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Запропоновано комбінований метод самонавчання-навчання самоорганізовної 
мапи (SOM-LVQ), що дає змогу підвищити якість обробки інформації за умов класів, що 
перетинаються внаслідок раціонального вибору параметра кроку навчання і введення 
спеціальної процедури нечіткого виведення в процесі класифікації-кластеризації, який 
проходить як з зовнішнім навчальним сигналом, так і без нього. Як міру подібності 
функцій сусідства і належності використовуються косинусоїдальні конструкції, що 
дають змогу забезпечити процесам самонавчання-навчання більшу гнучкість і надати 
їм низку нових корисних властивостей. 

Ключові слова: комбінований метод самонавчання-навчання самоорганізовної 
мапи, кластеризація, класифікація, класи, що перетинаються. 

 
In the paper, combined self-learning and learning method of self-organizing map (SOM-

LVQ) is proposed. Such method allows to increase quality of information processing under 
condition of overlapping classes due to rational choice of learning rate parameter and 
introducing special procedure of fuzzy reasoning in the clustering-classification process, which 
occurs both with external learning signal (“supervised”), and without one (“unsupervised”). 
As similarity measure of neighborhood function or membership one, cosine structures are 
used, which allow to provide a high flexibility due to self-learning-learning process and to 
provide some new useful properties. 

Key words: combined self-learning and learning method of self-organizing map, 
clustering, classification, overlapping classes.  

 
Introduction 

Self-organizing maps (SOM) and neural networks of learning vector quantization (LVQ) have seen 
extensive use for solving different problems in Data Mining domain (clustering, classification, fault detection and 
compression of information to name a few). This type of neural networks was proposed by T. Kohonen [1, 2] and 
represents, in fact, a single-layer feedforward architecture, which provides an operator for mapping of input space 
into the output space. Operation-wise SOM and LVQ are quite similar: each neuron is fed input signal (sample) 
producing output, which is used during competition stage to determine winning neuron – usually the one with 
maximum output signal value. Vector of synaptic weights for winning neuron is the one closest to the input sample 
in terms of the metric chosen (which is Euclidian metric in most cases). Next is neurons adjustment phase. 
Synaptic weights of the winning neuron gets moved closer to input sample. Alternatively, a subset of neurons 
(rather than a single one) can be adjusted – those determined to be “reasonably close” to the input sample are 
updated. Resulting network output, however, is determined exclusively by winning neuron (this principle is 
usually referred to as “Winner-Takes-All” (WTA)). It is this principle (WTA) which negatively affects accuracy in 
case when there are overlapping clusters in underlying data.  

Taking into account the above mentioned properties of SOM and LVQ networks, it makes sense to 
introduce fuzzy classification capabilities on top of them, while preserving online operation. In [8, 9] fuzzy 
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self-organizing map was proposed, in which conventional neurons are replaced by fuzzy rules. This neural 
network shows enough high efficiency, but its learning properties was significantly lost especially in on-
line mode. In [5, 10, 11] fuzzy clustering Kohonen network and fuzzy linear vector quantization network 
are described. In fact such networks are neural representation of fuzzy c-means (FCM) [3], which is far 
enough from SOM and LVQ mathematical tool and designed for operation in batch mode. 

 
Problem statement 

Let us consider single-layer neural network with lateral connections containing receptors and 
neurons in the Kohonen layer with each neuron being characterized by a vector of its synaptic weights. 
During learning stage  input vector is fed to the inputs of all neurons (usually adaptive linear associators) 
(here – either the number of observation in a table “object-properties”, or current discrete time for on-line 
processing mode) and neurons produce the scalar signals on their outputs 

 

 ( ) ( ) ( ), 1,2,...,T
j jy k w k x k j m= = . (1) 

 

Note that neuron’s output depends on current values of synaptic weights vector, assuming iterative 
learning algorithm. 

Each input vector can activate either single neuron ( jw ) or a set of neighboring neurons – this also 
depends on learning algorithm chosen.  

Self-organization procedure is based on the competitive learning approach (self-learning), and 
begins with the initialization of synaptic weights. Selecting initial values for weights from a uniform 
random distribution over input space has become a common practice. In addition, weights are usually 
normalized to reside on unit hypersphere: 

 

 
2

( ) ( ) ( ) 1.T
j j jw k w k w k= =  (2) 

 

Self-organizing is usually divided into three stages [2]: competition, cooperation and synaptic 
adaptation. This paper introduces additional stage to this process – fuzzy inference, which allows an online 
learning algorithm to classify data samples belonging to several classes simultaneously. 

