yu] =,

Y oaniit po6omi posenadaemocsa 3adana onmumanvioi
Yynaxoexu 3a0amnoz0 nadopy enincoioie y onyxaomy Kou-
meiitepi minimanvnozo 06’emy. Enincoiou 3adani posmi-
pamu Hanisocei i napamempamu po3MiMeHH Y J0KAb-
Hill cucmemi Koopounam ma 00ONYckaOmv HenepepeHi
obepmanns i mpancasayii. Y axocmi xoumeiinepa modice
eucmynamu xy60i0 (npamoxymuuii napanenenineo),
UUAINOp, KYyaa, enincoio abo onyxaui Gazamoezpannux.
Zlnsa ananimuumnozo onucy eionouwens Henepemeny eJiinco-
idie 3acmocosyromocs keasi-phi-Qynxuii. Jnsa moodento-
8anHs 610HOULEHb 6KIIOUEHHA BUKOPUCTMOBYIOMCA K6A3i-
phi-pynxuii abo phi-Qynxuii 3anesxicro 6i0 Popmu Kon-
meiinepy. Buxopucmosytouu 6ionoeioni sacoéu mooenio-
eanis 6yoyemvca mamemamunina Mooens y 6u2na0i 3ada-
41l HeNIHINIHO020 NPOPAMYBAHHSL.

Pospobaeno cmpamezito po3e’sazanns, 6 ocioei axoi
aexcumo Memoo myasmucmapmy. IIpononyemocs weuo-
Kuil anzopumm zenepayii nouamrkoeux mouox 3 ooaacmi
donycmumux po3e’a3kie ma cneyianvia onMUMI3auiUHA
npouedypa, wo 3600UmMv NOLAMK0BY 3a0auy 6eauUKoi po3-
mipnocmi O (n?) 3i 6enuxoro Kinvkicmio HeninitiHuX Hepi6-
Hocmeil 00 nocaidoéHocmi nidzaday HeniHilin020 npozpa-
Myeanns 3 menuoro posmipuicmio O(n) ma 3 menuoro
KiJIbKICM10 HeJHIUHUX HepigHOCmell.

Onmumizauitina npouedypa 00360J1€ 3HAMHO 3MEHUU-
mu (8i0 10 % 0o 90 % 6 3anexcnocmi 6i0 po3miprocmi 3a-
daui) obuuca06aNBHI pecypcu, maki AK 4AC ma nam’amo.
B 3anesxcnocmi 6i0 opmu xomwmetinepa, obmesicenv na
opienmauito enincoidie (moxcausicmo GesnepepéHux no-
eopomis, Qixcosana opicnmayis) ma ocobausocmeii mem-
PUMHUX XapaKmepucmuk eaincoioie ¢ pezyasmami po3e’s-
3anmna 3adaui ompumani L0KAILHO-ONMUMATLHI AO0 2apHi
donycmumi po3e’azxu. B podomi nposedeni uucenvni exc-
nepumenmu 0as piznux (opm Kowmeiinepis (exaouarouu
uuinop, Ky60io, Kymo, enincoio)

Kmouogi cnosa: onmumanvna ynaxoexa, enincoiou,
onyxauill konmeunep, memoo phi-pynxuii, modentoeanns
8i0HOWEHb PO3MIWEHHSA, HENHIIIHA ONMUMI3AUIA
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1. Introduction

The problems that belong to the class of NP-hard [1]
have a wide range of scientific and practical applications.
For example, in modern biology, medicine, materials science,
in thermodynamics when fluids pass into a crystalline form,
in nanotechnologies, chemical industry, mechanical engi-
neering, etc. As well as in molecular dynamics for growing
crystals, when modeling the structure of liquids, crystals and
glass, while modeling the motion and pressing of loose sub-
stances. At present, interest in the search for effective solu-
tions for placement problems of ellipsoids is growing rapidly.
This is due to a large number of practical applications and the
extraordinary complexity of the methods used to solve many
of them. Here are several examples of practical applications.

