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Представлено новий метод прогно-
зування часових рядів, який динамічно 
знаходить ваги для вхідних факторів 
в залежності від конкретних значень 
самих факторів. Запропонований метод 
був перевірений на наборі реальних 
часових рядів і показав кращі резуль-
тати у порівнянні з методом, що вико-
ристовувався як базовий
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Представлен новый метод прогно-
зирования временных рядов, который 
динамически находит веса для вход-
ных факторов в зависимости от кон-
кретных значений самих факторов. 
Предложенный метод был проверен на 
наборе реальных временных рядов и 
показал лучшие результаты по сравне-
нию с методом, который использовал-
ся в качестве базового
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1. Introduction

Forecasting has always been one of the most interesting 
and important problems of mankind. It is also one of the 
hardest problems, since to solve it we need to deal with the 
following issues:

a) it is impossible to take into account all the factors that 
influence the process we are trying to forecast; moreover, 
their influence can change over time – the factor which was 
not important today can play a major role tomorrow;

b) there are always a lot (sometimes infinite number) of 
plausible models that fit the training data well – we have to 
decide which model or set of models to use, and that’s usually 
a very error-prone decision;

c) it is often hard (if not impossible) to find the optimal 
complexity of the model.

In this paper we introduce the method that tries to deal 
with first two issues, i.e. it flexibly determines the set of 
models to use for the given inputs and takes into account the 
volatile significance/influence of the factors.

2. Problem statement

L e t  u s  h ave  a  s e q ue n c e  o f  N  d a t a  p o i n-
ts x x xN= { }1, ,  measured at successive time points  

t t t t T const i NN i i1 1 2, , , , { } − = = =− . Then the problem of 

forecasting (Fig. 1) considered in this paper can be stated as 
follows: using the data we have (Fig. 1, а), build the model 
of the forecasted process that takes n  successive data points 
x xi n i− +1, ,  as input and outputs the forecast for the value 
xi k+  at some future time point ti k+  (Fig. 1, b). This model 
can be represented mathematically as y F x n= ( , ,x )1  , where 
F  is some unknown function. One important note is that 
this model can be defined implicitly or even work as a “black 
box” – we give it an input, we receive the desired output, 
which serves as a forecast.

Fig. 1. Graphic representation of the forecasting problem 
statement: a – known values; b – future values

3. Review of existing forecasting methods

The most well-known forecasting method is probably a 
linear regression [1]. It builds the following linear model:

y F x x w x wn i i
i

n

= = +
=
∑( , , ) *1 0

1

 , (1)
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where w wn1, ,  – importance weights of the input variables 
x xn1, ,  respectively; w0  – bias term, can be omitted. The 
weights are usually found by minimizing the mean squared 
error (MSE) of the model on the training data:

  



w w x w y
w

T
j i

j

m
* arg{min * }= + −( )










=
∑ 0

2

1

,  (2)

where 


x x xj j jn

T
=  1, ,  – jth  training case; y j  – correspon-

ding known output value.
Even though a linear regression remains one of the most 

widely used methods due to its simplicity, it has one natural 
limitation following from its definition: it cannot model co-
mplex nonlinear dependencies. To overcome this limitation a 
lot of nonlinear forecasting methods were developed. Let us 
mention the most widely used.

1. Group method of data handling (GMDH) [2]. The 
GMDH is a set of forecasting algorithms which are based on 
a recursive selection of the best models and the subsequent 
construction of more complex models using previously selec-
ted ones. The forecasting accuracy is improved by increasing 
a complexity of the models. The selection criterion is based 
on a model performance on the test set, while model’s para-
meters are determined from the training set. The simplest 
models also called base functions usually have the following 
form:

F x x a a x a x xn i i ij i j
j

n

i

n

i

n

( , , ) * .1 0
111

 = + + +
===
∑∑∑  (3)

However, any kind of base functions can be used, includ-
ing harmonic series, exponential series etc.

The GMDH-like algorithms have proven to be really 
effective on real-life problems mainly because of their use of 
an external criterion (i.e. models are selected using data that 
wasn’t used for their training).

2. Artificial neural networks (ANN) [3]. An ANN is a 
system of connected and interacting artificial neurons – ma-
thematical models of biological neural cells. An ANN is not 
programmed in the usual sense of the word: they are trained. 
During training, the neural network is able to detect compl-
ex relationships between input and output data and perform 
synthesis. The ability of neural networks to forecast comes 
directly from their ability to generalize and find the hidden 
relationships between input and output data. After training, 
the network is able to predict the future value of a certain 
sequence on the basis of several previous values and/or any 
current factors.

