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У даній роботі розглядається задача оптимальної 
упаковки заданого набору еліпсоїдів у опуклому кон
тейнері мінімального об’єму. Еліпсоїди задані розмі
рами напівосей і параметрами розміщення у локаль
ній системі координат та допускають неперервні 
обертання і трансляції. У якості контейнера може 
виступати кубоїд (прямокутний паралелепіпед), 
циліндр, куля, еліпсоїд або опуклий багатогранник. 
Для аналітичного опису відношень неперетену еліпсо
їдів застосовуються квазіphiфункції. Для моделю
вання відношень включення використовуються квазі 
phiфункції або phiфункції залежно від форми кон
тейнеру. Використовуючи відповідні засоби моделю
вання будується математична модель у вигляді зада
чі нелінійного програмування. 

Розроблено стратегію розв’язання, в основі якої 
лежить метод мультистарту. Пропонується швид
кий алгоритм генерації початкових точок з області 
допустимих розв’язків та спеціальна оптимізаційна 
процедура, що зводить початкову задачу великої роз
мірності O(n2) зі великою кількістю нелінійних нерів
ностей до послідовності підзадач нелінійного програ
мування з меншою розмірністю O(n) та з меншою 
кількістю нелінійних нерівностей. 

Оптимізаційна процедура дозволяє значно зменши
ти (від 10 % до 90 % в залежності від розмірності за
дачі) обчислювальні ресурси, такі як час та пам’ять.  
В залежності від форми контейнера, обмежень на 
орієнтацію еліпсоїдів (можливість безперервних по 
воротів, фіксована орієнтація) та особливостей мет 
ричних характеристик еліпсоїдів в результаті розв’я
зання задачі отримані локальнооптимальні або гарні 
допустимі розв’язки. В роботі проведені чисельні екс
перименти для різних форм контейнерів (включаючи 
циліндр, кубоїд, кулю, еліпсоїд)
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1. Introduction

The problems that belong to the class of NP-hard [1] 
have a wide range of scientific and practical applications. 
For example, in modern biology, medicine, materials science, 
in thermodynamics when fluids pass into a crystalline form, 
in nanotechnologies, chemical industry, mechanical engi-
neering, etc. As well as in molecular dynamics for growing 
crystals, when modeling the structure of liquids, crystals and 
glass, while modeling the motion and pressing of loose sub-
stances. At present, interest in the search for effective solu-
tions for placement problems of ellipsoids is growing rapidly. 
This is due to a large number of practical applications and the 
extraordinary complexity of the methods used to solve many 
of them. Here are several examples of practical applications.

3D modeling of granulated structures and substances 
whose particles have a shape of ellipsoids: the family of 
software products to enable visual and quantitative analysis 
of structural characteristics, such as spatial density, spatial 

porosity, spatial distribution, grain grade, and porosity of 
structure. 

Robotics: an arm and other elements of the robot are 
approximated by ellipsoids, so there is a task to formalize the 
relation between the overlapping of ellipsoids and the over-
lapping of free-form objects. 

The task that is associated with the arrangement of chro-
mosomes in the nuclei of human cells also requires solving 
the problems on packing the ellipsoids.

Nuclear medicine: in the production of medical prepara-
tions that are used during cancer therapy, the optimization 
problem is solved on packing the two kinds of nanoparticles 
for the efficient use of power of the accelerator’s beam. One of 
the types of nanoparticles could be approximated by ellipsoids. 

In each of the above applications, different forms of con-
tainers are considered while ellipsoids have an arbitrary orien-
tation. Given the practical importance of the optimization 
problem on packing the ellipsoids, it appears relevant to de-
velop effective methods to solve it by using the modern NLP 
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solvers. Employing them will make it possible to obtain the 
feasible and  local optimal solutions within a reasonable time. 
The development of such methods is impossible without the 
construction of mathematical models in the form of nonlinear 
programming problems. In turn, construction of the models 
is based on the further development of constructive means 
to model the non-overlapping of ellipsoids and the belonging 
of ellipsoids to the convex container of an arbitrary special 
shape with respect to translations and rotations of ellipsoids.