3D modeling of granulated structures and substances
whose particles have a shape of ellipsoids: the family of
software products to enable visual and quantitative analysis
of structural characteristics, such as spatial density, spatial

Pozharskoho str., 2 /10, Kharkiv, Ukraine, 61046

porosity, spatial distribution, grain grade, and porosity of
structure.

Robotics: an arm and other elements of the robot are
approximated by ellipsoids, so there is a task to formalize the
relation between the overlapping of ellipsoids and the over-
lapping of free-form objects.

The task that is associated with the arrangement of chro-
mosomes in the nuclei of human cells also requires solving
the problems on packing the ellipsoids.

Nuclear medicine: in the production of medical prepara-
tions that are used during cancer therapy, the optimization
problem is solved on packing the two kinds of nanoparticles
for the efficient use of power of the accelerator’s beam. One of
the types of nanoparticles could be approximated by ellipsoids.

In each of the above applications, different forms of con-
tainers are considered while ellipsoids have an arbitrary orien-
tation. Given the practical importance of the optimization
problem on packing the ellipsoids, it appears relevant to de-
velop effective methods to solve it by using the modern NLP




solvers. Employing them will make it possible to obtain the
feasible and local optimal solutions within a reasonable time.
The development of such methods is impossible without the
construction of mathematical models in the form of nonlinear
programming problems. In turn, construction of the models
is based on the further development of constructive means
to model the non-overlapping of ellipsoids and the belonging
of ellipsoids to the convex container of an arbitrary special
shape with respect to translations and rotations of ellipsoids.

2. Literature review and problem statement

Paper [2] reported a precise and efficient algorithm to
detect continuous collisions between two movable ellipsoids.
First, the authors conducted a highly optimized research into
collision of two stationary ellipsoids, the base of which is the
algebraic condition that is described in terms of the signs of
roots of the characteristic equation of two ellipsoids. Next,
the work describes obtaining a time-dependent characteristic
equation for two movable ellipsoids, which makes it possible to
construct a real-time algorithm for computing the time inter-
vals in which the two movable ellipsoids collide. Several prac-
tical examples demonstrate the effectiveness of the proposed
approach. This study gave impetus to the development of the
modeling of arranging the ellipsoids, thereby showing that it is
possible to analytically investigate the collision of ellipsoids.
However, the work considers the model that makes it possible
to examine the interaction between two ellipsoids only.

Paper [3] addresses the problem on packing the ellipsoids
of various sizes and types into an elliptical container. The
problem implies the minimization of the measure of the total
overlap of ellipsoids from a given set, located inside the preset
elliptic container. A special feature of this work is that the
optimization problem is solved for a container that has the
shape of an ellipsoid. However, the problem did not consider
the means that would provide for an analytical description of
the non-overlapping between ellipsoids.

The density of a three-dimensional packing of ellipsoids
is analyzed in [4]. Experimentally, and using the new simula-
tion algorithm, the authors showed that the random packing
of ellipsoids can be quite dense up to packing fraction from
¢=0.68 to 0.71 to spheroids with a ratio of sides close to the
M&M’s candies, and even approach ¢=0.74 for ellipsoids
with a different ratio of sides. The authors suggest that the
higher density is directly connected to the larger number
of degrees of freedom and, accordingly, to more contacts
between particles required for the mechanical stabilization
of packing. However, when modeling, ellipsoids were not
confined to a container, which is why the optimization
procedure was not used in the work. In addition to [4], the
density of packing the ellipsoids is analyzed in many studies,
example [5, 6] which makes it a relevant task to develop con-
structive means of mathematical and computer modelling of
the ratio of the non-overlapping of ellipsoids.

Paper [7] addresses the problem of packing ellipsoids in
a rectangular container of minimum volume. The author pro-
poses a non-convex NLP model, based only on mathematical
approaches to describe the rotation and motion of ellipsoids.
An assumption is made on that the elements of the rotation
matrix are variable. In order to make sure that the ellipsoids
do not overlap with each other, the separating hyperplanes
are constructed. Using the global solvers available in GAMS,
the authors obtained feasible solutions for packing the ellip-

soids. However, only one type of container was considered.
The problematic part of a given work is the fact that the
number of additional variables in the model is quadratic in
relation to the number of ellipsoids.

