3diticneno ma o6r;yum56ano douinvnicms 3a-
cmocyeanns poskaady Kapynena-Jloesa oeoxa-
HAbHOZ0 YCMANEHO20 30P06020 BUKIUKAHOZ0 NO-
menyiany 3 memoiro idenmuixauii inpopmamues-
HUX napamempié ma noodaivuwi0zo ix 3acmocy-
sanns y iHgopmauiliniii mexrHonoezii opmanvmo-
diaznocmuxu. Busnaueno onmumanvny xinvxicmo
inpopmamusHux xapaxmepucmux, aKi 00CMamHus0
nO6HO Xxapaxmepusyromo 00CAI0HCYEAHUU npoyec.
Bcmanosaeno zanexcuicmo midxc Kiavkicmio ingop-
MAMUHUX napamempis SUKIUKAHOZ0 NOMeEHUIANY
ma 4acmomor0 CmumMyaayii 30p06020 ananizamopa

Knrouosi cnoea: ycmanenuii 30poeuil suxauxa-
Hull nomenyias, JHIUHUL 6UNAOK0BUL NPOUEC, PO3-
xnad Kapynena-Jloeea
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Ocywecmenena u obocnosana uyenecoodpas-
Hocmb npumenenus pasaoxcenuss Kapynena-
Joesa 08yxkananvbHoz0 3pumenvH0z0 6bl36AHHO-
20 NOMEHYUUANA YCMOUMUBOZ0 COCMOSHUSL C UETbIO
udenmuurayuu unopmamuenvix napame-
mpoe u OanvHeluwezo UX NPUMEHEHUs 8 UHQOp-
MAUUOHHOUT MEXHON02UU 0PMATLMOOUAZHOCTUKU.
Onpedenerno onmumanvroe Koauwecmeo unpopma-
MUBHBLIX XAPAKMEPUCMUK, KOMOPble 00CMAMmoy-
HO NONIHO Xapaxmepusyrom uccaedyemvlii npoyecc.
Yemanosnena 3asucumocmo mesxncoy xoaunecmeom
UHDOPpMAMUBHBIX NAPAMEMPOB BbI36AHHO20 NOMEH -
UUANa U HaCMOMol CIMUMYNAUUU 3PUMENbHOZ0 AHA-
auzamopa

Knouesvie cnoea: 3pumenvHoiii 6bl36aHHbLL
nomeHyuan Ycmouuugo20 COCMOAHUS, JUHEUHBLU
cayuaiinslil npoyecc, pasnoscenus Kapynena-Jloesa

1. Introduction

There are situations in ophthalmology when standard
parametric methods (visual acuity test, perimetry, etc.) of
diagnostics are inexpedient and impossible to use. Such
situations occur, firstly, in the case of the visual analyzer
diagnostics of newborn and non-speaking children who are
unable to express themselves clearly; secondly, they appear if
there is some pathology in the visual activity related to both
optical and neural (sensory) disorders. A diagnostics method
using the visual evoked potential (VEP) does not require
the patient’s response, so it allows estimating the visual an-
alyzer activity in a complex: the peripheral organ — an eye,
visual pathways, and visual centers in the cortex.

The visual evoked potential (VEP) is one of the types of
the brain electric activity registered on the scalp above the
visual areas and caused by external stimuli (light flashes —
FVEP, pattern changes — PVEP, or changes in an image on
the monitor). At a low stimulation frequency (Fs<4 Hz), the
visual analyzer produces a transient VEP (TVEP), but at an
increased stimulation frequency (Fs>5 Hz), there appears a
steady-state VEP (SSVEP). In other words, at high stimu-
lation frequencies, the human visual system proceeds from
generating a TVEP to an SSVEP, thus producing responses
with the same frequency.
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In contrast to a transient VEP, the SSVEP character-
istics (phase, frequency, and period) are stable throughout
the whole research duration, and they are less exposed to
the impact of artifacts and noises [1]. Consequently, the
field of using the SSVEP is not limited to ophthalmological
problems (assessment of visual acuity, an injury of the brain
visual centers, optic neuritis, amblyopia, etc. [2]), but it is
used to solve problems of cognitive (assessment of visual
attention, working memory, and binocular vision [3]) and
clinical (schizophrenia, autism, epilepsy, depression, mi-
graine [4]) neurosciences, brain-computer interfaces [5],
and neuromarketing [6]. Research on the SSVEP to use
it further in the information technology of the ophthal-
mological diagnostics is an essential problem as its solving
contributes to detailed visual analyzer research and appro-
priate complex treatment.

