PERIODIC WORDS CONNECTED WITH THE k-FIBONACCI NUMBERS

Galyna BARABASH, Yaroslav KHOLYAVKA, Iryna TYTAR

Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv
e-mails: galynabarabash71@gmail.com, ya_khol@franko.lviv.ua, iratytar1217@gmail.com

We introduce periodic words that are connected with the k-Fibonacci numbers and investigated their properties.

Key words: k-Fibonacci numbers, k-Fibonacci words.

1. Introduction. The Fibonacci numbers F_{n} are defined by the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$, for all integer $n>1$, and with initial values $F_{0}=0$ and $F_{1}=1$. These numbers and their generalizations have interesting properties. Different kinds of the Fibonacci sequence and their properties have been presented in the literature, see, e.g., [1, 2, 3]. In particular, the k-Fibonacci numbers are generalizations of the Fibonacci numbers 4 .

The k-Fibonacci numbers $F_{k, n}$ defined for any integer number $k \geqslant 1$ by the recurrence relation $F_{k, n}=k F_{k, n-1}+F_{k, n-2}$, for all integer $n>1$, and with initial values $F_{k, 0}=0$ and $F_{k, 1}=1$, see [4, [5, 6]. These numbers have been studied in several papers, see [7, 8, 9].

Many properties of k-Fibonacci numbers require the full ring structure of the integers. However, generalizations to the ring \mathbb{Z}_{m} have been considered, see, e.g., 10 .

In analogy to the definition of the Fibonacci numbers, one defines the Fibonacci finite words as the contatenation of the two previous terms $f_{n}=f_{n-1} f_{n-2}, n>1$, with initial values $f_{0}=1$ and $f_{1}=0$ and defines the infinite Fibonacci word $f, f=\lim f_{n}$ [11. It is the archetype of a Sturmian word [12. The properties of the Fibonacci infinite word have been studied extensively by many authors, see, e.g., [12, $13,14,15,16,17$.

The k-Fibonacci words are defined as the contatenation of the previous terms $f_{k, n}=$ $f_{k, n-1}^{k} f_{k, n-2}, n>1$, with initial values $f_{k, 0}=0$ and $f_{k, 1}=0^{k-1} 1$ and one defines the infinite k-Fibonacci word $f_{k}^{*}, f_{k}^{*}=\lim f_{k, n}$ [18]. It is the archetype of a Sturmian word [12, 18].

[^0]Using k-Fibonacci words, in the present article we introduce new kind of the infinite word, namely k-FLP word, and investigate some of its properties.

For any notations not explicitly defined in this article we refer to [2, 10, 12, 18, 19].
2. k-Fibonacci sequence modulo m. The letter p is reserved to designate a prime, m and k are arbitrary integers, $m \geqslant 2, k \geqslant 1$.

We reduce $F_{k, n}$ modulo m taking the least nonnegative residues. Let $F_{k, n}^{*}(m)$ denote the n-th member of the sequence of integers $F_{k, n} \equiv k F_{k, n-1}+F_{k, n-2}(\bmod m), 0 \leqslant$ $F_{k, n}^{*}(m)<m$, for all integer $n>1$, and with initial values $F_{k, 0}=0$ and $F_{k, 1}=1$ $\left(F_{k, 0}^{*}(m)=0\right.$ and $\left.F_{k, 1}^{*}(m)=1\right)$.

For any fixed m and k the sequence $F_{k, n}^{*}(m)$ is periodic. The Pisano period, written $\pi_{k}(m)$, is the period for which the sequence $F_{k, n}^{*}(m)$ of k-Fibonacci numbers modulo m repeats [10].

