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Розглянуто задачу кластеризації масивів векторних даних, що мають пропущені 

значення у деяких компонентах. Запропоновано адаптивний підхід до кластеризації 
таких даних за умов, коли класи перетинаються. В основі підходу є використання 
модифікованої мапи Кохонена із функцією суcідства спецiального вигляду. 

Ключові слова: нечітка кластеризація, самоорганізовна мережа Кохонена, 
правило навчання, неповні дані з пропущенними значеннями. 

 
The problem of clustering vector data sets with missing values in some components is 

considered. The adaptive approach to clustering of data in situation then classes overlap is 
proposed. The basis of the approach is the using of the modified Kohonen maps with the 
neighborhood function of special kind. 

Key words: fuzzy clustering, Kohonen self-organizing network, learning rule, 
incomplete data with missing values. 

 
Introduction 

The task of clustering for data sets with missing values often occurs in applications and for its 
solutions have been successfully used artificial neural networks [1] and method soft computing [2]. The 
main assumption of this approach that the original array is set a priori, the number of missing values is 
known in advance, and processing is organized in a batch mode. In this paper we propose an adaptive 
fuzzy clustering procedure that is designed to deal with the data sequence containing an unknown number 
of missing values, solves the problem in the on-line mode, characterized by numerical simplicity using 
strategy of nearest prototype [2]. 

 
Problem statement 

Baseline information for solving the task of clustering in a batch mode is the sample of observations, 
formed from N n -dimensional feature vectors 

1 2

{ , ,..., } , , 1,2,...,n

N k

X x x x R x X k N= ⊂ ∈ = . The result of 

clustering is the partition of original data set into m  classes (1 )m N< <  with some level of membership 

( )qU k  of k -th feature vector to the q -th cluster (1 )q m≤ ≤ . Incoming data previously are centered and 

standardized by all features, so that all observations belong to the hypercube [ 1,1]n− . In the presence of an 

unknown number of missing values in vector-images kx , that form array X , let’s introduce the sub-arrays: 

{ | -    }F k kX x X x vector containing all components= ∈   ; 

{ ,1 ,1 |    ,    }P ki kX x i n k N all values x available in X= ≤ ≤ ≤ ≤   ;

{ ?,1 ,1 |    ,   }G ki kX x i n k N all values x absent in X= = ≤ ≤ ≤ ≤   . 
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The strategy of the nearest centroid-prototype 
The strategy of the nearest centroid-prototype can be considered as a hybrid strategy of the optimum 

completion and partial distances [2] and consists of a sequence of steps: 
1. Setting the initial conditions for the algorithm: fuzzifier 0β > ; m ; desired  accuracy 

0ε > ; prototypes (centroids) of clusters (0)
qw ; the number of processing epochs 0,1,2,...,Qτ = ; 

(0) (0)ˆ{ 1 1} GG kiX x N= − ≤ ≤ −  arbitrary estimates of missing values ki Gx X∈ ;  

2. Calculation of membership levels by solving the optimization problem: 
1 1

2 2( ) ( ) ( )( 1) 1 ( )1 1

1

ˆ ˆ( ) ( ( ) ) ( )
m

q qk l k
l

U k x w x wτ τ ττ τβ β+ −− −

=
= − − , 

(here vector ( )ˆkx τ  differs from kx  by replacing missing values ki Gx X∈  by estimates ( )ˆkix τ  that are 

calculated for the τ -th epoch of data processing); 
3. Calculation the prototypes (centroids) of clusters: 

( )( 1) ( 1) 1 ( 1)

1 1

ˆ( ( ( )) ) ( ( ))
N N

q q q k
k k

w U k U k x ττ τ β τ β+ + − +

= =
=   ; 

4. Checking the stop conditions: 

if ( 1) ( )   1q qw w q mτ τ ε+ − < ∀ ≤ ≤  or Qτ = , then the algorithm terminates, otherwise go to step 5; 

5. Estimating of missing values by finding the prototype ( 1)
qw τ +  nearest to kx  in the sense of 

the partial distances 

2 2

1

( , ) ( )
n

P k q ki qi ki
k i

n
D x w x w δ

δ  =
= −   

where 

0 | ,

1| ,
ki G

ki
ki F

x X

x X
δ

∈
=  ∈




              
1

,
n

k ki
i

δ δ
=

=  

finding 
( 1)( 1) 2 2 ( 1)
1arg min{ ( , ),..., ( , )}q P k P k m

q
w D x w D x wττ τ++ +=  

 

and replacing the missing observations kix  by estimates ( 1) ( 1)ˆ .qikix wτ τ+ +=  