2. Literature review and problem statement

Let us consider the mathematical models of the SSVEP
and the corresponding parameters that could be used as
informative for further diagnostics. A component model,
which is described in [1], represents the SSVEP as the
sum of three components: primary, secondary, and rhyth-




mic, obtained as a result of Fourier analysis. To evaluate
the diagnostic parameters, it is necessary to analyze each
component (frequency and phase) and to find reference
values and statistical confidence intervals, which is a really
time-consuming process.

A contrast response function is used by the authors of
[2] for amblyopia diagnostics. The maximum amplitude of
the evoked potentials of healthy people should be growing at
changing the contrast of the stimulation source of the visual
analyzer. In the case of a slight increase, an ophthalmologist
argues about certain pathology. The value of amplitude
changes is a diagnostic parameter, and an appropriate meth-
od is the comparison of a previous value with some standard-
ized one. It should be noted that there are visual pathologies
for which this method is not effective, for there is a high
probability of a false diagnosis.

Scientists use averaging of the signal realization sets
(a coherent signal accumulation), describing the analyzed
signal by an additive model [7]. The first component of this
model is a determined function that represents the VEP,
and the second component is a centered weakly stationary
process as a background electroencephalogram (EEG).
Several methods — GSA, SRM, and SDEM [7] — are used
to select the VEP on the EEG background. However, only
the first moment is studied in the analysis, and only the
amplitude-time characteristics of extremes (N75, P100,
and N145) are used for ophthalmologic diagnostics, which
is not enough.

The authors of [8] apply independent component analysis
for selecting the SSVEP. With such a component approach
to diagnosing, it is necessary to choose those components
that display the visual activity; that can be followed by their
further processing, and this procedure increases the compu-
tational complexity.

An autoregression model is applied to describe the
SSVEP in [9], and the visual analyzer can be diagnosed
with estimations of autoregression parameters. The com-
plexity of this model will increase when applying it to a
two-channel SSVEP, so scientist must necessarily take
into account the cyclical nature of the studied process for
parameter estimation.

The authors of [10] apply a discrete wavelet transform
to the SSVEP; the information parameters are appropriate
decomposition coefficients, and the classification method
is the support vector machine. It is important to choose
correctly and justify the basic function and the number of
the decomposition levels. An increase in the number of the
decomposition levels of the wavelet transform increases the
number of the informative parameters. This technique is
applied in brain-computer interfaces, but for ophthalmologic
diagnostics it is necessary to investigate the correlation
between the results of the wavelet decomposition and the
biophysical principle of generating the signal for further
results interpretation.

Thus, the primary important problem is to create a math-
ematical model that would take into account the simultane-
ous interaction between multiple sources of the brain activ-
ity, includes the cyclical properties and the stochasticity of
the SSVEP, reflects the mechanism of generating electrical
activity by individual neurons, and allows estimating the
informative features of the process.

Obtaining informative parameters on the basis of an ap-
proved model that takes into account the above enumerated
requirements is the main critical stage in the creation of

the information technology of ophthalmologic diagnostics,
which reflects the objective of this research.

3. The purpose and objectives of the study

The research purpose is the feature extraction of a
two-channel SSVEP for further ophthalmological diagnos-
tics, using a corresponding linear transformation based on a
mathematical model in the form of two-dimensional linear
periodic random process (LPRP).