 
Learning algorithm for SOM 

The competition process is started to analysis of current pattern ( )x k , which is fed to all neurons of 
Kohonen’s layer from receptive (zero) layer. For each neuron the distance between input sample and a 
vector of synaptic weights is computed: 

 

 ( ( ), ( )) ( ) ( )j jD w k x k x k w k= − . (3) 
 

In case when all inputs and synaptic weights are normalized according to (2), i.e.  
 

 ( ) ( ) 1,jw k x k= =  (4) 
 

and Euclidian metric is used, the proximity measure between the vectors ( )jw k  and ( )x k  can be in the 
following way: 
 

 ( ) ( ) ( ) cos( ( ), ( )) cos ( )T
j j j jw k x k y k w k x k kθ= = = . (5) 

 

So the expression (3) takes the form 
 

 ( ( ), ( )) 2(1 ( ))j jD w k x k y k= − ,  (6) 
 

and type of dependence ( ( ), ( ))jD w k x k  from output signal value ( )jy k  is shown on fig. 1. 
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Fig. 1. Dependence of distance ( ( ), ( ))jD w k x k  from output signal level for j-th neuron 

 
Using relation (5), we can replace metric (3) with a simpler construction, usually referred to as a 

measure of similarity [12] 
 

 { } { }( ( ), ( )) max 0,cos( ( ), ( ) max 0,cos ( )j j jw k x k w k x k kψ θ= = , (7) 
 

which satisfies softer conditions compared to classic measure requirements: 
 

 

{ }

( ( ), ( )) 0,

( ( ), ( )) 1,

( ( ), ( )) ( ), ( )

j

j j

j j

w k x k
w k w k

w k x k x k w k

ψ

ψ

ψ ψ

≥

=

=

 (8) 

 

and which has a form shown on fig 2. 
 

 
 

Fig.2.The measure of similarity (7) 
 

Next we look for a winning neuron that has a biggest value of similarity to the input vector in the 
sense (6) or (7), i. е. 

 

 *( ( ), ( )) min ( ( ), ( ))j ll
D w k x k D w k x k=   (9) 

or 
 *( ( ), ( )) max ( ( ), ( ))j ll

w k x k w k x kψ ψ= . (10) 
 

After that we tune values of synaptic weights using WTA self-learning rule is realized in form 
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* * if – th neuron won in the c( ) ( )( ( ) ( )),

( 1)
( ) o

ompetition

th s

,

erwi e.
j j

j
j

w k k x k w k
w k

w
j

k
η + −+ = 


 (11) 

 

In a nutshell, expression (11) means that synaptic weights vector of winner is moved closer to the 
input pattern ( )x k  by a value which is proportional to learning rate 0 ( ) 1kη< < . 

Choice of learning rate value ( )kη  defines the convergence rate of self-learning process, and is 
usually based on empirical reasons, at that the parameter must monotonically decrease in on time. 

It is easy to see, that first relation of the rule (11) minimizes the following criterion  
 

 
2

1
( )

jk
k
j jE x w

τ

τ
=

= −∑  (12) 

 

(here jk  is a number of data in the sampling with dimensions k , when j -th neuron was winner), notably 

in practice as synaptic weights estimation conventional arithmetic mean is used: 
 

 
1

1( ) ( )
jk

j
j

w k x
k τ

τ
=

= ∑ .  (13) 

 

Therefore, in fact self-learning rule (3) is stochastic approximation procedure [13], and learning rate 
parameter ( )kη  must be selected according to the condition of А. Dvoretzky [14]. It is know that using the 
following value 
 

 1( )
j

k
k

η =  (14) 

 

leads to slowdown of the learning process. 
Requirement of monotonic decreasing of the parameter ( )kη  leads to expression in form 

 

 1( ) ( )k r kη −= , 2( ) ( 1) ( )r k r k x kα= − + , 0 1α≤ ≤ .  (15) 
 

When taking into account normalization to unit hypersphere (4) we have: 
 

 ( ) ( 1) 1r k r kα= − + , (16) 
 

Which with α =1 gives a well-known expression, that was introduced in [15]. 
Changing the forgetting parameter α  provides enough variance for the learning rate to both satisfy 

Dvoretzky condition and adjust for characteristics of different data sets: 
 

 1 ( ) 1
j

k
k

η≤ ≤ . (17) 

 

Note that adjusting synaptic weights with (13) in genera breaks normalization (4). In order to 
maintain it, we should slightly modify our learning algorithm: 

 

 

* *

* *

1

if –  neuron won in the competition
( ) ( )( ( ) ( ))

,
( ) ( )( ( ) ( ))

( 1) ( ) ( ), ( ) ( 1) 1,

( , .