Study [8] reports continuous and differentiated models
of nonlinear programming and algorithms for packing the
ellipsoids in n-dimensional space. Two different models were
proposed to constraint the non-overlapping of ellipsoids, as
well as models for the inclusion of ellipsoids into half-spaces.
The strategy of a multistart is combined with software tools
to find the local solutions to nonlinear programming prob-
lems for two kinds of containers.

However, the issue on the development of means of ma-
thematical and computer modeling to optimize the packing of
ellipsoids that allow continuous rotations in arbitrary convex
containers over feasible time remains open. Thus, it is a rele-
vant task to construct NLP models and to develop optimiza-
tion algorithms, linear relative to the number of ellipsoids that
needs to be arranged.

The problem on packing the ellipsoids is considered in
the following statement.

Let Q=Q(p) be a convex container with variable di-
mensions p,

Q={(x.y,2,p)eR*:¥(x,y,2,p) 20},

assigned in the global coordinate system OXYZ where
Y. (x,y,z,p) is the differentiable function s=1,..,n,. Par-
ticularly, the following types of containers (Fig. 1) are con-
sidered:

— cuboid:

B (x,y,z,l,w,h)eRg‘min{x+l,—x+1,
y+w,-y+wz+h—-z+h}>0

of variable dimensions , w and &, p=(l, w, h);
— sphere:

S={(x,y,z,r)eR3‘r2—xz—yz—zz20}

with a variable radius 7, p = (7);
— cylinder:

co (x,1,2,M) € Ra‘min{(kr)2 -x’ =y’
—z+M,z+ Ay =0

with a radius of A7 and a height of A& where A is the variable
coefficient of homothety, p= (L), subject to for original con-
tainer A=1;

— ellipsoid:

2 2 2
E:{(x,y,z,x)ew?&—x-y_2>0}
a

with variable sizes of semi-axes Aa, Ab, Ac, p= (L), subject to
for original container A=1;

— convex polyhedron with a variable coefficient of ho-
mothety A:

o X+ y+y z+AU,,
K:{(x,y,z,k)eWmin{ cBey, u“}zo}

yeees Mg

Remark. Each metrical characteristic Q can be variable by
itself, that is, » and % for a cylinder, or a, b, ¢ — for an ellipsoid.



Fig. 1. Types of containers

Container Q has fixed pacement parameters (0,0,0) in the
global coordinate system.

Each ellipsoid E;, iel, ={l,..,n}, assigned by its semi-
axes a,, b, ¢, and the variable vector of pacement parameters
u, =(v,,0,) in the local coordinate system, where v, = (x,,4,,2,)
is the vector of translation, M(8) is the matrix of rotation,
takes the form:

c0s0' cos®’® —sin6' cos6*sin6*
sin®' cos8® + cos ' cos0*sin O°
sin®*sin©® sin®*cosH®

and 6, =(0},67,0”) is the vector of rotation parameters where

i

0;,0’, 6 are the Euler’s angles.

3. The aim and objectives of the study

The aim of this study is to construct a mathematical
model and develop an effective method for solving the
problem on packing the ellipsoids into a convex container
of minimum volume. That would make it possible to build
precise models when modeling the arrangement of ellipsoids,
to obtain locally optimal or good feasible solutions over
a reasonable time.

To accomplish the aim, the following tasks have been set:

—to develop constructive means of mathematical mo-
deling and computer simulation for the analytical description
of containment constraint and non-overlapping that occur
between objects in the problems on packing the ellipsoids
into a convex container;

— to construct a mathematical model in the form of a non-
linear programming problem;

—to develop a method for optimizing the packing of el-
lipsoids using the procedure of decomposition, which makes
it possible to significantly reduce the cost of computing
resources required to search for feasible and locally optimal
solutions.

4. Analytical description of the constraints
for arrangement

This chapter describes the procedure of mathematical
modeling of arrangement constraints, which are found in the
problem on packing the ellipsoids:

— constraints for non-overlapping:

intE;(u)Nint £,(u;) =9, i<jel,
— containment constraints:

Ew)cQeintEw)NQ =0, iel,.