Next, go to step 2. 
Easy to see that on the fifth step, if considered it from the position of the Kohonen’s self-organizing 

maps [3], the winner neuron nearest to observation kx  is founded in the terms of the partial distances 2 .PD  

Then we can write the strategies in the form of the nearest prototype: 
1 1

2 2( ) ( )( 1) 11 1

1
( ) 2 2

1

( )( )

ˆ ˆ( ) ( ( ( ) ) ) ( ( ) ) ,

ˆwhere ( ),   ( ) arg min{ ( , ( )),..., ( , ( ))},

ˆ( 1) ( ) ( 1)( ( )) ( ( ))  1,2,..., ,

m

q l qk k
l

qi q P k P k mki
q

QQ
q q q qk

U k x w k x w k

x w k w k D x w k D x w k

w k w k k U k x w k q m

τ ττ β β

τ

βη

+ −− −

=


 = − −

 = =



+ = + + − ∀ =





 


            

(1) 
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with memberships between instance of real time k  and 1k +  are tuned in an accelerated time 
0,1,2,...,Qτ = , and centroids in on-line mode 0,1,2,..., ,...k N=  using the Kohonen’s self-learning rule [3] 

"The Winner Takes More" with the neighborhood function ( )( ( ))Q
qU k β .  

Thus, the fuzzy clustering for data with missing values can be organized in sequential mode by 

conventional Kohonen’s map with a special neighborhood function ( )( ( ))Q
qU k β that having the Cauchy 

distribution form. 
Centroid-prototypes can also be recalculate in an accelerated time according to the last relation in 

(1), although this complicates the realization of computational clustering procedure, which in this case has 
the form 

1
2( ) ( ) 1

( 1)
1

2( ) 1

1
( ) ( ) ( )( ) 2 2 ( )

1

( ) ( )

( 1) ( ) ( )

ˆ( ( ) )
( ) ,

ˆ( ( ) )

ˆwhere ( ),   ( ) arg min{ ( , ( )),..., ( , ( ))},

( ) ( 1),

( 1) ( 1) ( 1)( ( )

qk
q

m

lk
l

q P k P k mqiki

Q Q
q q

Q
q q q

x w k
U k

x w k

x w k w k D x w k D x w k

w k w k

w k w k k U k

τ τ β
τ

τ β

τ τ ττ τ

τ τ η

−
+

−

=

+

−
=

−

= =

= +

+ = + + +



 

( ) ( )ˆ) ( ( 1)) .qkx w kτβ τ














 − +

(2) 

 

Possibilistic adaptive strategy of the nearest centroid 
The main disadvantage of probabilistic fuzzy clustering algorithms (FCM and similar procedures) 

associated with hard condition on the sum of membership levels for each vector-image, which must be 
equal to unity, i.e. indirectly attached the sense of probabilities to the memberships that is not always 
correct from view of the problem. 

For restrictions of these assumption possibilistic fuzzy clustering algorithms were introduced. The 
basic procedure (PCM) has the form [4]: 

( 1)
2( )

( )

( 1)

( 1) 1

( 1)

1

2( 1) ( 1)

( 1) 1

( 1)

1

1
( ) ,

1 ( )

( ( ))

,

( ( ))

( ( ))

( ( ))

q

k q

q

N

q
k

q N

q
k

N

q k q
k

q N

q
k

U k
x w

U k

w

U k

U k x w

U k

τ
τ

τ

τ β

τ

τ β

τ β τ

τ

τ β

μ

μ

+

+

+ =

+

=

+ +

+ =

+

=




=
 −
 +




 =




 −


=
















 

where 0qμ ≥  determines the distance at which level of membership takes the value 0.5, i.e. if  

2
k q qx w μ− = , 

then ( ) 0,5.qU k =  
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Possibilistic strategy of nearest prototype-centroid in this case can be written as the following 
sequence of steps: 

1. Setting the initial conditions for the algorithm: fuzzifier 0β > ; m ; desired accuracy 

0ε > ; prototypes (centroids) of clusters (0)
qw ; the number of processing epochs 0,1,2,...,Qτ = ; 

(0) (0)ˆ{ 1 1} GG kiX x N= − ≤ ≤ −  arbitrary estimates of missing values ki Gx X∈ ; 

2. Calculation of membership levels by solving the optimization problem: 

( 1)
2( ) 1( )

1
( )

1
( ) ;

ˆ
1 ( )

q

qk

q

U k

x w

τ
τ τ

β
τμ

+

−

=
−

+

 

3. Calculation the prototypes (centroids) of clusters: 

( )( 1)

( 1) 1

( 1)

1

ˆ( ( ))