,

0 1,

)

j j

j j

j

j

w k k x k w k
w k k x k w k

w k k r k r k r k

w k oth

j

erwise

th
η

η

η α α−

 + −


+ −
+ =  = = − + ≤ ≤




 (18) 
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In order to better adjust to input data, a so called “cooperation stage” is frequently introduced to 
SOM learning process. During this stage a winning neuron defines a local domain of topological 
neighborhood, where weights are adjusted for a set of neurons rather than only for a winning one. Those 
neurons closer to the winner receive a bigger adjustment.  

This topological domain is defined by neighborhood function ( , )j pϕ , which depends on distance 
*( ( ), ( ))j pD w k w k  between winner * ( )jw k  and any of Kohonen’s layer neurons ( )pw k , 1,2, ,p m= K  and 

some parameter σ , which sets its width.  
Usually ( , )j pϕ  is the bell-shaped function, symmetrical with respect to the maximum in point 

* ( )jw k  ( ( , ) 1j jϕ = ) and decreasing when distance *( ( ), ( ))j pD w k w k  increases. Gaussian function is 
commonly used here: 
 

 
2*

2

( ) ( )
( , ) exp

2
j pw k w k

j pϕ
σ

 − = −
 
 

.  (19) 

 

Adding neighborhood function results in the following learning algorithm: 
 

 ( 1) ( ) ( ) ( , )( ( ) ( ))p p pw k w k k j p x k w kη ϕ+ = + − , 1,2, ,p m= K , (20) 
 

which minimizes criterion  
 

 
2

1

( , ) ( )
k

k
p pE j p x w

τ

ϕ τ
=

= −∑   (21) 

 

This criterion is commonly referred to as “Winner Takes More” (WTM). 
The necessity to maintain normalization to unit hypersphere (4) leads to the expression in form 

 

 
1

( ) ( ) ( , )( ( ) ( ))
( 1) , 1,2, , ,

( ) ( ) ( , )( ( ) ( ))

( ) ( ), ( ) ( 1) 1, 0 1.

p p
p

p p

w k k j p x p w k
w k p m

w k k j p x p w k

k r k r k r k

η ϕ

η ϕ

η α α−

+ −
+ = = + −


= = − + ≤ ≤

K
 (22) 

 

It is possible to skip the entire competition by tuning synaptic weights of network depending on their 
similarity with the current vector-pattern ( )x k . In this case instead of conventional neighborhood function 

( , )j pϕ  depending on winner * ( )jw k , we can use similarity measure (7), that depends on ( )x k . 

In this case instead of (20) we can use the rule in form: 
 

 

{ }
{ }
{ }
{ }

( 1) ( ) ( ) ( ( ), ( ))( ( ) ( ))

( ) ( )max 0,cos( ( ), ( )) ( ( ) ( ))

( ) ( )max 0, ( ) ( ) ( ( ) ( ))

( ) ( )max 0,cos ( ) ( ( ) ( ))

( ) ( )max 0, ( ) ( ( ) ( )),

p p p p

p p p

T
p p p

p p p

p p p

w k w k k w k x k x k w k

w k k w k x k x k w k

w k k w k x k x k w k

w k k k x k w k

w k k y k x k w k

η ψ

η

η

η θ

η

+ = + − =

= + − =

= + − =

= + − =

= + −

 (23) 

 

which reminds “INSTAR” learning rule of S. Grossberg [16]. 
For maintaining (4) the rule (23) has to be rewritten in the form 
 

 
1

( ) ( ) ( ( ), ( ))( ( ) ( ))
( 1) ,

( ) ( ) ( ( ), ( ))( ( ) ( ))

( ) ( ), ( ) ( 1) 1, 0 1.

