMEKEHUX KepyBaHb, siKi PO3B’g3yIoTh 3ajady cuatesy. OKkpim
TOTO, OIIHIOETHCS YaC PyXy, MOTPIOHMIA /1)1 TOCATHEHHS TOYKH PiBHOBAIH.
Karuosi caosa: Cucrema Pocciepa; dynkuis keposanocri Kopobosa; obmerxe-
HE KEePYBaHHS; CTabIIi3aIlid 3a CKiHYEHHW Jac.

Yoxke-Pusepo A. 9., Touzanec I'pacuena A., Kpy3s Mymmcaka 9. IMoaxo
dbysknuu ynpasisemoctu KopoboBa npuiio>xeHHbIH K crabuiamsanuu
cuctembl Pocciiepa 3a KOHeYHOe BpeMs C MOMOINbI0 OTPAaHUYEHHBIX
ynpasJienuii. PaccmarpuBaercs 3amada crabunn3anuu cucreMbl Pocciepa 3a
KOHEYHOE BPEMsI IPY OTPAHWMYEHHOM yrpaBjerun. Vcnoab3yem meTos hyHKIui
yupasisemoctu B. U. Kopobosa, apastomumiica dbynknueii tuna JIsmyHosa.
QyHKIWS yIPABISEMOCTH SBJISIETCS PEIeHneM HesiBHOTO ypaBuenus. [Ipemra-
raeTcs CeMefiCTBO SIBHO BBIYHMC/ISEMBIX OMPAHWYEHHBIX YIIPABJIEHUI, KOTOPHIE
pemiaior 3a7a4y cuaTe3a. Kpome TOro, oreHnBaeTCs BpeMs [IBUKEHUs, He0OX0-
JMMOe JJ1d JIOCTUZKEHUA TOYKU 1TOKOs.
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1. Introduction

Rossler system has become one of the reference chaotic systems. Its novelty
when introduced in [25], being that exhibits a chaotic attractor generated by a
simpler set of nonlinear differential equations than Lorenz system. It is given by:

Iy = —x — w3,
T =x1 + axo, (1)
i3 =P+ x3(z1 — 1),

and it develops chaotic behaviour for certain values of the parameter triplet
(a, B,7). The issue of controlling Rossler system by stabilizing one of its unstable
equilibrium points has been previously dealt with in the literature. A feedback
controller is designed in [12] stabilizing a chosen equilibrium point with exponenti-
al convergence and estimating the negative Lyapunov exponent. In [2], a sliding
mode control is proposed by which global stabilization of an arbitrary given equi-
librium point is achieved, In [23], an optimal control strategy that directs the
chaotic motion to any desired equilibrium point is proposed. Both stability and
optimality are obtained in [24] by applying linear feedback controllers to the
chaotic Rdssler system. A suboptimal feedback controller has been tested on the
Rossler system in [27]. The synchronization approach and bifurcation diagram
have been used in [18] to control the Rossler system. In this work, control of the
Rossler system is stated by putting:

T1 = — T2 — T3,
To =21 + axa, (2)

i3 =0+ x3(x1 — ) +u,

and considering the synthesis problem. Let x = (z1,22,23)T. The synthesis
problem consists in constructing a positional control u = u(z) with |u(z)| < u;
such that for any 2° belonging to a certain neighborhood of the equilibrium point
of the system (1), the trajectory z(t) initiated in 2 arrives at this equilibri-
um point in finite time. Namely, by using V. I. Korobov’s method, also called
the controllability function method, a family of bounded positional controls that
solve the synthesis problem for the Rossler system is proposed. We mainly use
two ingredients. The first one concerns the general theory of the controllability
function [14]. The second ingredient is the family of bounded positional controls
that was obtained in [7]. Note that the finite-time stabilization of control systems
was studied in [8], [5], [6], [19], [20] and references therein. Different from previ-
ous works on finite-time stabilization [20], [21], we propose an explicit family of
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bounded controls constructed by taking into account the only nonlinearity of the
Réssler system, which is a quadratic function.