Mainly two architectures are used for the forecasting 
task: feed-forward neural network [4] (Fig. 2) and recurrent 
neural network [5] (Fig. 3). While feed-forward ANN ba-
sically corresponds to very complex function the recurrent 
ANN adds some dynamics, i. e. it has a finite dynamic res-
ponse to time series input data.

The main advantage of an ANN over other methods 
of forecasting is that the network can equally well model 
practically any functional relationship, whereas most other 
methods are best suited for modelling some concrete type 
of functions (obviously, the method of polynomial smoot-
hing is best suited for processes with a polynomial regular 
component, the method of Fourier series smoothing is best 
suited for processes with a periodic regular component etc.). 
Another important advantage of neural networks is the ab-
ility to learn.

Fig. 2. Feedforward neural network architecture

Fig. 3. Recurrent neural network architecture

3. Wavelet-based time series forecasting [6]. Many time 
series exhibit non-stationarity in their statistics. While the 
series may contain dominant periodic signals, these signals 
can vary in both amplitude and frequency over long periods 
of time. Ideally, one would like to separate the shorter period 
oscillations from the longer. Wavelet analysis attempts to 
solve these problems by decomposing the time series into 
time/frequency space simultaneously. One gets information 
on both the amplitude of any ”periodic” signals within the 
series and how this amplitude varies with time.

The wavelet-based forecasting suggests the use of a 
discrete wavelet transform [7] to obtain the corresponding 
wavelet coefficients and the subsequent prediction of the 
future values using these coefficients as inputs.

One step of discrete wavelet transform produces so-cal-
led detail coefficients and approximation coefficients given 
by:

y n x k n kappr
k

[ ] [ ]g[ ]= −
=−∞

∞

∑ 2 , (4)

y n x k h n kail
k

det [ ] [ ] [ ]= −
=−∞

∞

∑ 2 , (5)

where g k[ n ]2 −  and h[ n k]2 −  is an impulse response of the 
low-pass filter and high-pass filter respectively. Usually, the 
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approximation coefficients get decomposed further multiple 
times (Fig. 4).

Fig. 4. Graphic representation of wavelet decomposition

4. Various combinations of multiple methods. For instan-
ce, a combination of GMDH and ANN was suggested in [8]: 
instead of using predefined base functions small feedforward 
neural networks can be used, thus eliminating the issue with 
selecting the most appropriate type of base functions.

Despite of the variety of existing forecasting methods, 
most of them can be generalized using the following equa-
tion:

   



w E F w x
w

* arg{min ( , ),X,y }= [ ]{ } , (6)

where E  is some error function that is minimized; F w x( , )
 

 – 
function that represents a forecasting model (linear or non-
linear); X  – matrix of training cases; 



y  – vector of known 
output values for the training cases. It’s clear that such an 
approach ignores the issues (a) and (b) given in the introduc-
tion – it uses a single model and assumes that input variables 
have constant influence.

4. Overview of the suggested forecasting method

The main idea of the method is to ‘dynamically’ find a set 
of weights for given inputs rather than use a single ‘static’ 
set of weights; in other words, the inputs are used for both 
finding the appropriate weights and predicting the output 
using these weights.

We suggest naming the method “linear regression with 
dynamic weights (LRDW)”.

The method’s inputs are the matrix of training cases X m n∈ ×
  

and the vector of known output values y m∈ ×


1  where m 
is a number of training cases and n is a number of input 
variables.

The preprocessing stage needed to obtain these ma-
trices from the raw time series x x i Ni= { } =, 1  is left 
outside the scope of this method for the sake of simplicity 
(we suggest normalizing the time series values to the range 

−[ ]1 1;  and then using an embedding technique [8] with an 
appropriate embedding dimension and the horizon of pred-
iction to obtain these matrices).

The method’s parameters are numbers K m∈{ }1 2, , ,  and 
γ ∈ ∞( )0;  which will be described later.

Main steps of the method are:
1. Subtract row mean from each row of the matrix X (i.e. 

make the set of its rows zero-mean):

x x x mij ij j= − = =, i , j n1 1  , (7)

where x x xn= [ ]1, ,  - row mean vector of the matrix X.
2 .  F i nd  t he  i n it i a l  ‘ s t at ic ’  we i g ht s  ve c t or 



w w in
n
in T(in) ( ) ( ), ,w=  1  using standard linear regression 

with an error function E w x yj
in

ij i
j

n

i

m

= ( ) −










==
∑∑ ( ) *

1

2

1

. It is imp-

ortant to omit a bias term - in practice, models without bias 
(given that training input vectors are zero-mean) usually 
have better prediction error on the whole data set.