2. Literature review and problem statement

Paper [2] reported a precise and efficient algorithm to 
detect continuous collisions between two movable ellipsoids. 
First, the authors conducted a highly optimized research into 
collision of two stationary ellipsoids, the base of which is the 
algebraic condition that is described in terms of the signs of 
roots of the characteristic equation of two ellipsoids. Next, 
the work describes obtaining a time-dependent characteristic 
equation for two movable ellipsoids, which makes it possible to 
construct a real-time algorithm for computing the time inter-
vals in which the two movable ellipsoids collide. Several prac-
tical examples demonstrate the effectiveness of the proposed 
approach. This study gave impetus to the development of the 
modeling of arranging the ellipsoids, thereby showing that it is  
possible to analytically investigate the collision of ellipsoids. 
However, the work considers the model that makes it possible 
to examine the interaction between two ellipsoids only.

Paper [3] addresses the problem on packing the ellipsoids 
of various sizes and types into an elliptical container. The 
problem implies the minimization of the measure of the total 
overlap of ellipsoids from a given set, located inside the preset 
elliptic container. A special feature of this work is that the 
optimization problem is solved for a container that has the 
shape of an ellipsoid. However, the problem did not consider 
the means that would provide for an analytical description of 
the non-overlapping between ellipsoids.

The density of a three-dimensional packing of ellipsoids 
is analyzed in [4]. Experimentally, and using the new simula-
tion algorithm, the authors showed that the random packing 
of ellipsoids can be quite dense up to packing fraction from 
j = 0.68 to 0.71 to spheroids with a ratio of sides close to the 
M&M’s candies, and even approach j » 0 74.  for ellipsoids 
with a different ratio of sides. The authors suggest that the 
higher density is directly connected to the larger number 
of degrees of freedom and, accordingly, to more contacts 
between particles required for the mechanical stabilization 
of packing. However, when modeling, ellipsoids were not 
confined to a container, which is why the optimization 
procedure was not used in the work. In addition to [4], the 
density of packing the ellipsoids is analyzed in many studies, 
example [5, 6] which makes it a relevant task to develop con-
structive means of mathematical and computer modelling of 
the ratio of the non-overlapping of ellipsoids.

Paper [7] addresses the problem of packing ellipsoids in  
a rectangular container of minimum volume. The author pro-
poses a non-convex NLP model, based only on mathematical 
approaches to describe the rotation and motion of ellipsoids. 
An assumption is made on that the elements of the rotation 
matrix are variable. In order to make sure that the ellipsoids 
do not overlap with each other, the separating hyperplanes 
are constructed. Using the global solvers available in GAMS, 
the authors obtained feasible solutions for packing the ellip-

soids. However, only one type of container was considered. 
The problematic part of a given work is the fact that the 
number of additional variables in the model is quadratic in 
relation to the number of ellipsoids.

Study [8] reports continuous and differentiated models 
of nonlinear programming and algorithms for packing the 
ellipsoids in n-dimensional space. Two different models were 
proposed to constraint the non-overlapping of ellipsoids, as 
well as models for the inclusion of ellipsoids into half-spaces. 
The strategy of a multistart is combined with software tools 
to find the local solutions to nonlinear programming prob-
lems for two kinds of containers. 

However, the issue on the development of means of ma-
thematical and computer modeling to optimize the packing of 
ellipsoids that allow continuous rotations in arbitrary convex 
containers over feasible time remains open. Thus, it is a rele-
vant task to construct NLP models and to develop optimiza-
tion algorithms, linear relative to the number of ellipsoids that 
needs to be arranged.

The problem on packing the ellipsoids is considered in 
the following statement. 