2. Dynamical features of the Rossler system
The equilibrium point of the system (1) for the triplet (0, 3,) with v # 0 is
T = ( ,—g, g)T For the triplet (o, 3,7) with a # 0 and 72 — 4a3 = 0, there
is only one equilibrium point: z := ( 1 XL L )T. While if 42 — 4a8 > 0,

o ) 27 T2 2a
there are two equilibrium points:

i yEA A AEANT
r+ 1= —
= 2 ' 22 2a )

(3)

where A := y/v2 — 4a3. For any other case, system (1) has no equilibrium point.

The typical chaotic Rossler system is determined by a = 8 = % and v = %,

resulting: 7= ( 5 (57— V3233 ), 1 (/3233 —57), 1 (57— /3233)) and

7 = (& (57+/3233), 1 (-57 — V/3233), 1 (57 + v/3233) ).

The stability exponents of Z_ are {—5.686,0.0970 + 70.9951} so it is a
saddle-focus with a two-dimensional unstable manifold. Besides, this point is
placed in the nearness of the attractor. Instead, the stability exponents of Z,
are {0.1929, —4.596 x 107¢ 4 i5.428}. Hence, this equilibrium point has a two-
dimensional stable manifold but it is outside the region of the chaotic attractor.
For details, see [1], [22] or [10], where information about dynamical behavior of
this system for other parameter values is provided.

3. Canonical controllable form

Let us consider the case a # 0 . Introducing y = z — T, system (2) takes the
following form:
0
y=Aty+ 0 + bu, (4)
Y1y3

being y := (y1, 92, y3)7, b:= (0,0,1)T and

0 -1 -1
A= 1 o 0 (5)
A g _2FA
2a 2

Let us note that the linear part of (4) results a completely controllable system.
Then, there exists a coordinate change to transform it into its canonical
controllable form [11], [13]. This coordinates change is given by z = F'y with

0 -1 0
F= -1 —-a 0], (6)
—a 1-a? 1
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and system (4) can be rewritten as follows:

0
Z = Aoz +bpLz + bu + 0 ) (7)
(z1 — 29) (21 — aza + 23)

being z := (21, 22, 23)T. Here

010
Ag:=[ 00 1 (8)
0 0 0
and
+A
(1FA)? 20— 7 F A
b+ = 20 . (9)
_ Y4 A
a-yEg

Remark 1.1. For the case a = 0, the matriz (5) is given by

0 -1 -1
1 0 O
B _
v 0 v
0 -1 0
The matriz F of the transformation z = Fy is equal to -1 0 0 |. The
0 1 1
0
nonlinear part of (7) is given by 0 and the vector (9) can be
—z2 (21 + 23)

. B T
written as ( — Ty 1, —v ) .

4. The controllability function method

Consider the canonical 3-dimensional control system
z2=f(z,u), z€e R", ue QCR, (10)

where (2 is a closed interval of R.

Considering the synthesis problem for the system (10), in 1979, V. I. Korobov
[14] created the controllability function (CF) 6(z). The CF is a Lyapunov-type
function, i.e., §(z) > 0 for z # 0 and #(0) = 0. The CF satisfies the following
inequality:

> 20 e ue)) < —lor2), )
i=1 ¢
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where ¢(6) > 0 for 6 # 0, ¢(0) = 0 and

7
d _
/9 6> 0. (12)
0

Let us consider the canonical control system
z2=Apz+bw, |w|<w, (13)

where Ap is given in Equation (8). Following [7], a family of bounded positional
controls w(z) that stabilize the system (13) at finite time can be constructed. In
particular, the value of the CF at the given initial position 2% is exactly T'(z°)
the time that the trajectory from z° takes to arrive at the origin. As in previous
works of V. I. Korobov and coauthors [15], [16], [17], the CF 6(z) is proposed in
[7] as the solution of the following implicit equation

2000 = (K (0)z, z). (14)