p p p
p

p p p

w k k w k x k x k w k
w k

w k k w k x k x k w k

k r k r k r k

η ψ

η ψ

η α α−

+ −
+ = + −


= = − + ≤ ≤

 (24) 
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In many real world problems clusters can overlap as shown on fig 3, where *  denotes patterns, 
belonging to j -th clusters, and o  – p -th ones. In this case vector ( )x k  belongs j-th cluster with 
proportional membership level cos ( )j kθ , and with proportional level cos ( )p kθ  -  to p-th one. Synaptic 

weights concentrated in crosshatched region, don’t have relationship to the pattern ( )x k  according to (7). 
Using similarity measure, that is shown on fig.2, we can introduce the membership estimate of 

pattern ( )x k  to j-th class in form: 
 

 ( )

1

( ( ), ( ))
0 ( ( )) 1

( ( ), ( ))
j

j
w k m

l
l

w k x k
x k

w k x k

ψ
µ

ψ
=

≤ = ≤

∑
. (25) 

 
Learning algorithm for LVQ 

Learning vector quantization neural networks in contrast to self-learning SOM adjust their 
parameters based on external learning (reference) signal, which fixes the membership of each pattern ( )x k  
to a particular class.  

 

 
 
 

The main idea of LVQ neural network is to build a compact representation of large data set based on 
a restricted set of prototype samples (centroids) ( )jw k , 1,2, ,j m= K , that provide sufficiently accurate 

approximation of the original space X . 
For each input vector ( )x k  which is normalized according to (4), we look for a winning neuron 

* ( )jw k  that corresponds to a centroid of a certain class. In other words, winner is defined as a neuron with 

minimal distance to the input vector (9) or, which is the same, with maximal similarity measure (10). 
Since the learning is supervised, membership of the vector ( )x k  to specific domain jX  of the space 

X  is known, which allows considering two typical situation occurring in the trained linear vector 
quantization: 

– the input vector ( )x k and neuron-winner * ( )jw k  belong to the same cell of Voronoy [2]; 

– the input vector ( )x k  and neuron-winner * ( )jw k  belong to the different cells of Voronoy. 

Than corresponding learning LVQ-rule can be written in form: 

Fig. 3. The overlapping clusters 
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* * *

* * *

( ) ( )( ( ) ( )), if ( )and ( )belong to the same cell,

( 1) ( ) ( )( ( ) ( )), if ( ) and ( ) belong to the different cells,

( ) for neurons,which aren't won in instant .

j j j

j j j j

j

w k k x k w k x k w k

w k w k k x k w k x k w k

w k k

η

η

 + −


+ = − −





 (26) 

 

The rule (26) has a clear physical interpretation: if the winning neuron and presented sample belong 
to the same class, than prototype * ( )jw k  is moved to ( )x k ; otherwise prototype * ( )jw k  is pushed away 

from ( )x k , effectively increasing the distance *( ( ), ( ))jD w k x k , i.e. solving the maximization task based on 

criterion (12). 
As for the choice of learning rate parameter ( )kη , that common recommendations are the same that 

for SOM, i.e. the learning rate parameter must monotonically decrease in process controlled learning. 
In [17] it was proved that LVQ tuning algorithm converges in case of learning rate ( )kη  satisries 

Dvoretzky conditions. This, in turn, allows choosing ( )kη  according to Goodwin-Ramadge-Caines 
algorithm [13], or in the previously defined form (16) with 1α = , which is essentially the same. When 

1α < , the algorithm gets tracking properties and handles the case when class centroids are drifting. 
For providing to fulfillment of the condition (4) it possible to introduce modification of rule (26) in 

the form (18): 
 

 

* *
*

* *

* *
*

* *

( ) ( )( ( ) ( ))
,if ( ) and ( )belong to the same cell,

( ) ( )( ( ) ( ))

( ) ( )( ( ) ( ))
( 1) , f ( ) and ( )belong to thedifferent cells,

( ) ( )( ( ) ( ))

( ) for neurons, wh

j j
j

j j

j j
j j

j j

j

w k k x k w k
x k w k

w k k x k w k

w k k x k w k
w k i x k w k

w k k x k w k

w k

η

η

η

η

+ −

+ −

− −
+ =

− −

ich are not won in instant .k












 (27) 

 

First and third expressions in formula (27) are completely identical to WTA – self-learning 
algorithm, which the second one represents a “push-back” scenario. 