—c0s0'sin®’® —sin®' cos6” cosH’
—sin®'sin®® + cosB' cosB’ cosH®

In order to describe pacement constraints in analytical
form, we used the method of phi-functions [9]. We introduce
the phi-functions to model the containment constraints, and
quasi-phi-functions [10] to model constraints for non-over-

lapping.

4. 1. Modeling the containment
constraints

sin®'sin 62 In this paper, in order to describe
—cos0'sin®? |, a constraint for inclusion:
cos b’

E(u)c Qe intE (u,)NQ =0,

we propose an approach related to the construction of the
phi-function for the object that approximates an ellipsoid
with the predefined precision. We have used two types of
approximations:

— approximation of each ellipsoid E; by a convex polyhe-
dron K, assigned by its vertices pj., j=1...,m, whose values
are unchanged in the local coordinate system of ellipsoid E;;

— approximation of each ellipsoid E, by spheres S, [11],

Ei(ui)zosik(ui +uik)v
et}

assigned by translation vectors v, and radii 7, whose values
are fixed in the local coordinate system of ellipsoid E,.
We denote the ellipsoid approximated by spheres as E, (),
and the one approximated by a convex polyhedron as E,(u,).
Phi-function E,(1,) and Q = R*\intQ can be represen-
ted in the form

®(u,, p)=min{®,(w, p),...®, (u, p)},

where @, (u;, p) is the phi-function for §, and Q.

Specifically, we employ the following phi-functions for
the constraints on inclusion.

Under condition of applying the approximation of each
ellipsoid E, by a convex polyhedron, depending on the shape
of a container, we use such phi-functions as:

Phi-function for a convex polyhedron K,(u;) and object
S =R*®/intS:

O (u,r) =¥ (u,r)=min{o(p(u,).,r).k=1,...m,},
2

o(pi) ) =(r) = (ph @) = (ph, @) ~(pLw)

Phi-function for a convex polyhedron K,(u,) and object
C =R’ /intC:

D5 (u, 1) = min { ¥, (4, 1),s =1,2,3},

¥ (u,A)= min{(ps(p,i(ui),r),k = 1,...,m,.},



2
)

0, (i) )= () ~(ply@)) ~(plyw))

(p2(pli(ui)’7\') = _pik(ui)-" M,
(P3(p}i(ui)’7‘) = pik(ui)-'- M.

Phi-function for a convex polyhedron K,(u,) and object
B =R’ /intB:

R (u,,l,h,w)= min{‘l’x(ui,l,h,w),s = 1,...,6},

WY, (u,,l,h,w)= min{(p}'m(ul.,l,h,w),k = 1,...,mi},

O (il hw) = ply(u) +1,

P () = =Py (u)+1,

Qs (w1 hw) = pl, (u) + @,

O (ol 0) = =, () + 0,

P, hw) = ply(u) +h,

Oty 1 w0) == ply (u;) + h.

Phi-function for a convex polyhedron K,(u;) and object
E =R’ /intE:

OFF (1, 1) = P(u, M) = min{o(p(u,), 1) k=1,..,m,},

O(pi (), 1) = (k)z _ (pkxc(lz‘i)) B (pky;zli)) 3 (pkzzi'ti)) ‘

Under condition of applying the approximation of each
ellipsoid E, by spheres, depending on the shape of a container,
we use such the following phi-functions.

@5 (u, ) = min{cl)f' (u,N),s = 1,...,ng},
®F (u, M) =min{e! (u, 1), k=1,..n,}.
Phi-function for object E,(u,) and object S"=R® /intS:

o' (u;,r)= min{‘{‘f' (u;,r),s= 1} =
= min{(pf(u,.,r),k = 1,...,n,.},

2 2 2 2
o (u,r)= (r+rk) —(x—xk) —(y—yk) —(z—zk) .
Phi-function for ellipsoid E,(u.) and object C' =R* /intC:
5 (uy,r, by = min {y, (u,), v, ()},
y(u)=min{z —a,,h-z-a,},
v, ()= (DE'QQ; (w,),

(I)E'ZQTZ (uz) = CDCE;I (ui ),

D% (u,(5,9)) = A, (5,0),

u,(5,0) = (x,(5,9),4,(5,9),6,,67),

*2
i
*2

a.