( ) ;

( ( ))

N

q k
k

q N

q
k

U k x

w k

U k

ττ β

τ

τ β

+

+ =

+

=

=



 

4. Checking the stop conditions: 

if ( 1) ( )   1q qw w q mτ τ ε+ − < ∀ ≤ ≤  or Qτ = , then the algorithm terminates, otherwise go to step 5; 

5. Estimating of missing values by finding the prototype ( 1)
qw τ +  nearest to kx  in the terms of 

the partial distances:  

2 2

1

( , ) ( )
n

P k q ki qi ki
k i

n
D x w x w δ

δ  =
= −   

where 

0 | ,

1| ,
ki G

ki
ki F

x X

x X
δ

∈
=  ∈




              
1

,
n

k ki
i

δ δ
=

=  

finding 
( 1)( 1) 2 2 ( 1)
1arg min{ ( , ),..., ( , )}q P k P k m

q
w D x w D x wττ τ++ +=    

and replacing the missing observations kix  by estimates ( 1) ( 1)ˆ .qikix wτ τ+ +=
 

6. Calculation the scalar distance parameter: 

2( 1)( 1) ( 1)

( 1) 1

( 1)

1

ˆ( ( ))

.

( ( ))

N

q qk
k

q N

q
k

U k x w

U k

ττ β τ

τ

τ β
μ

++ +

+ =

+

=

−

=



 

Next, go to step 2. 
Similarly to probabilistic adaptive clustering strategies based on the nearest centroid it is possible to 

organize the process of possibilistic clustering. In this case, an analogue of the algorithm (1) is the 
procedure: 
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( 1)
2( ) 1

1
( )

( ) 2 2
1

( )( )

( )( 1)

( 1)

1
( ) ,

ˆ ( )
1 ( )

ˆ ( ),   ( ) arg min{ ( , ( )),..., ( , ( ))},

ˆ( 1) ( ) ( 1)( ( )) ( ( ))  1,2,..., ,

ˆ( ( ))

q

qk

q

qi q P k P k mki
q

QQ
q q q qk

q k

q

U k

x w k

where x w k w k D x w k D x w k

w k w k k U k x w k q m

U p x w

τ
τ

β
τ

τ

β

ττ β

τ

μ

η

μ

+

−

+

+

=
−

+

= =

+ = + + − ∀ =

−

=

 

2

1

( 1)

1

( )

( ( ))

k

q
p

k

q
p

k

U pτ β

=

+

=
























 (3) 

and of the algorithm (2) –  

( 1)
2( ) 1

1
( )

( ) ( ) ( ) ( )2 2 ( )
1

( )( ) ( ) ( ) ( )
1

1
( ) ,

ˆ ( )
1 ( )

ˆ ( ),   ( ) arg min{ ( , ( )),..., ( , ( ))},

ˆ( 1) ( 1) ( 1)( ( )) ( ( 1))  1,2,..., ,

q

qk

q

P k P k mqi qiki
q

Q
q q q qk

U k

x w k

where x w k w k D x w k D x w k

w k w k k U k x w k q m

τ
τ

β
τ

τ τ τ τ τ

ττ τ β τ

μ

η

μ

+

−

+

=
−

+

= =

+ = + + + − + ∀ =

 

2( 1)( 1) ( 1)

1( 1)

( 1)

1

ˆ( ( )) ( )

.

( ( ))

k

q qk
p

q k

q
p

U p x w k

U p

ττ β τ

τ

τ β

++ +

=+

+

=













 −
 =







(4) 

From a computational point of view the possibilistic procedures are more cumbersome, however, 
their advantages connects with the fact that on their basis it’s easy to organize the process of new clusters 
finding. 

 
Experiments 

Experimental research conducted on two standard samples of data such as Wine and Iris of UCI 
repository [5]. 

To estimate the quality of the algorithm we have used quality partitioning criteria into clusters such 
as: Partition Coefficient (PC), Classification Entropy (CE), Partition Index (SC), Separation Index (S), Xie 
and Beni's Index (XB), Dunn's Index (DI). 

We also compared the results of proposed algorithms with other well-known ones such as Fuzzy C-
means (FCM) clustering algorithm and Gustafson-Kessel clustering algorithm. 

As seen from the experimental results (Table 1, Table 2 and Table 3), the proposed algorithms have 
shown better results than the FCM and Gustafson-Kessel clustering algorithm. 