Let Ω Ω= ( )p  be a convex container with variable di-
mensions p, 

Ω Ψ= ∈ ³{( , , , ) : ( , , , ) },x y z p R x y z p3 0

assigned in the global coordinate system OXYZ where 
Ψs x y z p( , , , ) is the differentiable function s n= 1,..., .Ω  Par-
ticularly, the following types of containers (Fig. 1) are con-
sidered: 

– cuboid:
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of variable dimensions l, w and h, p = (l, w, h); 
– sphere:
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with a variable radius r, p r= ( );
– cylinder:
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with a radius of λr and a height of λh where λ is the variable 
coefficient of homothety, p = (λ), subject to for original con-
tainer λ = 1; 

– ellipsoid:
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with variable sizes of semi-axes λa, λb, λc, p = (λ), subject to 
for original container λ = 1; 

– convex polyhedron with a variable coefficient of ho-
mothety λ:
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Remark. Each metrical characteristic Ω  can be variable by 
itself, that is, r and h for a cylinder, or a, b, c – for an ellipsoid.
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Container Ω has fixed pacement parameters ( , , )0 0 0  in the 
global coordinate system. 

Each ellipsoid Ei , i I nn∈ = { ,..., },1  assigned by its semi- 
axes ai , bi , ci and the variable vector of pacement parameters 
u vi i i= ( , )θ  in the local coordinate system, where v x y zi i i i= ( , ),  
is the vector of translation, M( )θ  is the matrix of rotation, 
takes the form:

and θ θ θ θi i i i= ( , , )1 2 3  is the vector of rotation parameters where 
θi

1, θi
2, θi

3 are the Euler’s angles.

3. The aim and objectives of the study

The aim of this study is to construct a mathematical 
model and develop an effective method for solving the 
problem on packing the ellipsoids into a convex container 
of minimum volume. That would make it possible to build 
precise models when modeling the arrangement of ellipsoids, 
to obtain locally optimal or good feasible solutions over  
a reasonable time.

To accomplish the aim, the following tasks have been set:
– to develop constructive means of mathematical mo-

deling and computer simulation for the analytical description 
of containment constraint and non-overlapping that occur 
between objects in the problems on packing the ellipsoids 
into a convex container;

– to construct a mathematical model in the form of a non-
linear programming problem;

– to develop a method for optimizing the packing of el-
lipsoids using the procedure of decomposition, which makes 
it possible to significantly reduce the cost of computing 
resources required to search for feasible and locally optimal 
solutions.

4. Analytical description of the constraints  
for arrangement

This chapter describes the procedure of mathematical 
modeling of arrangement constraints, which are found in the 
problem on packing the ellipsoids: 

– constraints for non-overlapping:

int ( ) int ( ) ,E u E ui i j j = ∅  i j In< ∈ ,

– containment constraints:

E u E ui i i i( ) int ( ) ,*⊂ ⇔ = ∅Ω Ω  i In∈ .

In order to describe pacement constraints in analytical 
form, we used the method of phi-functions [9]. We introduce 
the phi-functions to model the containment constraints, and 
quasi-phi-functions [10] to model constraints for non-over-
lapping.

4. 1. Modeling the containment 
constraints

In this paper, in order to describe 
a constraint for inclusion:

E u E ui i i i( ) int ( ) ,*⊂ ⇔ = ∅Ω Ω  

we propose an approach related to the construction of the 
phi-function for the object that approximates an ellipsoid 
with the predefined precision. We have used two types of 
approximations: 

– approximation of each ellipsoid Ei  by a convex polyhe-
dron Ki , assigned by its vertices pj

i , j mi= 1,...., , whose values 
are unchanged in the local coordinate system of ellipsoid Ei ;

– approximation of each ellipsoid Ei by spheres Ski [11],

�
∪E u S u ui i i

k

k

n

i i
k

i

( ) ,= +( )
=1

 

assigned by translation vectors vsi  and radii ri , whose values 
are fixed in the local coordinate system of ellipsoid Ei . 