Here (-,-) is the canonical inner product while ag is a positive number to be
determined and K () is a 3 x 3 positive definite matrix for § > 0 defined as
K(0) := D(0)K1D(0) where

5
02 0 0
3
D(Q) — 0 9_5 0 9
1
0 0 62
and
40a; _240—12a1 120
a1+30 a1+30 a1+30
L _240—12a; _ 180—4a; 60
Ky = a1+30 a1+30 a1+30 ) (15)
120 60 12
a1+30 a1+30 a1+30
for
a1 < —40. (16)
Furthermore,
1 d
fK——K—fDGKgDH
240a _5(240—12a1) 480
a1+30 a1+30 a1+30
— _ 5(240—12a1) _ 4(180—4a1) 180 1
Ky : a1+30 a1+30 a1+30 (17)
480 180 24
a1+30 a1+30 a1+30
and 36
2ap < w?. (18)

a? + 12a; + 360
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The bounded positional control w(z) that solves the synthesis problem for the
system (13) is given by

w(z) = aT(6(2))z, (19)
where
Z%
a(6) == (%1 - 10) 5 (20)
6
%

and 6(z) is the solution of the implicit equation (14).
The fact that the value §(z°) coincides with T'(2°) is guaranteed by the equality

f=-1, (21)

which in turn is a special case of the inequality (11).
In terms of the matrices Ay, K = K(#), the vector b and a = a(f), Equality
(21) is equivalent to the following matrix equation

1 d
KAo+ AJK + ab™K + Kba' + EK - @K = 03.

Here 03 is the 3 x 3 null matrix.

5. The CF for nonlinear control systems

The controllability function method for nonlinear control systems with non
controllable linear part was considered in [3], [4]. In the case when the linear part
of the nonlinear control system is completely controllable, the general solution of
the synthesis problem was proposed by V. I. Korobov in [14]. This is the case for
the controlled Rossler system (2), so, we develop for it a rather specific family of
bounded controls based on the control (19). We also focus on the specific form of
the nonlinear part of the control system (2).

Note that the nonlinear part of the translated system (4)

9(y) == (0,0,y1y3)"

is a Lipschitz function in a neighborhood of the origin; consequently, a positive
number C] exists such that

g < Cllyll- (22)
Let us introduce the positional control given by
u=w-—7p'z, (23)

where w is defined as in (19). To deal with the linear control part of the system
(7) as if it were the canonical control system (13), we look for the restriction on
control w. Here we use the same idea as in [14]. We set

3
W1 ‘= Ul — U2 Z |pj’. (24)
7j=1
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We assume that ug <

. As in [14], we require that the system (7) is consi-
Z IpJI

dered in the nelghborhood
Q:={z:]7z| <up, j=1,2,3}. (25)

Note that the linear part of the system (2) at equilibrium points described in
Section 2 is completely controllable.

In the following result, we calculate the time derivative of the CF 6 with respect
to the system (7). Our goal is to verify the inequality (11) for some function ¢.

Notation. Let S be an n x n matrix. The norm of S is defined by

1911 = max. Z [si51-

The number Ay, g is the smallest eigenvalue of matrix S. Here we suppose that
S is a symmetric matrix.

Theorem 1. Let Ky, Ky and Cy be as in (15), (17) and (22). The following
mequality is valid:

Ch| K|

min, Ko

f<—1+260 (26)

Proof. By taking the derivative of the equality (14) with respect to time ¢ and the
system (7), we have

J  ((KAg+ AlK + ab™K + KbaT)z, z) 4o (Kz,Fg(F~'2))
((%K - C%K)Z,Z) ((%K - (%K)ij)
(K2, Fg(F~'2))

=—1+4+2 (27)
K
<~ 14 20SIEAlL
)\min,Kg
In the last inequality, we used the obvious inequality
(Kz Fg(F~'z)) _ Gl |
((%K — C%K)Z,Z) - >\min,K2
O