Ai(s,(p)z(b;—s) cos’@+sin® @ —b,,

where ellipse E,, with semi-axes (a,,,b,) can be obtained as a
projection of ellipsoid E; onto rectangle €,, which belong to
the plane parallel to OZ; ellipse E,, with semi-axes (a,,,b;,) can
be obtained as a projection of ellipsoid E; onto XOY (Fig. 2). To
determine phi-function @ () we apply affine transforms.

e C

&/'

Qz\;‘ ,Eiz )

Fig. 2. Ellipses £;1 and £}
Phi-function for object E,(u,) and object C' =R® /intC:

©" (u, 1, k) =min{® (u,,r,h),s=1,2,3},

CD\E (u;,r,h)= min{(pfl.(u,.,r,h),k = 1,...,n,},

(pﬁ.(u,.,r,h):(r—rk)—\/x2 +y?,
(Pgi(ui’r’h): _Zé(ui)"'h,

0% (u,,r,h) =z (u,) +h.

Phi-function for ellipsoid E.(u,) and object B =R’ /intB:
" (u,,1,h,w0) = min{p, (), 9,(u,)},
¢,(u)=min{z,—-a,,h-z-a,},

0, (u;)= PPk (x,»,y,,eﬁ,ef)

i

E.(a,,b)):a,= \/bf +(af —bf)sin2 (911.), b,=b,

E,(ay,b,):a; =\/bl.2+(a,.2—bf)cosz (9}),

where ellipse E,, with semi-axes (a,,b,) can be obtained as
a projection of ellipsoid E, onto rectangle Q,, which belong to



the plane parallel to OZ; ellipse E,, with semi-axes (a,,b,) can
be obtained as a projection of ellipsoid E, onto XOY, ®*** is
the phi-function for ellipse E,, with location parameters
(x,4,0,) and Q; = R*\intQ,, where Q, is a rectangle (Fig. 3).

&

Fig. 3. Phi-function for ellipsoid and cuboid

|
|
I
T
¢

Phi-function for object E.(u.) and object B'=R® /intB:

CDE‘B'(ul.,l,h,w): min{(l)f' (u;,,h,w),s= 1,...,6},
de (u;, [, h,w)= min{(pzs(ui,l,h,w),kz 1,...,ni},
0, (u, L hw)y=r,+1, ¢,(u,l,hw)=-1,+I,

0l (u, Lhw)=r,+w, ¢, hw)=-1+w,

O (u,Lhw)y=r,+h, o(u,l,hw)=-r,+h.

Phi-function for object E,(u,) and object K" =R® /intK:
o5 (ui,k)zmin{df' (ui,k),s=1,...,ng},

- (ul.,k)zmin{(pjm(ui,k),kz1,...,n,.},

@(u;, ) =—ox =By —yz— ML —7;.

4. 2. Modeling the constraints for non-overlapping

First, we shall consider a quasi-phi-function for a pair
of ellipsoids.

To describe constraints for non-overlapping, that is,

int E;(u)Nint £,(u;) =,

we shall use a quasi-phi-function.
Let E,(u;) and E,(u;) be two spheroids (ellipsoids of
revolution).
A quasi-phi-function for E,(x;) and E,(u;) can be repre-
sented in the following form:
V(0,0 ,,ul), i (u;,up,u),
O (uy,u;,uf ) = min Wy (u, w0 ), (1,0, u5), )
v, (uy,u,u
where

u,: = (tiYgi’tj’gj)Y Y= —OL;OL;- _B:B; _’Y;Y;! 9, :(G:,e?),

(O(;’B;"Yz/') = M(ei)'((xi VB,' Vi )Ty

_ sint; cos g; _sm t,sing;

a. ' b P b. ’

i i i

0,=(6},0)). (oB.7))=M(0))-(o,B,.7,)

T
’
_costj =smt].cosgj =51nt].smgj

it 74 j b, v Y b )