To achieve this purpose, it is necessary to do the follow-
ing tasks:

— to justify the usage of the Karhunen-Loeve expansion
for the feature extraction of a two-channel SSVEP;

— to determine the optimal number of informative char-
acteristics that sufficiently characterize the investigated
process;

—to investigate the effect of a stochastic correlation
between the channels on the optimal number of informative
parameters.

4. Materials and a 2-channel steady-state VEP feature
extraction method

4. 1. The digital electroencephalograph specification
and the 2-channel SSVEP registration protocols

The SSVEP registration was performed by the electro-
encephalograph DX-NT32 (Kharkiv, Ukraine) with the fol-
lowing specifications: the sampling frequency — 512 Hz, the
signal quantization — 12 bits, the notch filter — 50 Hz, the
high-pass filter — 0.05-1 Hz, the input impedance — 20 MQ,
the phase noise reduction coefficient — 100 dB, the light
stimulation — three LED lamps with the ability to change
the stimulation frequency (1-30 Hz).

The research involved 20 participants (12 men and 8 wo-
men) aged 18-23 years (the average age was 20 years). Each
person of the subject group participated in two experiments
conformed to the ISCEV standard for clinical registration
of a VEP [11]. The international 10-20 system was used
to determine the location of scalp electrodes. Active elec-
trodes were placed in the positions Oy and O, whereas the
reference electrode was in the position F,. The experiments
were performed in a dimly lighted laboratory. The source of
the external visual stimulation consisted of three LED light
bulbs that simultaneously produced light flashes lasting
30 microseconds. The horizontal visual field was 140°. The
mean luminance was 3 cdxm™.

The first experiment comprised three trials with the cor-
responding stimulation frequencies of 6, 8, and 10 Hz, as sche-
matically shown in Fig. 1. The recording duration of each trial
was 120 sec, which was divided into four sessions: 10 seconds
of a resting part when the participant could look at the source
of stimulation without any response; 10 seconds of an adaptive
session when the source of stimulation produced light flash-
es at the selected frequencies; 10 seconds of a resting part;
90 seconds of an active session during which the SSVEP was
registered under the stimulation frequencies of 6, 8 or 10 Hz.

The second experiment differed from the first experi-
ment only since the electrodes activity changed during the
active session: for 45 seconds, the active electrode was Oy; for
the next 45 seconds, it was Os. In other words, there was no
simultaneous registration of the two-channel SSVEP.
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Fig. 1. A flowchart representation of the two-channel SSVEP protocol
(R — rest, AS — adaptation session, ACS — active session)

4. 2. Feature extraction of a SSVEP by the Karhunen-
Loeve expansion

In [12, 13], a mathematical model of the SSVEP is con-
structed and justified, taking into account all previously
described requirements of a two-dimensional linear periodic
random process (LPRP). The following information briefly
represents the basic provisions of the model.

Suppose the random process &(t), which reflects the visu-
al activity caused by a flash cyclic stimulation, is presented
in the form of a linear random process (LRP) [11]:

&)= [ p(rt)dm (1), o

where 1i(1), 1€ (—0, ) is a non-uniform generalized Pois-
son process for which P{r{(0)=0}=1; ¢(1, t) is the kernel of
the LRP, a nonrandom function that is presented by the
expression:

o(t,t)=e PO Isin(w (1) (t—-1)) U(t-1), 2

where U(s) is the Heaviside function; o(t) is a nonrandom
function that describes the coefficient of impulse damping;
B(7) is a nonrandom function that describes the impulse fre-
quency. It is assumed that only one active electrode placed
on the human scalp was used for the random process regis-
tration (one-channel record).

According to expression (1), a SSVEP is the sum of all
impulses (2) that are produced by neurons at consistent
time moments T,, neZ. Herewith, the random variable of
generating the process jumps 7;(T), T€ (—oo, ) characterizes
the impulses amplitude.