We denote the ellipsoid approximated by spheres as 


E ui i( ), 
and the one approximated by a convex polyhedron as E ui i( ). 

Phi-function 


E ui i( ) and Ω Ω* \ int= R3  can be represen-
ted in the form

Φ Φ Φ( , ) min ( , ),..., ( , ) ,u p u p u pi i n ii
= { }1

where Φk iu p( , ) is the phi-function for Ski  and Ω*.
Specifically, we employ the following phi-functions for 

the constraints on inclusion. 
Under condition of applying the approximation of each 

ellipsoid Ei  by a convex polyhedron, depending on the shape 
of a container, we use such phi-functions as:

Phi-function for a convex polyhedron K ui i( ) and object 
S S* / int := 3

Φ ΨK
i i k

i
i i

i u r u r p u r k mS*

( , ) ( , ) min ( ( ), ), ,..., ,= = ={ }j 1

j( ( ), ) ( ) ( ) ( ) .p u r r p u p u p uk
i

i kx
i

i ky
i

i kz
i

i= ( ) − ( ) − ( ) − ( )2 2 2 2

Phi-function for a convex polyhedron K ui i( ) and object 
C C* / int := 3

Φ ΨK
i s i

i u u sC*

( , ) min ( , ), , , ,λ λ= ={ }1 2 3

Ψs i s k
i

i iu p u r k m( , ) min ( ( ), ), ,..., ,λ j= ={ }1

Fig.	1.	Types	of	containers
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j λ λ1

2 2 2
( ( ), ) ( ) ( ) ,p u r p u p uk

i
i xk

i
i yk

i
i= ( ) − ( ) − ( )

j λ λ2( ( ), ) ( ) ,p u p u hk
i

i zk
i

i= − +  

j λ λ3( ( ), ) ( ) .p u p u hk
i

i zk
i

i= +

Phi-function for a convex polyhedron K ui i( ) and object 
B B* / int := 3

Φ ΨK
i s i

i u l h w u l h w sB*

( , , , ) min ( , , , ), ,..., ,= ={ }1 6

Ψs i k
i
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Phi-function for a convex polyhedron K ui i( ) and object 
E E* / int := 3

Φ ΨK
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Under condition of applying the approximation of each 
ellipsoid Ei  by spheres, depending on the shape of a container, 
we use such the following phi-functions.
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Phi-function for object 


E ui i( ) and object S S* / int := 3

Φ Ψ
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Phi-function for ellipsoid E ui i( ) and object C C* / int := 3

ΦE C
i i i

i u r h u u
*

( , , ) min ( ), ( ) ,= { }ψ ψ1 2

ψ1 1 1( ) min , ,u z a h z ai i i i i= − − −{ }  

ψ2
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E
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*

*j j j= −( ) + −
2

2
2 2

a Ri
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a b a bi i i i i1
2 2 2 2 2= + −( ) ( )sin ,θ  b bi i1 = ,  

a b a bi i i i i2
2 2 2 2 2= + −( ) ( )cos ,θ  b bi i2 = ,

where ellipse Ei1 with semi-axes ( , )a bi i1 1  can be obtained as a 
projection of ellipsoid Ei onto rectangle Ω1, which belong to 
the plane parallel to OZ; ellipse Ei2 with semi-axes ( , )a bi i2 2  can 
be obtained as a projection of ellipsoid Ei onto XOY (Fig. 2). To 
determine phi-function Φ ΩE u2 2

*

( ) we apply affine transforms.

