УДК 512.624.5

PERIODIC WORDS CONNECTED WITH THE *k*-FIBONACCI NUMBERS

Galyna BARABASH, Yaroslav KHOLYAVKA, Iryna TYTAR

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv e-mails: galynabarabash71@gmail.com, ya_khol@franko.lviv.ua, iratytar1217@gmail.com

We introduce periodic words that are connected with the k-Fibonacci numbers and investigated their properties.

Key words: k-Fibonacci numbers, k-Fibonacci words.

1. Introduction. The Fibonacci numbers F_n are defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$, for all integer n > 1, and with initial values $F_0 = 0$ and $F_1 = 1$. These numbers and their generalizations have interesting properties. Different kinds of the Fibonacci sequence and their properties have been presented in the literature, see, e.g., [1, 2, 3]. In particular, the k-Fibonacci numbers are generalizations of the Fibonacci numbers [4].

The k-Fibonacci numbers $F_{k,n}$ defined for any integer number $k \ge 1$ by the recurrence relation $F_{k,n} = kF_{k,n-1} + F_{k,n-2}$, for all integer n > 1, and with initial values $F_{k,0} = 0$ and $F_{k,1} = 1$, see [4, 5, 6]. These numbers have been studied in several papers, see [7, 8, 9].

Many properties of k-Fibonacci numbers require the full ring structure of the integers. However, generalizations to the ring \mathbb{Z}_m have been considered, see, e.g., [10].

In analogy to the definition of the Fibonacci numbers, one defines the Fibonacci finite words as the contatenation of the two previous terms $f_n = f_{n-1}f_{n-2}$, n > 1, with initial values $f_0 = 1$ and $f_1 = 0$ and defines the infinite Fibonacci word f, $f = \lim f_n$ [11]. It is the archetype of a Sturmian word [12]. The properties of the Fibonacci infinite word have been studied extensively by many authors, see, e.g., [12, 13, 14, 15, 16, 17].

The k-Fibonacci words are defined as the contatenation of the previous terms $f_{k,n} = f_{k,n-1}^k f_{k,n-2}$, n > 1, with initial values $f_{k,0} = 0$ and $f_{k,1} = 0^{k-1}1$ and one defines the infinite k-Fibonacci word f_k^* , $f_k^* = \lim f_{k,n}$ [18]. It is the archetype of a Sturmian word [12, 18].

 $^{2010\} Mathematics\ Subject\ Classification:\ 08A50,\ 11B39,\ 11B83$

[©] G. Barabash, Ya. Kholyavka, I. Tytar, 2016

Using k-Fibonacci words, in the present article we introduce new kind of the infinite word, namely k-FLP word, and investigate some of its properties.

For any notations not explicitly defined in this article we refer to [2, 10, 12, 18, 19].

2. k-Fibonacci sequence modulo m. The letter p is reserved to designate a prime, m and k are arbitrary integers, $m \ge 2$, $k \ge 1$.

We reduce $F_{k,n}$ modulo m taking the least nonnegative residues. Let $F_{k,n}^*(m)$ denote the *n*-th member of the sequence of integers $F_{k,n} \equiv kF_{k,n-1} + F_{k,n-2} \pmod{m}$, $0 \leq F_{k,n}^*(m) < m$, for all integer n > 1, and with initial values $F_{k,0} = 0$ and $F_{k,1} = 1$ $(F_{k,0}^*(m) = 0 \text{ and } F_{k,1}^*(m) = 1)$.

For any fixed m and k the sequence $F_{k,n}^*(m)$ is periodic. The Pisano period, written $\pi_k(m)$, is the period for which the sequence $F_{k,n}^*(m)$ of k-Fibonacci numbers modulo m repeats [10].

The problem of determining the length of the period of the recurring sequence arose in connection with methods for generating random numbers. A few properties of the $\pi_k(m)$ are in the following theorem [10].

Theorem 1. In \mathbb{Z}_m the following hold:

1) Any k-Fibonacci sequence modulo m is periodic and period less than m^2 .

2) If m has prime factorization $m = \prod_{i=1}^{n} p_i^{e_i}$, then $\pi_k(m) = \operatorname{lcm}(\pi_k(p_1^{e_1}), \ldots, \pi_k(p_n^{e_n}))$.

3) If $m_1|m_2$, then $\pi_k(m_1)|\pi_k(m_2)$.

4) If k is an odd number, then $\pi_k(k^2+4) = 4(k^2+4)$.

5) If k is an odd number, then $\pi_k(2) = 3$ and if k is an even number, then $\pi_k(2) = 2$.

3. k-Fibonacci words.

Definition 1. The n-th finite k-Fibonacci words are words over 0,1 defined inductively as follows

$$f_{k,0} = 0, \quad f_{k,1} = 0^{k-1}1, \quad f_{k,n} = f_{k,n-1}^k f_{k,n-2}, \quad n > 1.$$
(1)
The infinite word f_k^* is the limit $f_k^* = \lim f_{k,n}$ and is called the infinite k-Fibonacci word.