Let’s consider a situation, shown on fig. 4, when neuron * ( )jw k  won the competition. At the same 

time current sample ( )x k  belongs to a class with different centroid ( )pw k . Now we need to “push” vector 
* ( )jw k  away so, that ( )x k  was equidistant from * ( )jw k  and from ( )pw k . 

Applying elementary transformations, we get the following formulas: 
 

 * *( 1) ( ) ( )( ( ) ( ))j j jw k w k k x k w kη+ = − − ,  (28) 
 

 2* *( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T
j j jx k w k x k w k k x k k x k w kη η+ = − − ,  (29) 

 

 * *cos( ( 1), ( )) cos( ( ), ( )) ( )(1 cos( ( ), ( )))j j jw k x k w k x k k w k x kη+ = − +   (30) 
 

In order to satisfy  
 

 cos( ( 1), ( )) cos( ( ), ( ))j pw k x k w k x k+ =   (31) 
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We need to set ( )kη  in form 
 

 

* *

* *

*

*

cos( ( ), ( )) cos( ( ), ( )) cos( ( ), ( )) cos( ( ), ( ))
( )

cos( ( ), ( )) 1 cos( ( ), ( )) cos( ( ), ( ))

cos ( ) cos ( ) ( ) ( ) ( ) ( )
.

cos ( ) 1 ( ) ( ) ( ) ( )

j p j p

j j

T T
j p j p

T T
j j

w k x k w k x k w k x k w k x k
k

w k x k w k x k x k x k

k k x k w k x k w k
k x k w k x k x k

η

θ θ

θ

− −
= = =

+ +

− −
= =

+ −

 (32) 

 

After one step of the weights tuning the pattern ( )x k  will belong equally to both ( 1)jw k +  and 

( ) ( 1)p pw k w k= + , i.е. 
 

 ( 1) ( 1)( ( )) ( ( )) 0,5
j pw k w kx k x kµ µ+ += = . (33) 

 

In case when several classes are overlapping, we can use estimate (25) for computing membership levels. 
 

 
Fig. 4. Learning of LVQ 

 
Joining SOM and LVQ learning algorithms 

A promising application of Kohonen neural network is adaptive pattern recognition, which 
implemented by the systems. The implementation consists of sequentially connected SOM and LVQ [2] 
layers. First network operates in self-learning mode, while the second one adds supervised component to 
the process. From an input vector ( )x k  which is fed to the input system, SOM network extracts a feature 
sample ( )y k  in a space with sufficiently reduced dimensionality. This simplifies a problem in hand 
without significant loss of information. On the second stage LVQ is trained to classify of incoming pattern 

( )y k  using supervised learning. A distinctive feature of proposed system is the connection of two identical 
architectures, that are tuned by different learning algorithms. 

For many data mining problems, especially in healthcare domain, substantial shares of input samples 
lack clear class association. Indeed, a diagnosis might be either missing, be ambiguous or yet unknown.  

In this case it is possible to tune the synaptic weights with unified architecture with lateral 
connections using different learning methods. Each learning method is initialized according to the level of 
apriori information about ( )x k  available. 

A resulting learning algorithm for combined (SOM+LVQ) neural network can be presented in the 
following form:  
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* *

* *

* *

* *

( ) ( )( ( ) ( ))
,

( ) ( )( ( ) ( ))

( ) ( )( ( ) ( ))
( ) ,

( ) ( )( ( ) ( ))( 1)
1, if the network works in supervised mode 

and sample x(k) does not belong to class j,
0, othe

j j

j j

j j
L

j j
j

L

w k k x k w k
w k k x k w k

w k k x k w k
k

w k k x k w kw k

η

η

η
δ

η

δ

+ −

+ −

− −

− −
+ =

=
rwise,

( ) for neurons, which did not get activated by sample ( ).jw k x k








 
 


 



 (34) 

 

where * ( )jw k  is winning neuron. 

It is clear, that for 0Lδ = , i.е. in self-learning mode, the first expression of formula (34) can be 
replaced by expression (24). 

 
Conclusion 

The combined self-learning procedure for Kohonen neural network is proposed. Such method allows 
data processing under the overlapping classes condition, when memberships of training data to specific 
classes can be unknown at all, and have both crisp and fuzzy nature. This method is based on using 
similarity measure, recurrent optimization and fuzzy inference and differs with high speed, possibility of 
operating in on-line mode and simplicity of computational realization. 
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