The authors of [12] use the LPRP to represent &(t),
having justified the periodic properties of the mathematical
model (1). The model takes into account the cyclic stimu-
lation, which is important for diagnostics by the SSVEP.
Suppose that the visual system of some object is exposed to
a cyclical stimulation with a certain frequency F or a corre-
sponding stimulation period T=1/F. Based on the conclusion
of [12], we claim that the mathematical expectation and the
covariance function of the investigated process (1) are T-pe-
riodic, namely:

EE(t)=Eg(t+T), Ry(t,,t,)=R.(t,+T,t,+T). 3)

Let us consider a case where the SSVEP is recorded by
two electrodes — Oy and O, (a two-channel record). The
corresponding random processes should be noted as &;(t)
and &(t), and the two-channel resulting process will be rep-
resented as a two-dimensional model:

£.(0)
2(t)= . 4
(U(ij @)

Based on the optic tract anatomy, we argue that a signal
registered at the position of the projection of the left visu-

We then state the generating pro-
cess vector as follows:

n(r)=(n1m]. (5)

7, (T)

and the matrix of the LPRP kernels of the 2-dimensional
model elements (4) will be:

0,,(1T,t) (P12(Tyt)}

6
0, (T,)  @,(T,t) ®)

O(1,t)= (

Based on expressions (5) and (6), the two-dimensional
stochastic process (4) is represented in the integral form:

E(t)= [ @(z,t)dII(x). ()

Using the modern theories of electrogenesis, the cyclos-
tationarity theorems given in [14], the periodic properties
of the generating process increments and the kernels of the
LRP (1), the authors of [13] justified the T-periodicity of the
mathematical expectation and the covariance function of the
2-dimensional process (7). As a result, the 2-channel SSVEP
will be described with the 2-dimesional mathematical model
that is presented by (7).

Since the information technology of diagnostics uses
a signal at discrete time, the random process (1) should be
presented as an L-periodic linear random sequence:

&t = z (Pl'.tnt’ te Z’ (8)

T=—c0

where @r=@+1+1 is a L-periodic nonrandom function, the
kernel of the stochastic sequence, 1, is white noise, and L=T/
At, At is the sampling rate.

In a general case, (8) is a linear transformation of the
white noise sequence, which can be represented by the linear
operator:

Z=Adnel, (€)]

where A([-[=A¢[].

Since the Karhunen-Loeve expansion/transform (KLE
or KLT) is sufficiently simple to use, its mathematical ap-
paratus is thoroughly investigated [15, 16] and widely used.
Therefore, A; was selected from the large number of linear
operators to perform the specified task. Let us consider the
features of the KLE performance for the 2-channel SSVEP.
It should be noted that according to [17] representation of
the L-periodic random cyclostationary sequence requires the
KLE only within the set [0,L—1]:

& =Y n.0.(t), (10)
k=0

where & is the centered linear L-periodic random sequence,
@k(t) is the real functions within the set [0,L.—1], which are

orthogonal in the space R¥, and n is pairwise uncorrelated
random variables with the variance Var(ny)=ly, where Ay is




the covariance matrix eigenvalues Re(ty,t2) of the investigat-
ed sequence (8).

It should be noted that the KLE is completely deter-
mined by the covariance matrix of the sequence because the
orthogonal basis consists of its eigenvectors and associated
eigenvalues.

Because the two active electrodes in the positions Oy
and O, were active during the investigated process record-
ing, their appropriate realizations will be noted as X; and
Y,, and their mathematical representation will be the same
as in (8). Taking into account the interaction between the
two channels, we introduce a random sequence of the fol-
lowing type:

0<t<L-1,

X,
Z,= 11
Y, L<t<2L-1.