Note that inequality (12) is satisfied if p(f) = 1 — M, for some positive M:
0

1 1 _ _
= _— - > .
/1_M9d«9 S n(l = M6), 1>6M

0

By employing inequality (26), the following remark yields. A similar remark
appeared in [9].
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Remark 1.2. Let § > 0, Co > 0 such that for 0 < )

K
WIS LLSUIPN (28)
Amin,Kg
Then, the following inequality is valid:
0 < —Cs. (29)

And the next bound on the arriving time is obtained

0o
T(z) < —. 30
()< o 30
Proof. In view of (26), the inequality (29) readily follows. To prove (30), we inte-
grate (29) on the trajectory z = z(t). We attain 6(z(t)) —6y < —Cst. By employing
[14, page 552|, we have that z(7") = 0. This implies 6(z(T")) = 0; thus we obtain
inequality (30).

Remark 1.3. The following optimization problem will be useful for improving the
size of the neighborhood of the origin where initial conditions must be chosen to
achieve the control objective:

0
max x(z,0)

for ||z|]| < C and such that x <0, where

(Kz,Fg(F~12))

z,0):=—-142 .
x(z,6) + ((éK—d%K)z,z)

Let O be the value at which the mazimum of x 1s achieved. This value 0f§ can be
employed instead of 0 of Remark 1.2. On the other hand, for applications, available
software should be more adequate.

The existence of such 8 is verified by Remark 1.2. The proof of this remark
can be carried out by using the Lagrange multipliers.

Remark 1.4. Considering the control system (10), in the case when the origin
is an equilibrium point of (10), according to [14, Theorem 1], the state variables
zk(t), for k =1,2,3 do not leave a certain neighborhood of the origin and approach
the equilibrium point as t — T. For t > T the trajectory z(t) stays at the equili-
brium point. Both these phenomena are explained by the fact that the control is a
positional control that stabilizes the system at finite time.

Lemma 1. Let T be one of the equilibrium points described in Section 2. Let
a:= (al, (%4 —10), —6)T, with a1 < —40. Furthermore, let (kj’g)?ézl = Ky, and
let the parameter ag satisfy (18). Thus, 0(x — &) is the unique positive solution of

E(2,0,%) =0 (31)
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with

3
E(x,0,3) :=2a00% — > kj 0" (e, AT @ - 2))(c, ANz — 7)), (32)
j=1

where vector ¢ is such that (b,c) =0, (Ab,c) =0 and (A?b,c) = 1.
The proof of this lemma repeats the proof of the first part of [14, page 540].

Remark 1.5. Fized 0, the set E := {x € R?: £(x,0,%) = 0} is an ellipsoid. The
trajectories of the system (2) starting from the volume embraced by E or on E do
not escape from this set. For t — T the trajectory of the system approaches the
equilibrium point Z.

Let Q1 be the domain in R? that corresponds to (25), i.e., after the transfor-
mation y = F~!z and the translation y = z — Z, that is, Q1 := {z € R® : 2 =
F~'2+2Z, z¢€Q}. Define

Q2 :={z e R®|0(x — %) < 6} (33)
where 0 < 0 and such that @2 C Q1. The main result of our work is seen below.

Theorem 2. Let p be defined as in (9). Under the conditions of Lemma 1, let

3
Z (0773 (x = F)) (e, AT (x — F)(c, AV (x — T)).

IIMM

(34)

Suppose that 20 = (29,29, 29) belongs to Qs.

Thus, a) the control (34) satisfies the condition |u(zx)| < uy and solves the syn-
thesis problem. b) The time taken by the trajectory from x° to the equilibrium
point T satisfies the following inequality:

T(2° z) < = (35)

Proof. Part a) is proven by employing (13), (23) and (25). Part b) readily follows
from (30), the transformation z = Fy and the translation y = x — Z. Recall that
u1 is a number that indicates the boundaries of the control set.

Remark 1.6. The parameter a; determines the vector (20). For each ay < —40, a
positional control which solves the synthesis problem is computed by (34). Besides,
both the neighborhood Qo where the initial conditions must be taken to achieve
control objective and an upper bound of the time to reach the equilibrium, are also
obtained (formulae (338) and (85), respectively).