For example, the successive initial finite 3-Fibonacci words are:

 $f_{3,0} = 0, f_{3,1} = 001, f_{3,2} = 0010010010, f_{3,3} = 001001001001001001001001001001001001, \dots, f_3^* = 001001001001001001001001001001001\dots$

We denote as usual by $|f_{k,n}|$ the length (the number of symbols) of $f_{k,n}$ (see [12]). The following proposition summarizes basic properties of k-Fibonacci words [18].

Theorem 2. The infinite k-Fibonacci word and the finite k-Fibonacci words satisfy the following properties:

- 1) The word 11 is not a subword of the infinite k-Fibonacci word.
- 2) For all n > 1 let ab be the last two symbols of $f_{k,n}$, then we have ab = 10 if n is even and ab = 01 if n is odd.
- 3) For all $k, n |f_{k,n}| = F_{k,n+1}$.
- 4) The number of 1s in $f_{k,n}$ equals $F_{k,n}$.

4. Periodic k-FLP words. Let us start with the classical definition of periodicity on words over arbitrary alphabet $\{a_0, a_1, a_2, ...\}$ (see [19]).

Definition 2. Let $w = a_0 a_1 a_2 \dots$ be an infinite word. We say that w is

1) a periodic word if there exists a positive integer t such that $a_i = a_{i+t}$ for all $i \ge 0$. The smallest t satisfying the previous condition is called the period of w;

- 2) an eventually periodic word if there exist two positive integers r, s such that $a_i = a_{i+s}$, for all i > r;
- 3) an aperiodic word if it is not eventually periodic.

Theorem 3. For any k the infinite k-Fibonacci word is aperiodic.

Proof. This statement is proved in [18].

We consider the finite k-Fibonacci words $f_{k,n}$ (1) as numbers written in the binary system and denote them by $b_{k,n}$. Denote by $d_{k,n}$ the value of the number $b_{k,n}$ in usual decimal numeration system. We write $d_{k,n} = b_{k,n}$ meaning that $b_{k,n}$ and $d_{k,n}$ are writing of the same number in different numeration systems.

For example, for 3-Fibonacci words we obtain:

 $b_{3,0}=0, \, b_{3,1}=1, \, b_{3,2}=10010010, \, b_{3,3}=1001001001001001001001001001001, \ldots,$

$$d_{3,0} = 0, d_{3,1} = 1, d_{3,2} = 146, d_{3,3} = 1225933969, \dots$$

Formally, $f_{k,n}$, n > 0, coincide with the $b_{k,n}$, taken with prefix 0^{k-1} : $f_{k,n} = 0^{k-1}b_{k,n}$.

Theorem 4. For any finite k-Fibonacci word $f_{k,n}$ in decimal numeration system we have

$$d_{k,n} = d_{k,n-1} \sum_{t=0}^{k-1} 2^{tF_{k,n}+F_{k,n-1}} + d_{k,n-2}, \quad n > 1,$$

with $d_{k,0} = 0$ and $d_{k,1} = 1$.

Proof. See [20] for a proof for FLP-words. The same argument applies to the k-FLP words.

Theorem 5. Let $d_{k,n}(p) = d_{k,n} \pmod{p}$, $0 \leq d_{k,n}(p) < p$. For any fixed k and p the sequence $d_{k,n}(p)$ is periodic.

Proof. There are only a finite number of $d_{k,n}(p)$ and $2^{F_{k,n}} \pmod{p}$ possible, and the recurrence of the first few terms sequence $d_{k,n}(p)$ and $2^{F_{k,n}} \pmod{p}$ gives recurrence of all subsequent terms. The statement follows from Theorem 4.

Let T(k,m) denote the length of the period of the repeating sequence $d_{k,n}(m)$.

Theorem 6. For any p and k T(k + p(p-1), p) = T(k, p).

Proof. This follows from the congruence $k + p(p-1) \equiv k \pmod{p}$, Euler's theorem and Theorem 4.

Let $w_{k,0}(m) = 0$ and for arbitrary integer $n, n \ge 1$, let $b_{k,n}(m)$ be $d_{k,n}(m)$ in the binary numeration system, $w_{k,n}(m) = w_{k,n-1}(m)b_{k,n}(m)$. Denote by $w_k(m)$ the limit $w_k(m) = \lim_{n \to \infty} w_{k,n}(m)$.

Definition 3. We say that

1) $w_{k,n}(m)$ is a finite FLP-word type 1 by modulo m;

2) $w_k(m)$ is a infinite FLP-word type 1 by modulo m.

Theorem 7. The infinite FLP-word type 1 $w_k(p)$ is periodic.

Proof. The statement follows from Theorem 5.

Using k-Fibonacci words we define a periodic FLP-word $v_k(m)$ (infinite FLP-word type 2 by modulo m).

As usual, we denote by ϵ the empty word [12].

First we define words $t_{k,n}(m)$. Let $t_{k,n}(m)$ be the last $F_{k,n+1}^*(m)$ symbols of the word $f_{k,n}$. If $F_{k,n+1}^*(m) = 0$ for some k, n, then $t_{k,n}(m) = \epsilon$. Since $F_{k,n}^*(m)$ is a periodic sequence, the sequence $|t_{k,n}(m)|$ is periodic with the same period.