The problem of the KL expansion of random sequence
(11) becomes the problem of estimating its covariance ma-
trix, which is represented in the following form:

(:ov()iit‘,)i(t2 ), 0<t,t,<L-1
cov(X,,Y, ), 0<t <L-1<t,<2L-1,

RE, =f " (12)
cov(X,,Y, ;), 0<t,<L-1<t,<2L-1,

cov(Y, Y, ) L-1<t,,t,<2L-1,

where X,,Y, are centered linear L-periodic random se-
quences;

cov()i(tl , th ), cov(\?tl , \?tz )

are corresponding autocovariance functions of the sequences
X and Y;

cov(X,, Y, )=cov(Y,,X,)

are corresponding cross-covariance functions that charac-
terize the interaction between the sequences X; and Y.

A simple way of implementing the mathematical ex-
pectation and the covariance function estimation is a
method of @-series [18], where ¢-series is a set of sequence
samples arranged in time (X; or Y;) and taken through a
period of L:

Xy =X, 0sk<L—1,1€Z (13)

@-series are stationary and stationary related sequences;
therefore, the probable characteristics can be assessed by the
already verified methods of statistical analysis of stationary
sequences. The mathematical expectation estimates of ¢-se-
ries reflect the mathematical expectation estimates of the
L-periodic sequence, taken from one period:

m-1

X, =12ku, k €[0,L-1], m= (14)
m =

n
T
where n is the volume of the investigated sequence.

The centered linear L-periodic random sequence X,
(or'Y,) is presented in the matrix form X (or Y), each row of
which represents centered @-series:

Xgo — X Xo1 ~ X Xom-1 ~ X0
— X,y —X X, —X X -X
10 1 11 1 1,m—1 1
X= . 15)
X0 =X X — X X otmt — X

Then the L-periodic random sequence would be repre-
sented in the matrix form as a concatenation of the centered

matrices of the XL,Y sequences:

(16)

The next step is to construct a square matrix of the size
(2Lx2L) in which the elements are asymptotically unbiased
estimates and consistent estimates of the covariance matrix
samples (12):

R:i(szT). 17)
m
The final step of the KLE is to get a set of eigenvectors

{01, ¢2...., 9} and the corresponding eigenvalues {Aq, Ag...., Ay}
of the covariance matrix R.

4. 3. The estimation of the optimal number of the
SSVEP informative features

We will use the following statistics [17] for choosing the
number of informative features that sufficiently characterize
the investigated process:

k

S
== 18
G trR s

where e reflects the percentage of the initial sequence that
is made by the first k elements of the expansion, and trR is
the total sequence energy as a trace of the covariance matrix.

The statistics is the results of the KLE properties: the
investigated sequence variance, the estimations of which are
displayed on the main diagonal of the covariance matrix,
is the sum of its eigenvalues. The optimal number of the
informative features k would be defined by the inequality
e >0.95.

Kaiser’s rule will also be used to estimate the number of
the informative features:

trR

A, > .
k7oL

(19)

According to (19), the informative parameters will be
eigenvectors with corresponding eigenvalues whose values
are greater than the power of the initial sequence.

5. The KLE results of the two-channel SSVEP at
different stimulation frequencies

The stepwise results of the KLE to 2-channel SSVEP
obtained in the first experiment at a stimulation frequency
of 10 Hz are presented below.

The first stage is a sampled signal preprocessing, which
means centering and estimation of the mathematical expec-



tation of each single-channel realization. Fig. 2, a, b show the
estimation of the mathematical expectation with the param-
eters L=50, m=900, and, k €[1,50] for the @-series method.

5

Eork
Eoak

Fig. 2. Estimations of SSVEP mathematical expectation:
a — registered on the position Oy; b — registered on
the position O,

The main diagonal of the covariance matrix with the
dimensions of (100x100) reflects the variance estimations of
each @-series, as shown in Fig. 3; their total sum is the full
energy of the investigated 2-channel SSVEP.
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Fig. 3. Variance estimation of the 2-channel SSVEP
(at k=[1,50] is SSVEP variance estimation registered on
the position Oq and at k=[51,100] on the position O,)

Based on the calculated estimates of the covariance ma-
trix, the KLE was implemented and a set of eigenvectors and
eigenvalues was obtained for the matrix R. Fig. 4 shows the
first two eigenvectors — @y and @2 (k=[1,100]), Which repre-
sent the highest percentage of the signal energy.