3. To perform the next step we should introduce new 
error functions, one for each training case:

E w x y w wi ij ij i
j

n

ij j
in

j

n

= ( ) −








 + −( )

= =
∑ ∑α β* * * ( )

1

2
2

1

, (8)

where α  and β  are some constants, α β, ;∈ ∞( )0 ; 


w w wi i in

T= [ ]1, ,  – new, ‘dynamic’ weights vectors, one for 
each training case. We need to make the squared prediction 
error for the ith  training case small by choosing the approp-
riate weights



wi , and to keep these weights close to the static 
ones 



w in( )  in order to minimize the particular error function
Ei . The tradeoff between how much to reduce the error and 
how close should the weights 



wi  be to the initial ones is co-
ntrolled by the parameters α  and β ; if we set them to be α β>  
we want to improve the error more than to keep the weights 
and vice versa. To reduce the number of method’s parameters 

we can divide all error functions by β  and let γ
α
β

= ; now we 

can see the meaning of the second parameter γ : choosing γ > 1  
is equivalent to choosing α β>  and γ α β< ⇔ <1 . When the 
input values lie in the range −[ ]1 1;  the suitable choice of γ  is 
somewhere between 0.1 and 0.3.

4. Find the optimal set of weights 


wi
*  for each error func-

tion Ei  by solving the following linear system, obtained as a 
result of finding the partial derivatives w.r.t. corresponding 
weights and equating them to 0:

A w bi i i* * = , (9)

where

A

x x x x x

x x x x x

x x

i

i i i i in

i i i i in

in i

=

+
+

γ γ γ
γ γ γ

γ

1
2

1 2 1

2 1 2
2

2

1

1

1





   

 



γ

γ

γ

x

b

y x w

y x w

in

i

i i
in

i in n
in

2

1 1

1+





















=
+

+







,

( )

( )











=
















, .*

*

*



w

w

w
i

i

in

1

 (10)

Thus, the set of weights 


wi
*  that minimizes the error 

function Ei  can be found as


w A bi i i
* *= −1 .

5. Remember the matrix of discrete derivatives for each 
training case:

V

x x x x

x x x x

n n

m m mn mn

=
− −

− −















−

−

12 11 1 1 1

2 1 1



  



. (11)

6. The forecast for a new input vector 


x x xn

T= [ ]1, ,  is 
formed as follows:

a. Find the vector of derivatives


v x x x xn n= − −[ ]−2 1 1, , .
b. Find K  nearest neighbors of 



v  in the matrix V , and 
remember:
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– their indices in sorted order - from nearest to furthest: 
idx idx idxK= [ ]1, ,

– distances to neighbors 


 d d d d d dK K= [ ] ≤ ≤ ≤1 1 2, , ,

– total distance D di
i

K

=
=
∑

1

.

c. Find K  stored weights vectors for the corresponding 
training cases:

W

w w

w w

w
idx idx

idx n idx n

idx

K

K

=

















=
1

1

1

1 1,
*

,
*

,
*

,
*

*



  









widxK

*( ) . (12)

d. Find the weights vector that will be actually used for 
the prediction. To do this, we should average the found wei-
ghts vectors depending on the distance from 



v  to the vector 
of discrete derivatives for the corresponding training case. 

The averaging weights are calculated as


ω = 





d
D

d
D

K

T

, , 1 , 

i. e. the weights vector for the nearest neighbor gets the 
biggest weight.

e. Finally, the forecast is calculated as:

y W x
T= ( )* *


ω . (13)

To sum up, the method finds a separate weights vector 
for each training case and then calculates the forecast for 
new inputs by finding the weights for K  nearest training 
cases (nearest in the sense of Euclidean distance between 
the vectors of derivatives), weighting them based on the 
distance to produce a single set of weights and then applying 
these weights to the inputs. It is obvious that using this ap-
proach the weights ⇔ importance of the input variables will 
be different for different input vectors. Also, since each set 
of weights defines the corresponding forecasting model, we 
are not using a constant set of models – instead, we find the 
most appropriate set depending on the input. The parameter 
K  plays a ‘smoothing’ role - the bigger the K  the more we-
ights vectors will be averaged the closer to the weights of a 
linear regression the average will be.

When searching for the nearest neighbors, vectors of 
derivatives are used instead of original vectors because for 
the time series forecasting problem the dynamics (i.e. how 
values change over time) is usually much more important 
and representative than the exact values of the forecasted 
process – for other problems, where inputs are not the su-
ccessive points of some time series we should use original 
vectors.