Theorem 8. The word length $|t_{k,n}(m)|$ coincides with $F_{k,n+1}^*(m)$.

Proof. This is clear by construction of $t_{k,n}(m)$.

Let $v_{k,0}(m) = 0$ and for arbitrary integer $n, n \ge 1$, $v_{k,n}(m) = v_{k,n-1}(m)t_{k,n}(m)$. Denote by $v_k(m)$ the limit $v_k(m) = \lim_{n \to \infty} v_{k,n}(m)$.

Definition 4. We say that

v_{k,n}(m) is a finite FLP-word of type 2 by modulo m;
 v_k(m) is an infinite FLP-word of type 2 by modulo m.

Theorem 9. The infinite FLP-word of type $2 v_k(m)$ is a periodic word.

Proof. The proof is a direct corollary of Theorem 2 and Theorem 8.

Acknowledgement. The authors thank Taras Banakh for fruitful discussions.

References

- 1. Atanassov K.T., Atanassova V., Shannon A.G., Turner J.C. New visual perspectives on Fibonacci numbers. London: World Scientific, 2002.
- Koshy T. Fibonacci and Lucas numbers with applications. New York: Wiley-Interscience, 2001.
- Rami'rez J.L., Rubiano G.N., de Castro R. A generalization of the Fibonacci word fractal and the Fibonacci snowflake // Theor. Comput. Sci. - 2014 - 528. - P. 40-56.
- Falco'n S., Plaza A. On the Fibonacci k-numbers // Chaos Solitons Fractals. 2007. 32, №5. - P. 1615-1624.
- Bolat C., Kose H. On the properties of k-Fibonacci numbers // Int. J. Contemp. Math. Sci. - 2010. - 5, №21-24. - P. 1097-1105.
- Catarino P. On Some Identities for k-Fibonacci sequence // Int. J. Contemp. Math. Sci. 2014. – 9, №1-4. – P. 37–42.
- Falcón S., Plaza Á. On k-Fibonacci sequences and polynomials and their derivatives// Chaos Solitons Fractals. – 2009. – 39, №3. – P. 1005–1019.
- Ramirez J.L. Some properties of convolved k-Fibonacci numbers // ISRN Combinatorics. 2013. — Article ID 759641. — 5p.
- 9. Salas A. About k-Fibonacci numbers and their associated numbers // Int. Math. Forum. 2011. 6, №50. P. 2473–2479.
- Falcón S., Plaza Á. k-Fibonacci sequences modulo m // Chaos Solitons Fractals. 2009. - 41, №1. - P. 497-504.

- Berstel J. Fibonacci words a survey // The Book of L. Rosenberg G., Salomaa A. (Eds.). — Berlin: Springer, 1986. — P. 11–26.
- 12. Lothaire M. Algebraic Combinatorics on Words. Cambridge: Cambridge University Press, 2002.
- Mignosi F., Pirillo G. Repetitions in the Fibonacci infinite word // Theor. Inform. Appl. 1992. – 26, №3. – P. 199–204.
- Mignosi F., Restivo A., Salemi S. Periodicity and the golden ratio // Theor. Comput. Sci. - 1998. - 204, №1-2. - P. 153-167.
- 15. *Pirillo G.* Fibonacci numbers and words // Discrete Math. − 1997. − **173**, №1–3. − P. 197–207.
- Séébold P. Fibonacci morphisms and sturmian words // Theor. Comput. Sci. 1991. 88, №2. - P. 365-384.
- Wen Z.-X., Wen Z.-Y. Some properties of the singular words of the Fibonacci word // Eur. J. Comb. - 1994. - 15, №6. - P. 587-598.
- Ramirez J., Rubiano G. On k-Fibonacci words // Acta Univ. Sapientiae, Inform. 2013. 5, №2. — P. 212-226.
- Duval J.-P., Mignosi F., Restivo A. Recurrence and periodicity in infinite words from local periods // Theor. Comput. Sci. - 2001. - 262, №1-2. - P. 269-284.
- Barabash G.M., Kholyavka Ya.M., Tytar I.V. Periodic words connected with the Fibonacci words // Carpathian Math. Publ. - 2016. - 8, №1. - P. 11-15.

Стаття: надійшла до редколегії 05.12.2016 прийнята до друку 27.02.2017

ПЕРІОДИЧНІ СЛОВА, ЯКІ ПОВ'ЯЗАНІ З ЧИСЛАМИ *k*-ФІБОНАЧЧІ

Галина БАРАБАШ, Ярослав ХОЛЯВКА, Ірина ТИТАР

Львівський національний університет імені Івана Франка, вул. Університетська, 1, Львів, 79000 e-mails: galynabarabash71@gmail.com, ya_khol@franko.lviv.ua, iratytar1217@gmail.com

Означено періодичні слова, які пов'язані з числами *k*-Фібоначчі, досліджено їхні властивості.

Ключові слова: числа k-Фібоначчі, слова k-Фібоначчі.