Based on the considered array of eigenvalues {A, As....,
Ak, k=[1,100], as shown in Fig.5, the estimation of the
optimal number of the informative features was calculated
according to expressions (18) and (19). It should be noted
that Fig.5 shows the first 25 eigenvalues because others
have insignificant values. The dot-dashed line represents
the SSVEP signal power and demonstrates Kaiser’s rule,
according to which the informative parameters will be only
those eigenvectors (in this case, 15) whose corresponding
eigenvalues are above the specified line.
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Fig. 4. The eigenvectors of the covariance matrix R of the
2-channel SSVEP: a — the first eigenvector reflects 42 % of
the process energy; b — the second eigenvector reflects
17 % of the process energy
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Fig. 5. The first 25 eigenvalues of the covariance matrix R of
the 2-channel SSVEP

Fig. 5 shows that the informative features are eigenvec-
tors. These eigenvectors correspond to the first few highest
eigenvalues that reflect the researched process fully enough.

Table 1 below demonstrates the average values of the
eigenvectors that are used for the diagnostics as informative.
They were obtained by the statistics of (18) and (19) for the
two-channel SSVEP and recorded during the first experi-
ment for each of the 20 participants at different stimulation
frequencies.

Table1

The correspondence between the average optimal number
of the informative features and the stimulation frequency
(from the first experiment, calculated for the 2-channel
registration)

o The number of the informative features
Statistics
6 Hz 8 Hz 10 Hz
Kaiser’s rule 20 16 14
€>0.95 18 15 12

Table 2 demonstrates the average values of the selected
eigenvectors that were obtained by the statistics of (18)
and (19) for the SSVEP; they were registered during the
first experiment for each of the 20 participants at different



stimulation frequencies and calculated separately for each
channel.

Table 2

The correspondence between the average optimal number

of the informative features and the stimulation frequency

(from the first experiment, calculated for each separately
registered channel)

The number of the informative features
6 Hz 8 Hz 10 Hz
Oy | Oy | Total| Oy | Oy | Total | Oy | Oy | Total
Kaiser’srule | 10 | 10 | 20 8 8 16 77 14
€>0.95 10 | 11| 21 8 9 17 718 15

Statistics

Table 3 demonstrates the average values of the selected
eigenvectors that were obtained by the statistics of (18) and
(19) for the SSVEP; they were registered during the second
experiment and calculated for each of the 20 participants.

Table 3

The correspondence between the average optimal number
of the informative features and the stimulation frequency
(from the second experiment, calculated for each separately
registered)

The number of the informative features
6 Hz 8 Hz 10 Hz
Oy | Oy | Total | Oy | Oy | Total | Oy | Oy | Total
Kaiser’'stule | 10 | 10 | 20 | 8 | 8 16 717 14
e>0.95 10 | 11| 21 8| 8 16 718 15

Statistics

The results were calculated separately for each chan-
nel, and the corresponding values are the following: L=25,
m=450, and ke[1,25]. It should be noted that the results
presented in Table 2 and Table 3 are almost identical.

6. Discussion of the KLE results of the 2-channel SSVEP
at different stimulation frequencies

An optimal number of informative parameters were
evaluated by using two statistics, which allowed comparing
them and determining the most appropriate statistics for
the researched objectives. According to Fig. 5, the optimal
number of the informative parameters of the 2-channel
SSVEP at a stimulation frequency of 10 Hz is equal 14 or
equal to the number of eigenvalues that were registered and
showed below the dotted line. This approach is based on the
assumption that the information component of the signal is
of high amplitude and much smaller size, but the noise is of
small amplitude and a big size. This assumption is not always
true, which is a disadvantage of Kaiser’s rule.