The problem of determining the length of the period of the recurring sequence arose in connection with methods for generating random numbers. A few properties of the $\pi_{k}(m)$ are in the following theorem [10].
Theorem 1. In \mathbb{Z}_{m} the following hold:

1) Any k-Fibonacci sequence modulo m is periodic and period less than m^{2}.
2) If m has prime factorization $m=\prod_{i=1}^{n} p_{i}^{e_{i}}$, then $\pi_{k}(m)=\operatorname{lcm}\left(\pi_{k}\left(p_{1}^{e_{1}}\right), \ldots, \pi_{k}\left(p_{n}^{e_{n}}\right)\right)$.
3) If $m_{1} \mid m_{2}$, then $\pi_{k}\left(m_{1}\right) \mid \pi_{k}\left(m_{2}\right)$.
4) If k is an odd number, then $\pi_{k}\left(k^{2}+4\right)=4\left(k^{2}+4\right)$.
5) If k is an odd number, then $\pi_{k}(2)=3$ and if k is an even number, then $\pi_{k}(2)=2$.

3. k-Fibonacci words.

Definition 1. The n-th finite k-Fibonacci words are words over 0,1 defined inductively as follows

$$
\begin{equation*}
f_{k, 0}=0, \quad f_{k, 1}=0^{k-1} 1, \quad f_{k, n}=f_{k, n-1}^{k} f_{k, n-2}, \quad n>1 \tag{1}
\end{equation*}
$$

The infinite word f_{k}^{*} is the limit $f_{k}^{*}=\lim f_{k, n}$ and is called the infinite k-Fibonacci word.
For example, the successive initial finite 3-Fibonacci words are:
$f_{3,0}=0, f_{3,1}=001, f_{3,2}=0010010010, f_{3,3}=001001001000100100100010010010001, \ldots$, $f_{3}^{*}=001001001000100100100010010010001 \ldots$

We denote as usual by $\left|f_{k, n}\right|$ the length (the number of symbols) of $f_{k, n}$ (see [12]). The following proposition summarizes basic properties of k-Fibonacci words [18].

Theorem 2. The infinite k-Fibonacci word and the finite k-Fibonacci words satisfy the following properties:

1) The word 11 is not a subword of the infinite k-Fibonacci word.
2) For all $n>1$ let ab be the last two symbols of $f_{k, n}$, then we have $a b=10$ if n is even and $a b=01$ if n is odd.
3) For all $k, n\left|f_{k, n}\right|=F_{k, n+1}$.
4) The number of $1 s$ in $f_{k, n}$ equals $F_{k, n}$.
4. Periodic k-FLP words. Let us start with the classical definition of periodicity on words over arbitrary alphabet $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ (see [19]).

Definition 2. Let $w=a_{0} a_{1} a_{2} \ldots$ be an infinite word. We say that w is

1) a periodic word if there exists a positive integer t such that $a_{i}=a_{i+t}$ for all $i \geqslant 0$. The smallest t satisfying the previous condition is called the period of w;
2) an eventually periodic word if there exist two positive integers r, s such that $a_{i}=a_{i+s}$, for all $i>r$;
3) an aperiodic word if it is not eventually periodic.

Theorem 3. For any k the infinite k-Fibonacci word is aperiodic.
Proof. This statement is proved in [18].
We consider the finite k-Fibonacci words $f_{k, n}$ (1) as numbers written in the binary system and denote them by $b_{k, n}$. Denote by $d_{k, n}$ the value of the number $b_{k, n}$ in usual decimal numeration system. We write $d_{k, n}=b_{k, n}$ meaning that $b_{k, n}$ and $d_{k, n}$ are writing of the same number in different numeration systems.

For example, for 3-Fibonacci words we obtain:

$$
\begin{gathered}
f_{3,0}=0, f_{3,1}=001, f_{3,2}=0010010010, f_{3,3}=001001001000100100100010010010001, \ldots, \\
b_{3,0}=0, b_{3,1}=1, b_{3,2}=10010010, b_{3,3}=1001001000100100100010010010001, \ldots, \\
d_{3,0}=0, d_{3,1}=1, d_{3,2}=146, d_{3,3}=1225933969, \ldots \\
\text { Formally, } f_{k, n}, n>0, \text { coincide with the } b_{k, n}, \text { taken with prefix } 0^{k-1}: f_{k, n}=0^{k-1} b_{k, n} .
\end{gathered}
$$

Theorem 4. For any finite k-Fibonacci word $f_{k, n}$ in decimal numeration system we have

$$
d_{k, n}=d_{k, n-1} \sum_{t=0}^{k-1} 2^{t F_{k, n}+F_{k, n-1}}+d_{k, n-2}, \quad n>1
$$

with $d_{k, 0}=0$ and $d_{k, 1}=1$.
Proof. See [20] for a proof for FLP-words. The same argument applies to the k-FLP words.