Remark 1.7. The value 0 as introduced in Remark 1.4, involves to solve on
optimization problem but it provides a better optimization of Qo than if the value
0 of Remark 1.6 is applied.
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6. Graph of the trajectory and control

For a given initial point (29,29, 29), to plot the graph of the trajectory z(t),
the differential equation (27) is extended as follows:

1 =— 19 — T3,

To =21 + axa,

i3 =f + x3(r1 — ) +u(z,0,7),
0=—1+2¢(z,0,7)

with initial conditions z1(0) = 29, 29(0) = 23, 23(0) = 29 and 6(0) = 6. Here 6o
is the root equation (31), and

U(x,0,%) =

(DOKDO &) FolF (1)) (36)
%

(D(O)K2D(0)(x — T), (x — T))

with 6 = 0(x — ).

Example 1. For a = § = 0.2 and v = 5.7, we have the Rdssler chaotic system
and T4 = (5.69297, —28.4649, 28.4649) is one of the corresponding equilibrium

points. Let u; = 3.2 and let ay = —45. The positional control has the form
_ 6(0.2(5.69297 —21)+0.96(x2428.4649)+ 13 —28.4649) | 45(x2+28.4649)  —25x1—b5xo
u(r) = — 0 + 03 T e -

29.4249z1 — 0.392z5 — 0.192974x3 + 161.85. The graphs of z1(t) — z}, z2(t) — 2%
and z3(t) — 73 are shown in Fig. 1.

0.151
0.10-

0.05F

-0.05+

Fig. 1. Trajectories of z1(t) — 1, x2(t) — 2% and x3(t) — 23

The graph of the position control u(z(t)) is displayed in Fig. 2.

The controllability function on the trajectory 6(z(t) is shown in Fig. 3.
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u(xgt))

‘/\It

Fig. 2. The positional control u(z(t)).

aIx(t)

I I I I t
0.2 0.4 0.6 0.8

Fig. 3. The controllability function 6(x(t)).

By using Wolfram Mathematica, we have calculated that the time of arriving
from 20 = (5.80077379, —28.5038689, 28.6238689) to the equilibrium point Z is
T(2°, ;) = 0.8898539650858471 and that |z1(T) — 5.69297| < 1.05197 * 1079,
2o(T) = —28.4649 and |z3(T) — 28.6238689| < 1.177185658 * 107>,

X(t)-x

-0.05

-0.10+

Fig. 4. Trajectories of z1(t) — Z', z2(t) — 2> and x3(t) — 7.
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Example 2. Let « = 0,5 = 1/5 and v = 1. The corresponding equilibrium point
is equal to T = ( —1,1). Let uy = 1.1 and let a; = —45. The positional control
has the form u(z ) M + 25“’1 - w — 81 4 33— 1. The graphs of
z1(t) — T, 2o(t) — and ZE3( ) — xs are shown in Flg 4.

The graph of the position control u(z(t)) is seen in Fig. 5.

u(x(t))

101

0.8r
0.6
041
0.2r
012 ‘.4 0‘.6 .8 WV’ t

-0.21

—04f

Fig. 5. The positional control u(z(t)).

The controllability function on the trajectory 6(z(t)) is shown in Fig. 6.

Fig. 6. The controllablhty function 0(x(t)).