The statistic estimation on the basis of the percentage
of the signal energy that constitutes the energy of the
first k components also has its disadvantage: namely, the
optimal number of the informative parameters will enlarge
by increasing the percentage of the energy; therefore, it is
necessary to choose the right value of ex, which would be
the most appropriate value. In the considered case, e,>0.95
and the number of the informative parameters is 12, which
is fewer than by applying Kaiser’s rule. The author of [19]
also states the fact that Kaiser’s rule for data of large

dimensions underestimates the number of informative pa-
rameters.

Table 1 shows an inverse correlation between the stim-
ulation frequency and the number of eigenvectors of the
covariance matrix of the 2-channel SSVEP. The reason for
this is a change in the duration of the period L. For example,
the dimension of the covariance matrix of the SSVEP at a
stimulation frequency of 10 Hz is equal to (100x100), and
for the SSVEP at a stimulation frequency of 6 Hz, it is equal
to (160x160). Consequently, the number of eigenvalues and
vectors increases. It should also be noted that as the value
of ey increases the number of the informative parameters
increases, too.

Let us consider Tables 1-3 and explore the examples at
a stimulation frequency of 10 Hz to substantiate the ex-
pediency of using the optimal number of visual signals
that are recorded simultaneously in the positions O and
O,. Table 1 shows the average optimal value of the se-
lected number of eigenvectors that was obtained by two
statistics based on the Karhunen-Loeve expansion of the
2-channel SSVEP covariance matrix that includes infor-
mation about interference between the channels. At the
frequency of 10 Hz, it is enough to select 14 (according
to Kaiser’s rule) and 12 (according to the energy percent-
age) informative parameters. It should be noted that in
this case it is necessary to present a two-channel signal
in the form of (11) before performing the estimation of
the covariance matrix elements and only then implement
the calculation, which constitutes a complexity in the
processing.

Calculations of the average optimal number of informa-
tive parameters for each signal registered simultaneously in
the positions Oy and O, were performed for comparison. The
Karhunen-Loeve expansion was implemented on the basis
of two separate covariance matrices. According to the data
from Table 2, at a frequency of 10 Hz, it is enough to select 15
(according to Kaiser’s rule) and 16 (according to the energy
percentage) informative parameters. It should be noted that
the number of parameters is higher as compared with the
first approach, namely, it is 15>14 and 16>12, which means
that some informative parameters duplicate the primary use-
ful information, confirming the fact of a correlation between
the registration channels [13]. This should be taken into
account in diagnostics.

Calculations of the average optimal number of infor-
mative parameters were made for each signal registered
simultaneously in the positions Oy and Os; the results are
presented in Table 3. The data in Tables 2 and 3 are almost
identical. It confirms that using the KLE of a two-channel
SSVEP based on the covariance matrix of each channel
separately produces results that are equal to those that are
obtained by using the KLE of a one-channel SSVEP with
the data being recorded non-simultaneously, without any
stochastic correlation between the channels.

7. Conclusions

1. Based on a mathematic model of the steady-state VEP
as a two-dimensional linear periodic random process, it is
justified to use its Karhunen-Loeve expansion for the feature
extraction: the eigenvalues and eigenvectors of the covari-
ance matrix of a random vector formed by a concatenation of



the vectors of the observed SSVEP data that are simultane-
ously recorded from two separate channels.

2. Taking into account the statistical estimations of the
informative features and the stochastic cyclostationarity of
the signal, it has been found that the first 18 components
(at a stimulation frequency of 6 Hz) of the Karhunen-Loeve
expansion reflect more than 95 % of the signal energy (15
components at a simulation frequency of 8 Hz and 12 com-

ponents at a stimulation frequency of 10 Hz). It suggests
using the estimated number of the appropriate informative
features in actual diagnostics.

3.1t has been proved that the stochastic dependence
between signals registered from different channels and ana-
lyzed together allows using fewer informative features (cho-
sen according to the energy criterion) than when the signals
from the channels are analyzed independently.
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