Theorem 5. Let $d_{k, n}(p)=d_{k, n}(\bmod p), 0 \leqslant d_{k, n}(p)<p$. For any fixed k and p the sequence $d_{k, n}(p)$ is periodic.

Proof. There are only a finite number of $d_{k, n}(p)$ and $2^{F_{k, n}}(\bmod p)$ possible, and the recurrence of the first few terms sequence $d_{k, n}(p)$ and $2^{F_{k, n}}(\bmod p)$ gives recurrence of all subsequent terms. The statement follows from Theorem 4 ,

Let $T(k, m)$ denote the length of the period of the repeating sequence $d_{k, n}(m)$.
Theorem 6. For any p and $k T(k+p(p-1), p)=T(k, p)$.
Proof. This follows from the congruence $k+p(p-1) \equiv k(\bmod p)$, Euler's theorem and Theorem 4.

Let $w_{k, 0}(m)=0$ and for arbitrary integer $n, n \geqslant 1$, let $b_{k, n}(m)$ be $d_{k, n}(m)$ in the binary numeration system, $w_{k, n}(m)=w_{k, n-1}(m) b_{k, n}(m)$. Denote by $w_{k}(m)$ the limit $w_{k}(m)=\lim _{n \rightarrow \infty} w_{k, n}(m)$.
Definition 3. We say that

1) $w_{k, n}(m)$ is a finite FLP-word type 1 by modulo m;
2) $w_{k}(m)$ is a infinite FLP-word type 1 by modulo m.

Theorem 7. The infinite FLP-word type $1 w_{k}(p)$ is periodic.
Proof. The statement follows from Theorem 5
Using k-Fibonacci words we define a periodic FLP-word $v_{k}(m)$ (infinite FLP-word type 2 by modulo m).

As usual, we denote by ϵ the empty word [12].
First we define words $t_{k, n}(m)$. Let $t_{k, n}(m)$ be the last $F_{k, n+1}^{*}(m)$ symbols of the word $f_{k, n}$. If $F_{k, n+1}^{*}(m)=0$ for some k, n, then $t_{k, n}(m)=\epsilon$. Since $F_{k, n}^{*}(m)$ is a periodic sequence, the sequence $\left|t_{k, n}(m)\right|$ is periodic with the same period.

Theorem 8. The word length $\left|t_{k, n}(m)\right|$ coincides with $F_{k, n+1}^{*}(m)$.
Proof. This is clear by construction of $t_{k, n}(m)$.
Let $v_{k, 0}(m)=0$ and for arbitrary integer $n, n \geqslant 1, v_{k, n}(m)=v_{k, n-1}(m) t_{k, n}(m)$. Denote by $v_{k}(m)$ the limit $v_{k}(m)=\lim _{n \rightarrow \infty} v_{k, n}(m)$.
Definition 4. We say that

1) $v_{k, n}(m)$ is a finite $F L P$-word of type 2 by modulo m;
2) $v_{k}(m)$ is an infinite FLP-word of type 2 by modulo m.

Theorem 9. The infinite FLP-word of type $2 v_{k}(m)$ is a periodic word.
Proof. The proof is a direct corollary of Theorem 2 and Theorem 8 .
Acknowledgement. The authors thank Taras Banakh for fruitful discussions.