Ω2

HEi1

2ai1

Ei

Ω1

Ei2

Fig.	2.	Ellipses	Ei1	and	Ei 2

Phi-function for object 


E ui i( )  and object C C* / int := 3

Φ Φ
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i k
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iu r h z u h( , , ) ( ) .= +

Phi-function for ellipsoid E ui i( )  and object B B* / int := 3

ΦE
i i i

i u l h w u uB*

( , , , ) min ( ), ( ) ,= { }j j1 2

j1 1 1( ) min , ,u z a h z ai i i i i= − − −{ }

j θ θ2
1 22( ) ( , , , )

*

u x yi
E R

i i i i
i= Φ

E a b a b a bi i i i i i i i1 1 1 1
2 2 2 2 1( , ) : sin ,= + −( ) ( )θ  b bi i1 = ,

E a b a b a bi i i i i i i i2 2 2 2
2 2 2 2 1( , ) : cos ,= + −( ) ( )θ

where ellipse Ei1 with semi-axes ( , )a bi i1 1  can be obtained as  
a projection of ellipsoid Ei  onto rectangle Ω1, which belong to 
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the plane parallel to OZ; ellipse Ei2 with semi-axes ( , )a b2 2  can 
be obtained as a projection of ellipsoid Ei onto XOY, ΦE Ri 2

*

 is  
the phi-function for ellipse Ei2  with location parameters 
( , , )x y θ2  and Ω Ω2

2
2

* \ int ,=   where Ω2 is a rectangle (Fig. 3).

Ei

Ω2

H

Ei2

Ei1

h

Ω1

Fig.	3.	Phi-function	for	ellipsoid	and	cuboid

Phi-function for object 


E ui i( ) and object B B* / int := 3
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Phi-function for object 


E ui i( ) and object K K* / int := 3
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4. 2. Modeling the constraints for non-overlapping
First, we shall consider a quasi-phi-function for a pair  

of ellipsoids.
To describe constraints for non-overlapping, that is, 

int ( ) int ( ) ,E u E ui i j j = ∅

we shall use a quasi-phi-function. 
Let E ui i( ) and E uj j( ) be two spheroids (ellipsoids of 

revolution). 
A quasi-phi-function for E ui i( ) and E uj j( ) can be repre-

sented in the following form:
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Thus, the constraint for non-overlapping takes the form 
′ ′ ³Φ ij i j iju u u( , , ) ,0  where ′Φ ij is the quasi-phi-function for sphe-

roids (ellipsoids of revolution) E ui i( ) and E uj j( ), represented 
in (1). Here we use the important property of a quasi- 
phi-function: if ′ ′ ³Φ ij i j iju u u( , , ) 0  for some ′uij ,  then:

int ( ) int ( )E u E ui i j j = ∅  

(more detailed information is provided in paper [10]).

5. Mathematical model of the problem  
on the optimal packing of ellipsoids

The vector of all variables u R∈ σ  can be described in the 
following way:

u p u u un= ( , , ,..., , ),1 2 τ  

where p is the vector of variable metric characteristics of 
convex container Ω, and u vi i i= ( , )θ  is the vector of place-
ment parameters of ellipsoid Ei , i In∈ , where v x y zi i i i= ( , , ), 
θ θ θ θi i i i= ( , , ).1 2 3  Vector τ = ′ < ∈( , )u i j Iij n  is the vector of ad-
ditional variables (for our quasi-phi-function), where ′uij

 is 
defined in (1). 

The mathematical model of the basic problem on packing 
can now be represented in the following form:

min ( ),
u W R

F u
∈ ⊂ σ

 (2)

W u R u u u u i j Iij i j ij i i n= ∈ ′ ′ ³ ³ < ∈{ }σ : ( , , ) , ( ) , ,Φ Φ0 0  (3)

where F u( )  is the volume Ω or one of the metric characteris-
tics of Ω, ′Φ E Ei j  is the quasi-phi-function (1), determined for  
a pair of ellipsoids Ei  and E j , which ensures that the con-
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straint for the non-overlapping is met, Φ i is the phi-function 
for objects Ei (



Ei ) and Ω*, which is used for meeting the con-
tainment constraint.

6. A solving algorithm

The strategy of a multistart includes the following stages: 
Stage 1. Generate a set { }ς0  of vectors ς0 0

1
0 0= ( , ,..., )p u un  

with the feasible placement parameters ( ,..., )u un1
0 0  of ellip-

soids, arranged in container Ω0 with dimensions ( )p0  for 
problem (2), (3). To derive a feasible solution, there are dif-
ferent methods. We use an intuitive and fast algorithm. 