By using Wolfram Mathematica, we have calculated that the time of arri-
ving from 20 = (—0.05,—0.17,0.07) to the equilibrium point z is T(2°,z) =
1.0528937566 and that |z1(T)| < 3.19427 % 1071, |2o(T) + 1| < 6.57807 x 10715
and |z3(T) — £| < 3.48898 % 1075,

7. Conclusion

In this paper, a family of bounded finite-time stabilizing positional controls for
the Rossler system is built. By using the controllability function method, which is
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a Lyapunov-type function, the finite time to reach the desired equilibrium point is
estimated. This is obtained for an arbitrary given control bound and an adequate
set (o of initial conditions to achieve the control objective is computed. Let us
note that this proposal may also be developed for any controlled system of the
form:

T = f(x)+bu

being f(z) = A(x —Z) + g(z), T an equilibrium point of f, A the jacobian matrix
of f evaluated in  and g the corresponding nonlinear part of f such that {A,b} is
completely controllable and g is a lipschitzian function in a neighborhood of z. We
claim that the smaller the constant bound is, the more reduced is the set of initial
conditions for which stabilization is guaranteed; see (14), (18) and (23). Moreover,
the smaller the bound is, the longer is the time to arrive at the equilibrium point
from the the same initial point; see (14), (18).

For the cases in which the Rossler system is chaotic, this technique may
be implemented as a tool for control chaos. Indeed, if the equilibrium point is
embedded in the strange attractor, a trajectory initiated in the basin of attracti-
on of the attractor can reach the region ()2 and by this moment, this finite-time
control strategy can be activated, so, the equilibrium point will be reached in
finite time. The use of finite-time stabilizing control for control chaos or for chaos
synchronization is not new (see for example [26]). Hence, the introduction of this
control strategy in these scenarios promises interesting future research.
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Yoxke-Pisepo A. E., Touzanec I'paciesna A., Kpy3 Mysuiicaka E. Merox dyHKIT Ke-
poBanocTti KopoboBa, 3acTocoBaumii mo crabiiizaiii cucremu Pocciepa 3a 06-
MeXKeHUuil 4Yac 3a JoIoMOrorw obmexxkeHmx KepyBaub. Cucrema Poccriepa crama
onHi€o 3 pedepeHTHNX XaOTHYHAX CHCTEM. li HOBU3HA IPH BBEIEHHI, Oyia B TOMY, IO
BOHA JEMOHCTPYE XAOTUIHHUN aTPAKTOP, MOPOIKEHHH OiIbII MPOCTHM HAOOPOM HEJiHii-
HuX audepeniaabHuX PiBHAHB, HiXK cucrema Jlopenna. s cucrema 3a neBHUX 3HAYEHD
ii Tpunsiera mapamMeTrpiB JIEMOHCTPYE XaoTHYHy moOBeAiHKYy. [luTanms kepyBaHHs cucTe-
Moio Poccniepa mastxom crabismizarii oaHiel 3 11 HecTIiKUX TOYOK piBHOBATHM PAHIIe PO3-
TJIAAI0CA B JiiTeparypi. ¥ Iiif poOOTi 3ampoOnoHOBAHO KepyBaHHs cucTemMor Pocciepa
Ha OCHOBIi 3ajadi cuHTe3y. Jlms 3a7aH0i cucteMu Ta OfHi€el 3 1T TOYOK piBHOBAru, 3ajia-
9a CHHTE3Y IOJISATa€ y Mo0yI0Bi 00MEKeHOro MO3UITHOrO KePYBAHHS TAKUM YHHOM, IO
Juis Gyib-akoro ¥, 10 HaJle;KUTh MEBHOMY OKOJTy TOYKH PiBHOBard, TpaekTopisa x(t),
IO ToYMHaeThes B 20, JAiCTA€ThCs 11O Ii€l TOYKM piBHOBArM 3a CKiHdeHHHMit wac. A cawme,
3 Bukopucranaam meroay B. I. Kopobosa, sikmii Tak0K Ha3WBAOTH METOAOM (QYHKITT
KEpPOBAHOCTi, TPOTMOHYETHCA CiM’sT OOMEXKEHUX TO3UIIHHNX KepyBaHb, sKi PO3B’SI3yIOTHh
3a/ady cuHTe3y 1y cucremu Pocciepa. B ocHOBHOMY MU BHKOPHCTOBYEMO JBa KOMIIO-
mentu. [leprmuii crocyerbesa 3aranbHOl Teopil ¢dyHKIII KepoBanocTi. JIpyruit KoMmoneHT
- me ciM’s oOMeKeHUX TO3MILITHIX KepyBaHb, fKa OyayeTrnhcs B miit poboti. Ha Bimminy
Bij momepemnix pobiT momo crabimizamnii 3a CKiHYeHuil 9ac, MU MPOMOHYEMO SBHY CiM’i0
0oOMexKeHNX KepyBaHb, MOOYI0BAaHY 3 ypaxyBaHHSIM JHINe HesiHiinocTi cucremn Poccie-
pa, dKa € KBAAPATUIHOI (PYHKIHEH. 3a JOMOMOro0 Meroay (byHKIHI KePOBAHOCTI, KA
€ dyukmieo tumy JIAmyHosa, OIMIHIOETbCH CKiHYEHHMIT Yac, MOTPIOHUN /11 [TOCATHEHHS
Oaxkanoi Toukm piBHOBarm. L{10 OIiHKY OTpUMAaHO /st JOBIIBHO 33JaHOI MEXKi KepyBa-
HHS,a TAKOXK HABEJEHO Bi/IMOBIIHY MHOXKWHY MOYATKOBUX YMOB /I JIOCATHEHHS METHU
kepyBanus. Lleit miaxinx moxe OyTu TaKOXK PO3BUHYTHH [jis Oy/Ib-sKOI KEPOBAHOI CHCTE-
MH, JIiHIfIHA 9acTUHA SKOI € MOBHICTIO KEpPOBAHOIO, a 11 Bi/IMOBI/IHA HeJiHifiHA YacTHHA, -
JINIUIeBo0 PyHKIHEID B OKOJIL TOYKHM PIBHOBAru. Y CBOIO YEPIYy, I TEXHIKA MOxKe OyTu
peaJii3oBaHa fK IHCTPYMEHT KepPyBaHHS XaOCOM.