J J J

Wi = (= )+ B (v —w) + v (2 - 2) -,

v = (2 - x,)+ Bl (v - )+ ¥ (2 - 2) -1,

(X1 25) =0, + M8 )M,(8))(a, cost b sint, 2a,)
(X000 2) =0, + M8, )M,(g))(a, cost, b sint, —~2a, )|
02 =0, + MO )M, (g)(x,47,0)
(6851020 =0, + M8 )M, (g)(%;,47,0)

i)+ n(-Bj0c)

(x7,57) = (o, B )~ (~B)ext),

() =(of,

2

(ai"B;):Ml(tj)(“ﬁO)T' n=v2(a))

Thus, the constraint for non-overlapping takes the form
@ (u;,u;,uf;) >0, where @ is the quasi-phi-function for sphe-
roids (ellipsoids of revolution) E,(%,) and E,(u;,), represented
in (1). Here we use the important property of a quasi-
phi-function: if @ (u;,u;,u};)>0 forsome u}, then:

intE,.(ui)ﬂintEj(uj)z %)

(more detailed information is provided in paper [10]).

5. Mathematical model of the problem
on the optimal packing of ellipsoids

The vector of all variables u e R° can be described in the
following way:

u=(p,u,Uy,....,U,,T),

where p is the vector of variable metric characteristics of
convex container Q, and , =(v,,0,) is the vector of place-
ment parameters of ellipsoid E,, iel,, where v,=(x,,¥,,2,),
6,=(;,67,6). Vector t=(u),i<jel,) is the vector of ad-
ditional variables (for our quasi-phi-function), where w/ is
defined in (1).
The mathematical model of the basic problem on packing
can now be represented in the following form:
min F(u), 2)

ueWcR°®
W={ueR® @ (u,u,u))20,0,u)20i<jel,}, (3)

where F(u) is the volume Q or one of the metric characteris-
tics of Q, @ is the quasi-phi-function (1), determined for
a pair of ellipsoids E; and E;, which ensures that the con-



straint for the non-overlapping is met, @, is the phi-function
for objects E, (E,) and Q', which is used for meeting the con-
tainment constraint.

6. A solving algorithm

The strategy of a multistart includes the following stages:

Stage 1. Generate a set {¢°} of vectors ¢’ =(p°ul,...,u’)
with the feasible placement parameters (u),...,u)) of ellip-
soids, arranged in container Q° with dimensions (p°) for
problem (2), (3). To derive a feasible solution, there are dif-
ferent methods. We use an intuitive and fast algorithm.

Stage 2. Starting at each point of the set {¢"}, obtained at
stage 1, we search for the local extrema for the objective func-
tion F(u) and problem (2), (3). To derive a local extremum
to problem (2), (3), there is a compaction algorithm for the
ellipsoids that allow rotation.

Stage 3. We choose the best local extremum from those
derived at stage 2 as a solution to problem (2), (3).

6. 1. Search algorithm for feasible placement parame-
ters (FPPA_E)

To find the vector of feasible parameters for arranging
the ellipsoids, we used a modification of the FPPA algorithm,
described in [12] for the problem on packing the polyhedra
and based on the homothetic transformations of objects. The
algorithm includes the following stages (Fig. 4).

«

Fig. 4. lllustration of the optimization procedure FPPA_E
to search for feasible parameters of arranging the ellipsoids
inside spheres using the homothetic transformations

Stage 1. Choose large enough initial size for container
Q" =Q(p"), to ensure the arrangement of all spheres S, of
radius 7;, i €1, inside container Q.

Stage 2. Generate in the container Q" a set of n random-
ly selected centers (x),?,2) of spheres S,.

Stage 3. Increase spheres S, of radius Br;, i€, starting
from B =0 to full size (B =1), in this case, centers .S, and coef-
ficient of homothety [ are the variables, 0 <B <1. To perform
this stage, fix p = p” and, starting at point:

0 0,0 .0 0,0 _0QR0
0= (Y52 e X Uy 20 = 0),

we solve the following NLP subproblem:
max 3, (4)

el

_JoeR¥™ 0% ()2 0,05 ()20, )
P j>iel 1-B20,20 '

where

U= (x1,y1,21,...,xn,y,,,2nyﬁ),
% ()= (x,-x,f +(,-v,) +(5,-2,) ~B*G+1) (6)

where ®*% (v) is the phi-function function for sphere S, of
radius Br; and object Q.
Denote the point of a global maximum in problem (4), (5):

0 = (Y22 B = D).
Stage 4. Form the vector of feasible parameters:

=P sy t),

assuming

0 0 0 0 Q0 00 _0 ok
ui =(xi7yiyzirei)) (xi)yivzi)z(xi)yirzj))

where 6! is the vector of randomly-generated rotation parame-
ters of ellipsoids E,, i € . Note that the global solution to prob-
lem (4), (5) can always be found (under condition of selecting
sufficiently large initial dimensions p° at the first stage).