References

1. Atanassov K.T., Atanassova V., Shannon A.G., Turner J.C. New visual perspectives on Fibonacci numbers. - London: World Scientific, 2002.
2. Koshy T. Fibonacci and Lucas numbers with applications. - New York: Wiley-Interscience, 2001.
3. Rami'rez J.L., Rubiano G.N., de Castro R. A generalization of the Fibonacci word fractal and the Fibonacci snowflake // Theor. Comput. Sci. - 2014 - 528. - P. 40-56.
4. Falco'n S., Plaza A. On the Fibonacci k-numbers // Chaos Solitons Fractals. - 2007. - 32, №5. - P. 1615-1624.
5. Bolat C., Kose H. On the properties of k-Fibonacci numbers // Int. J. Contemp. Math. Sci. - 2010. - 5, №21-24. - P. 1097-1105.
6. Catarino P. On Some Identities for k-Fibonacci sequence // Int. J. Contemp. Math. Sci. 2014. - 9, №1-4. - P. 37-42.
7. Falcón S., Plaza Á. On k-Fibonacci sequences and polynomials and their derivatives // Chaos Solitons Fractals. - 2009. - 39, №3. - P. 1005-1019.
8. Ramirez J.L. Some properties of convolved k-Fibonacci numbers // ISRN Combinatorics. 2013. - Article ID 759641. - 5p.
9. Salas A. About k-Fibonacci numbers and their associated numbers // Int. Math. Forum. 2011. - 6, №50. - P. 2473-2479.
10. Falcón S., Plaza Á. k-Fibonacci sequences modulo m // Chaos Solitons Fractals. - 2009. - 41, №1. - P. 497-504.
11. Berstel J. Fibonacci words - a survey // The Book of L. Rosenberg G., Salomaa A. (Eds.). - Berlin: Springer, 1986. - P. 11-26.
12. Lothaire M. Algebraic Combinatorics on Words. - Cambridge: Cambridge University Press, 2002.
13. Mignosi F., Pirillo G. Repetitions in the Fibonacci infinite word // Theor. Inform. Appl. 1992. - 26, №3. - P. 199-204.
14. Mignosi F., Restivo A., Salemi S. Periodicity and the golden ratio // Theor. Comput. Sci. - 1998. - 204, №1-2. - P. 153-167.
15. Pirillo G. Fibonacci numbers and words // Discrete Math. - 1997. - 173, №1-3. - P. 197207.
16. Séébold P. Fibonacci morphisms and sturmian words // Theor. Comput. Sci. - 1991. - 88, №2. - P. 365-384.
17. Wen Z.-X., Wen $Z .-Y$. Some properties of the singular words of the Fibonacci word //Eur. J. Comb. - 1994. - 15, №6. - P. 587-598.
18. Ramirez J., Rubiano G. On k-Fibonacci words // Acta Univ. Sapientiae, Inform. - 2013. 5, №2. - P. 212-226.
19. Duval J.-P., Mignosi F., Restivo A. Recurrence and periodicity in infinite words from local periods // Theor. Comput. Sci. - 2001. - 262, №1-2. - P. 269-284.
20. Barabash G.M., Kholyavka Ya.M., Tytar I.V. Periodic words connected with the Fibonacci words // Carpathian Math. Publ. - 2016. - 8, №1. - P. 11-15.

Статтл: надійшла до редколегії 05.12.2016 прийнята до друку 27.02.2017

ПЕРІОДИЧНІ СЛОВА, ЯКІ ПОВ'ЯЗАНІ З ЧИСЛАМИ k-ФІБОНАЧЧІ

Галина БАРАБАШ, Ярослав ХОЛЯВКА, Ірина ТИТАР

Лъвівсъкий націоналъний університет імені Івана Франка, вул. Університетська, 1, Лъвів, 79000
e-mails: galynabarabash71@gmail.com,
ya_khol@franko.lviv.ua, iratytar1217@gmail.com

Означено періодичні слова, які пов'язані з числами k-Фібоначчі, досліджено їхні властивості.

Ключові слова: числа k-Фібоначчі, слова k-Фібоначчі.

[^0]: 2010 Mathematics Subject Classification: 08A50, 11B39, 11B83
 (C) G. Barabash, Ya. Kholyavka, I. Tytar, 2016