The method is somewhat similar to Locally Linear Re-
gression (LLR) [9] and Bayesian Model Averaging (BMA) 
[10]: it finds some kind of a local model for each training 
case similar to LLR and averages multiple models for the 
given inputs just like in BMA. However, LLR loses global 
information (‘static’ weights of a linear regression) while 
building local regressions - as a result, these local models 
can overfit badly. And opposite to BMA, where the set of 
averaged models is constant and we average the models’ 
outputs, the proposed method selects models to average 
depending on the inputs and averages the models them-
selves, not their output (there is no difference in a linear 
case, but in general these two averaging methods are not 
equivalent).

5. Testing performance of the proposed method

To test the performance of the proposed method the set 
of 11 publicly available ([11, 12]) time series was used. Li-
near regression and GMDH were used for comparison. All 
methods shared the following parameters:

– time series embedding dimension ⇔ number of input 
variables n = 5

– horizon of prediction h = 2  (predicting the value 2 
time steps ahead)

– training set size to full data set size ratio r = 0 5.  (half 
of the cases were used for model training).

A bias term was omitted for both the LRDW and the 
linear regression; default parameters values of the specific 
GMDH implementation [13] were used; the method’s para-
meters were set to γ = 0 2.  and K = 1 .

Normalized squared error (NSE) given by the formulae 

E

F x x

y

n i
j

m

i
j

m=
−( )

=

=

∑

∑

( , , ) y1

2

1

2

1



 was used as a model performance 

indicator. It was calculated on the full data set. The obtained 
results are given in the Table 1.

Table 1

NSE of tested models on the full data set

Name of time series
Linear 

regression
LRDW GMDH

Australian electricity 
production 0.017662 0.019721 0.012685

CATS benchmark [14] 0.002894 0.002696 0.002901

Dollar to euro exchange rate 0.063802 0.05511 0.062086

Dollar to pound exchange rate 0.055874 0.050277 0.058154

Consumer price index (CPI) 5.50E-05 0.007696 2.22E-05

Spanish electric energy demand 0.019363 0.024104 0.017655

Spanish mean interest rates 0.055512 0.048002 0.053009

Spanish stock exchange index 0.002652 0.005721 0.002495

Sunspots per month 0.5811 0.45099 0.17865

US aviation shipments 0.20121 0.15927 0.13734

Winter NAO index 1.0566 0.98757 1.0009

Total error 2.0567 1.8112 1.5259

Short analysis of the obtained results:
– the LRDW has better NSE on most but not all time 

series – so we need to carefully choose its parameters, esp-
ecially γ ;

– the average improvement in error is about 12 % re-
lative to the NSE of a linear regression (and the biggest 
improvement is ≈ 22 3. % for the ‘Sunspots per month’ time 
series);

– in general, GMDH performs better than the  
LRDW – however, the approach we used to obtain LRDW 
from a linear regression can be easily applied to other foreca-
sting methods, including GMDH – and it can possibly boost 
their performance as well;

– there are several time series for which LRDW perfor-
med even better than GMDH.

The graphical example of the LRDW model producing 
better forecasts than the linear regression is given on the  
Fig. 5 (‘US aviation shipments’ time series).

As you can see, the forecast of a LRDW method is very 
similar to the one, obtained by linear regression, but for some 
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cases the proposed method gives much more accurate predic-
tions (the training cases were selected randomly).

6. Conclusion

The proposed method was tested on real 
data and its performance (measured using 
NSE criterion) is usually better than the pe-
rformance of the method it ‘originated’ from -  
linear regression. Hence, we believe that app-
lying the same approach to other methods, in-
cluding nonlinear ones like GMDH or neural 
networks can improve their performance also.

There are also possible improvements to 
the approach itself:

• instead of finding dynamic weights for 
each training case it is possible to find them 
for some clusters of training cases to improve 
the method’s runtime efficiency;

• the suitable choices for method’s para-
meters can possibly be determined from the 
training data – for example a value of the γ  
parameter can somehow depend on the ratio 
between the total magnitude of static weights 
(i.e. sum of their values) and the magnitude 
of an error for this training case (when using 
these static weights);

• instead of finding nearest neighbors and 
averaging the corresponding dynamic weights 
we can build a model to predict the weights 
values from the inputs values using any suita-
ble forecasting method.

Fig. 5. Forecasts, obtained by two different methods: solid line – original 
time series, dotted line – LRDW forecast, line with markers – linear 

regression forecast
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