 
Conclusions 

The problem of adaptive probabilistic and possibilistic fuzzy clustering with missing data that are 
fed for processing in the on-line mode, based on the strategy of the nearest prototype-centroid is 
considered. The developed approach differs by conventional ones from computational simplicity, and the 
operation can be organized using Kohonen self-organizing maps. 
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Table 1 
Results of experiments with 10 missing values 

Iris UCI repository Wine UCI repository 

Algorithms 

ga
ps

 

P
C

 

C
E

 

SC
 

S X
B

 

D
I 

P
C

 

C
E

 

SC
 

S X
B

 

D
I 

P
C

 

Adaptive fuzzy 
possibilistic 

clustering data of 
the nearest 

centroid with 
missing values 

9,
12

49
е-

07
 

-4
,6

61
7e

-0
4 

0,
37

33
 

48
,7

06
7 

48
,8

05
6 

0,
40

10
 

1,
16

40
e-

13
 

-4
,5

67
5e

-0
4 

7,
38

72
e+

05
 

2,
71

15
e+

08
 

2,
71

80
e+

08
 

0,
02

18
 

9,
12

49
е-

07
 

FCM 

0,
76

17
 

0,
42

83
 

0,
01

43
 

1,
49

46
e-

04
 

3,
85

69
 

0,
02

75
 

0,
79

08
 

0,
38

06
 

7,
33

48
e-

04
 

6,
84

17
e-

06
 

5,
71

10
 

0,
01

17
 

0,
76

17
 

Gustafson-Kessel 

10
 

0,
94

62
 

0,
11

45
 

0,
47

89
 

0,
00

32
 

3,
46

18
 

0,
33

98
 

0,
55

07
 

0,
63

93
 

8,
59

33
 

0,
04

83
 

1,
07

50
 

0,
10

15
 

0,
94

62
 

 
 

Table 2 
Results of experiments with 50 missing values 

Iris UCI repository Wine UCI repository 

Algorithms 

ga
ps

 

P
C

 

C
E

 

SC
 

S X
B

 

D
I 

P
C

 

C
E

 

SC
 

S X
B

 

D
I 

P
C

 
Adaptive fuzzy 

possibilistic 
clustering data of 

the nearest 
centroid with 

missing values 

9,
12

49
е-

07
 

-4
,6

61
7e

-0
4 

0,
37

75
 

48
,7

06
7 

48
,8

30
1 

0,
33

65
 

7,
51

81
e-

12
 

-5
,4

99
2e

-0
4 

1,
18

34
e+

04
 

4,
19

81
e+

06
 

4,
20

24
e+

06
 

0,
02

40
 

9,
12

49
е-

07
 

FCM 

0,
73

99
 

0,
46

32
 

0,
01

74
 

1,
83

45
e-

04
 

4,
48

87
 

0,
03

55
 

0,
78

92
 

0,
38

38
 

7,
61

10
e-

04
 

7,
17

60
e-

06
 

8,
86

18
 

0,
02

37
 

0,
73

99
 

Gustafson-Kessel 

50
 

0,
94

22
 

0,
11

77
 

0,
52

19
 

0,
00

35
 

3,
44

13
 

0,
33

41
 

0,
58

24
 

0,
60

10
 

4,
76

78
 

0,
02

68
 

1,
17

03
 

0,
10

30
 

0,
94

22
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Table 3 
Results of experiments with 100 missing values 

Iris UCI repository Wine UCI repository 

Algorithms 

ga
ps

 

P
C

 

C
E

 

SC
 

S X
B

 

D
I 

P
C

 

C
E

 

SC
 

S X
B

 

D
I 

P
C

 

Adaptive fuzzy 
possibilistic 

clustering data of 
the nearest 

centroid with 
missing values 

1,
74

29
e-

06
 

-4
,6

61
7e

-0
4 

0,
10

89
 

25
,5

 

25
,7

60
8 

0,
22

77
 

2,
10

59
e-

11
 

-5
,7

91
2e

-0
4 

4,
35

87
e+

03
 

1,
49

87
e+

06
 

1,
50

06
e+

06
 

0,
03

36
 

1,
74

29
e-

06
 

FCM 

0,
81

61
 

0,
35

36
 

0,
00

91
 

9,
28

46
e-

05
 

3,
65

33
 

0,
05

75
 

0,
77

98
 

0,
39

73
 

7,
64

12
e-

04
 

7,
34

06
e-

06
 

9,
24

53
 

0,
03

30
 

0,
81

61
 

Gustafson-Kessel 

10
0 

0,
84

54
 

0,
27

50
 

0,
89

94
 

0,
00

60
 

2,
93

95
 

0,
13

92
 

0,
59

59
 

0,
58

54
 

7,
19

43
 

0,
04

04
 

1,
26

27
 

0,
09

04
 

0,
84

54
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