Stage 5. To search for a local minimum to problem (2),
(3), we build, based on vector ¢, a starting point u° = (¢’,1°).
To obtain vector 1°, we apply a specialized optimization pro-
cedure named the Feasible Auxiliary Parameters Algorithm
(FAPA_E).

6. 2. Compaction algorithm (COMPOLY)

The proposed algorithm transforms problem (2), (3)
with a large number of inequalities and dimensionality O(n*)
of the region of feasible values W, specified in (3), into a se-
quence of nonlinear programming subproblems, which have
a smaller number of linear inequalities (O(7)) and dimensio-
nality O(n). The basic idea of the algorithm implies perfor-
ming the following stages.

Stage 1. We build for each vector of feasible arrangements
of ellipsoids a fixed individual cubic container around the
sphere produced by the respective ellipsoid (Fig. 5).

Q

Fig. 5. Ellipsoid and its individual container €;

Stage 2. Move each sphere inside the corresponding indi-
vidual container. The motion of each sphere is described by
the system of additional inequalities.

Stage 3. Form a subset of feasible solutions W as fol-
lows: add O(n) inequalities (for all spheres) to the system
of inequalities (3), which makes it possible for us to discard
O(n*) of phi-inequalities for those pairs of ellipsoids whose
individual containers do not intersect, and to exclude some
redundant constraints for the condition for inclusion.



Stage 4. Search for a local minimum at the subset of
dimensionality O(n). The subset is described by O(n) non-
linear inequalities. Next, we employ the resulting local mini-
mum as a starting point for the next iteration. At the last itera-
tion of the algorithm, find a local minimum to problem (2), (3).

7. Numerical results

In this chapter, we report results of computational experi-
ments that demonstrate the effectiveness of the proposed spe-
cialized optimization procedure for the problem on packing
the ellipsoids.

Examples 1, 2, 6 are based on numerical experiments
using the computer AMD Athlon 64 X2 5200+. The search
for local extrema employed IPOPT, available from an open
non-profit software repository [13]. Examples 3, 4, 5 are
based on numerical experiments using the computer Intel(R)
Core(TM) i7-3630QM. To search for local extrema, we ap-
plied the method InteriorPoint from the solver FindArgMin
in the software package Wolfram Mathematica 9 [14].

Example 1. Locally optimal arrangement = 24 ellipsoids in
a cuboid is shown in Fig. 6, a. Volume of the container is F'=
=25546.353, dimensions are (/',w",h")=(28.618, 46.172, 19.33).
Application of the specialized optimization procedure made
it possible, for a given example, to reduce the mean time for
finding a local minimum from 17,801 to 6,983 seconds.

Example 2. Locally optimal arrangement N=24 ellipsoids
in a cylinder is shown in Fig. 6, b. Volume of the container
has a value of F'=11768.260385, and the dimensions are
(W', )=(60.491, 11.542). Application of the specialized op-
timization procedure made it possible, for a given example,
to reduce the mean time for finding a local minimum from
19.317 to 8.791 seconds.

a b

Fig. 6. Examples of the locally optimal arrangement
of ellipsoids: @ — in a cuboid; b — in a cylinder

Example 3. Locally optimal arrangement N=50 homo-
thetic ellipsoids in a cuboid. The container has a volume of
F=33874.5 and dimensions (I',w",h")=(84.6863, 20, 20).
Application of the specialized optimization procedure made it
possible, for a given example, to reduce the mean time for fin-
ding a local minimum from 4,680 to 1,800 seconds; the num-
ber of iterations of the solver’s optimization method is 1,000.