Karwuosi caosa: Cucrema Poccnepa; dyukilis kepoBanocti Kopobosa; obMexeHe kepy-
BaHH#A; CTabLII3aIlisa 38 CKIHYEHHWH Jac.

A.E. Choque-Rivero, Graciela A. Gonzdlez, E. Cruz Mullisaca. Korobov’s controllabi-
lity function method applied to finite-time stabilization of the R&ssler system
via bounded controls. Rossler system has become one of the reference chaotic systems.
Its novelty when introduced, being that exhibits a chaotic attractor generated by a si-
mpler set of nonlinear differential equations than Lorenz system. It develops chaotic
behaviour for certain values of its parameter triplet. The issue of controlling Rdssler
system by stabilizing one of its unstable equilibrium points has been previously dealt
with in the literature. In this work, control of the Rdssler system is stated by consi-
dering the synthesis problem. Given a system and one of its equilibrium points, the
synthesis problem consists in constructing a bounded positional control such that for any
20 belonging to a certain neighborhood of the equilibrium point, the trajectory z(t) initi-
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ated in 2 arrives at this equilibrium point in finite time. Namely, by using V. I. Korobov’s
method, also called the controllability function method, a family of bounded positional
controls that solve the synthesis problem for the Rdssler system is proposed. We mai-
nly use two ingredients. The first one concerns the general theory of the controllability
function The second ingredient is a family of bounded positional controls that was obtai-
ned in. Different from previous works on finite-time stabilization we propose an explicit
family of bounded controls constructed by taking into account the only nonlinearity of
the Rossler system, which is a quadratic function. By using the controllability function
method, which is a Lyapunov-type function, the finite time to reach the desired equi-
librium point is estimated. This is obtained for an arbitrary given control bound and
an adequate set of initial conditions to achieve the control objective is computed. This
proposal may also be developed for any controlled system for which its linear part is
completely controllable and its corresponding nonlinear part is a lipschitzian function in
a neighborhood of the equilibrium point. In turn, this technique may be implemented as
a tool for control chaos.

Keywords: Rossler system; Korobov’s controllability function; bounded control; finite ti-
me stabilization.
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