Stage 2. Starting at each point of the set { },ς0  obtained at 
stage 1, we search for the local extrema for the objective func-
tion F(u) and problem (2), (3). To derive a local extremum 
to problem (2), (3), there is a compaction algorithm for the 
ellipsoids that allow rotation. 

Stage 3. We choose the best local extremum from those 
derived at stage 2 as a solution to problem (2), (3).

6. 1. Search algorithm for feasible placement parame-
ters (FPPA_E)

To find the vector of feasible parameters for arranging 
the ellipsoids, we used a modification of the FPPA algorithm, 
described in [12] for the problem on packing the polyhedra 
and based on the homothetic transformations of objects. The 
algorithm includes the following stages (Fig. 4).

Fig.	4.	Illustration	of	the	optimization	procedure	FPPA_E		
to	search	for	feasible	parameters	of	arranging	the	ellipsoids	

inside	spheres	using	the	homothetic	transformations

Stage 1. Choose large enough initial size for container 
Ω Ω0 0= ( ),p  to ensure the arrangement of all spheres Si  of 
radius ri , i In∈ , inside container Ω0. 

Stage 2. Generate in the container Ω0 a set of n  random-
ly selected centers ( , , )x y zi i i

0 0 0  of spheres Si . 
Stage 3. Increase spheres Si  of radius βri , i In∈ , starting 

from β = 0 to full size ( ),β = 1  in this case, centers Si and coef-
ficient of homothety β  are the variables, 0 1£ £β . To perform 
this stage, fix p p= 0 and, starting at point:

v x y z x y zn n n
0

1
0

1
0

1
0 0 0 0 0 0= =( , , ,..., , , , ),β  

we solve the following NLP subproblem:

max ,
v W∈ β

β  (4)

W
v v v

j i I

n S S S

n

i j i

β β β
= ∈ ³ ³

> ∈ − ³ ³













+R : ( ) , ( ) ,

, ,

*3 1 0 0

1 0 0

Φ Φ Ω


,  (5)

where

v x y z x y zn n n= ( , , ,..., , , , ),1 1 1 β  

ΦS S
i j i j i j i j

i j v x x y y z z r r( ) ,= −( ) + −( ) + −( ) − +
2 2 2 2 2( )β  (6)

where 


Φ ΩSi v
*

( ) is the phi-function function for sphere Si of 
radius βri and object Ω*.

Denote the point of a global maximum in problem (4), (5):

v x y z x y zn n n
* * * * * * * *( , , ,..., , , , ).= =1 1 1 1β

Stage 4. Form the vector of feasible parameters:

ς0 0
1
0 0= ( , ,...,.., ),p u un  

assuming

u x y zi i i i i
0 0 0 0 0= ( , , , ),θ  ( , , ) ( , , ),* * *x y z x y zi i i i i i

0 0 0 =

where θi
0  is the vector of randomly-generated rotation parame-

ters of ellipsoids Ei , i In∈ . Note that the global solution to prob-
lem (4), (5) can always be found (under condition of selecting 
sufficiently large initial dimensions p0  at the first stage). 

Stage 5. To search for a local minimum to problem (2), 
(3), we build, based on vector ς0, a starting point u0 0 0= ( , ).ς τ  
To obtain vector τ0, we apply a specialized optimization pro-
cedure named the Feasible Auxiliary Parameters Algorithm 
(FAPA_E).

6. 2. Compaction algorithm (COMPOLY)
The proposed algorithm transforms problem (2), (3) 

with a large number of inequalities and dimensionality O n( )2  
of the region of feasible values W, specified in (3), into a se-
quence of nonlinear programming subproblems, which have  
a smaller number of linear inequalities (O n( )) and dimensio-
nality O n( ). The basic idea of the algorithm implies perfor-
ming the following stages. 