Example 4. Locally optimal arrangement N=30 of the
directed homothetic ellipsoids in an elliptical container is
shown in Fig. 7. The container has dimensions (a’,b",¢’ )=
=(21.3155, 7.10516, 7.10516). of the Application of the spe-
cialized optimization procedure made it possible, for a given
example, to reduce the mean time for finding a local mini-
mum from 6,480 to 2,880 seconds; the number of iterations
of the solver’s optimization method is 1,000.

Example 5. Locally optimal arrangement N=640 of
the directed homothetic ellipsoids in a cuboid. Volume of

the container is F'=33874.5, dimensions are (', ,h)=
=(84.6863, 20, 20). The mean time for finding a local min-
imum is 836.70 seconds: the number of iterations of the sol-
ver’s optimization method is 500. Calculations without the
specialized optimization procedure were not carried out due
to the large dimensionality of the problem.

Fig. 7. Locally optimal arrangement of ellipsoids
for example 4

Example 6. The feasible arrangement of N=40 ellipsoids
in a sphere is shown in Fig. 8. The container’s dimensions are
(r)=2.919435. The mean time to find a local minimum is
34,182.59 seconds. Without the use of the specialized optimi-
zation procedure, the result was not obtained over three days.

Fig. 8. Feasible arrangement of ellipsoids using
the approximation

Fig. 8 shows a locally optimal solution to the problem on
packing the polyhedra that approximate ellipsoids, which
corresponds to the feasible arrangement of true ellipsoids.

8. Discussion of results of studying the problem
on the optimal packing of ellipsoids

Owing to the developed means of modeling, we con-
structed a mathematical model in the form of a linear
non-convex programming task.

It should be noted that by using the proposed means of
modeling the constraints for arrangement, one can consider
the problems on packing the ellipsoids in which a container
is the convex containers, which are the combinations of con-
tainers that were considered in this work.

The benefits of our work include the construction of
a precise mathematical model of the problem, and the de-
velopment of a procedure of decomposition for the method
of optimization of packing the ellipsoids, which makes it
possible to significantly reduce the cost of computing re-
sources while searching for a local extremum in the problem.
We should also note that many types of containers were
considered, some of which (for example, a cylinder) were not
examined in studies by other researchers.

The disadvantage is the fact that for some containers, to
construct a mathematical model, we used approximations,



which is why for such a case the result of solving the problem
is a feasible solution, rather than the locally optimal one.

Limitations of this study for the time being are the lack
of a means to model the required constraints for ellipsoids
and certain types of containers; however, their construction
might be continuation of our study.

9. Conclusions

1. We have developed the tools for the mathematical
modeling and computer simulation of constraints that oc-
cur between objects in problems on packing the ellipsoids
into a convex container. To describe the constraints for
non-overlapping, we used the quasi-phi-functions, and to an-
alytically describe the containment constraint — we applied
the phi-functions. The container considered took the shape
of a cuboid, a cylinder, a sphere, an ellipsoid, and a convex
polyhedron.

2. By using the proposed phi-functions and quasi-phi-
functions, we constructed a precise mathematical model in
the form of a non-linear non-convex programming task. The

objective function for the constructed problem might be the
volume of a container or one of its metric characteristics,
while the region of feasible solutions is described by phi-
inequalities and quasi phi- inequalities, which ensure that
the constraints for arrangement are met. The model could be
directly realized by means of modern local or global solvers
and, depending on the shape of a container, makes it possible
to obtain locally optimal or feasible solutions.

3. To solve the problem, the algorithm is proposed, based
on the method of a multistart and the specialized optimi-
zation procedure of decomposition. The paper describes
a fast algorithm for constructing the starting points from the
region of feasible values. We have developed a decomposition
procedure for the method to optimize the packing of ellip-
soids, which makes it possible to reduce the problem of large
dimensionality to a sequence of tasks with smaller dimen-
sionality. The procedure makes it possible to significantly
reduce the cost of computing resources while searching for
a local extremum in the problem. The effectiveness of the
proposed solution algorithm and the decomposition proce-
dure is confirmed by the results of numerical experiments,
which were conducted for containers of different shapes.
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