Stage 1. We build for each vector of feasible arrangements 
of ellipsoids a fixed individual cubic container around the 
sphere produced by the respective ellipsoid (Fig. 5).

 

Ωі

ε 
 

Si 
 

Ei 
 

ε 
 

Fig.	5.	Ellipsoid	and	its	individual	container	Ωi

Stage 2. Move each sphere inside the corresponding indi-
vidual container. The motion of each sphere is described by 
the system of additional inequalities. 

Stage 3. Form a subset of feasible solutions W as fol-
lows: add O n( ) inequalities (for all spheres) to the system 
of inequalities (3), which makes it possible for us to discard 
O n( )2  of phi-inequalities for those pairs of ellipsoids whose 
individual containers do not intersect, and to exclude some 
redundant constraints for the condition for inclusion. 



Mathematics and cybernetics – applied aspects

57

Stage 4. Search for a local minimum at the subset of 
dimensionality O n( ). The subset is described by O n( ) non- 
linear inequalities. Next, we employ the resulting local mini-
mum as a starting point for the next iteration. At the last itera-
tion of the algorithm, find a local minimum to problem (2), (3).

7. Numerical results

In this chapter, we report results of computational experi-
ments that demonstrate the effectiveness of the proposed spe-
cialized optimization procedure for the problem on packing  
the ellipsoids.

Examples 1, 2, 6 are based on numerical experiments 
using the computer AMD Athlon 64 X2 5200+. The search 
for local extrema employed IPOPT, available from an open 
non-profit software repository [13]. Examples 3, 4, 5 are 
based on numerical experiments using the computer Intel(R) 
Core(TM) i7-3630QM. To search for local extrema, we ap-
plied the method InteriorPoint from the solver FindArgMin 
in the software package Wolfram Mathematica 9 [14].

Example 1. Locally optimal arrangement = 24 ellipsoids in 
a cuboid is shown in Fig. 6, a. Volume of the container is F*=  
= 25546.353, dimensions are ( , , )* * *l w h = (28.618, 46.172, 19.33). 
Application of the specialized optimization procedure made 
it possible, for a given example, to reduce the mean time for 
finding a local minimum from 17,801 to 6,983 seconds. 

Example 2. Locally optimal arrangement N = 24 ellipsoids 
in a cylinder is shown in Fig. 6, b. Volume of the container 
has a value of F*= 11768.260385, and the dimensions are 
( , ) ( ). , . .* *h r = 60 491 11 542  Application of the specialized op-
timization procedure made it possible, for a given example, 
to reduce the mean time for finding a local minimum from 
19.317 to 8.791 seconds.

a b

Fig.	6.	Examples	of	the	locally	optimal	arrangement		
of	ellipsoids:	a –	in a cuboid;	b	–	in	a	cylinder

Example 3. Locally optimal arrangement N = 50 homo-
thetic ellipsoids in a cuboid. The container has a volume of 
F*= 33874.5 and dimensions ( , , ) . , , .* * *l w h = ( )84 6863 20 20   
Application of the specialized optimization procedure made it 
possible, for a given example, to reduce the mean time for fin-
ding a local minimum from 4,680 to 1,800 seconds; the num-
ber of iterations of the solver’s optimization method is 1,000. 

Example 4. Locally optimal arrangement N = 30 of the 
directed homothetic ellipsoids in an elliptical container is 
shown in Fig. 7. The container has dimensions ( , , ) . , . , . .* * *a b c = ( )21 3155 7 10516 7 10516   

( , , ) . , . , . .* * *a b c = ( )21 3155 7 10516 7 10516   of the Application of the spe-
cialized optimization procedure made it possible, for a given 
example, to reduce the mean time for finding a local mini-
mum from 6,480 to 2,880 seconds; the number of iterations 
of the solver’s optimization method is 1,000.

Example 5. Locally optimal arrangement N = 640 of 
the directed homothetic ellipsoids in a cuboid. Volume of 

the container is F*= 33874.5, dimensions are ( , , ) . , , .* * *l w h = ( )84 6863 20 20   
( , , ) . , , .* * *l w h = ( )84 6863 20 20   The mean time for finding a local min-

imum is 836.70 seconds: the number of iterations of the sol-
ver’s optimization method is 500. Calculations without the 
specialized optimization procedure were not carried out due 
to the large dimensionality of the problem.

Fig.	7.	Locally	optimal	arrangement	of	ellipsoids		
for	example	4

Example 6. The feasible arrangement of N = 40 ellipsoids 
in a sphere is shown in Fig. 8. The container’s dimensions are 
( ) . .*r = 2 919435  The mean time to find a local minimum is 
34,182.59 seconds. Without the use of the specialized optimi-
zation procedure, the result was not obtained over three days.

Fig.	8.	Feasible	arrangement	of	ellipsoids	using		
the	approximation

Fig. 8 shows a locally optimal solution to the problem on 
packing the polyhedra that approximate ellipsoids, which 
corresponds to the feasible arrangement of true ellipsoids.

8. Discussion of results of studying the problem  
on the optimal packing of ellipsoids

Owing to the developed means of modeling, we con-
structed a mathematical model in the form of a linear 
non-convex programming task. 

It should be noted that by using the proposed means of 
modeling the constraints for arrangement, one can consider 
the problems on packing the ellipsoids in which a container 
is the convex containers, which are the combinations of con-
tainers that were considered in this work.

The benefits of our work include the construction of  
a precise mathematical model of the problem, and the de-
velopment of a procedure of decomposition for the method 
of optimization of packing the ellipsoids, which makes it 
possible to significantly reduce the cost of computing re-
sources while searching for a local extremum in the problem. 
We should also note that many types of containers were 
considered, some of which (for example, a cylinder) were not 
examined in studies by other researchers. 

The disadvantage is the fact that for some containers, to 
construct a mathematical model, we used approximations,  
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which is why for such a case the result of solving the problem 
is a feasible solution, rather than the locally optimal one.

Limitations of this study for the time being are the lack 
of a means to model the required constraints for ellipsoids 
and certain types of containers; however, their construction 
might be continuation of our study.

9. Conclusions

1. We have developed the tools for the mathematical 
modeling and computer simulation of constraints that oc-
cur between objects in problems on packing the ellipsoids 
into a convex container. To describe the constraints for 
non-overlapping, we used the quasi-phi-functions, and to an-
alytically describe the containment constraint – we applied 
the phi-functions. The container considered took the shape 
of a cuboid, a cylinder, a sphere, an ellipsoid, and a convex 
polyhedron.

2. By using the proposed phi-functions and quasi-phi- 
functions, we constructed a precise mathematical model in 
the form of a non-linear non-convex programming task. The 

objective function for the constructed problem might be the 
volume of a container or one of its metric characteristics, 
while the region of feasible solutions is described by phi- 
inequalities and quasi phi- inequalities, which ensure that 
the constraints for arrangement are met. The model could be 
directly realized by means of modern local or global solvers 
and, depending on the shape of a container, makes it possible 
to obtain locally optimal or feasible solutions.

3. To solve the problem, the algorithm is proposed, based 
on the method of a multistart and the specialized optimi-
zation procedure of decomposition. The paper describes  
a fast algorithm for constructing the starting points from the 
region of feasible values. We have developed a decomposition 
procedure for the method to optimize the packing of ellip-
soids, which makes it possible to reduce the problem of large 
dimensionality to a sequence of tasks with smaller dimen-
sionality. The procedure makes it possible to significantly 
reduce the cost of computing resources while searching for  
a local extremum in the problem. The effectiveness of the 
proposed solution algorithm and the decomposition proce-
dure is confirmed by the results of numerical experiments, 
which were conducted for containers of different shapes.
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