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IIposedeno odocnidscenns enauey meopii inpopmauii Ha po3eu-
mox meopii 3aeadocmiiixoeo xooysanns. Iloxazani ochoemi i0MinHO-
cmi Midic UMOGIpHICHUM ma OemepMiHOBAHUM NIOX00aMU NPU AHANI3L
KOpexmyeaivHoi 30amnocmi pisHux Kaacie JHilHux Kooie.

Po3spobaeni asmomamni iepapxiuni mooeni 0ns ananisy nepecma-
HO0B01H020 0eK00YBaHHS YUKIMHUX KOOI6 i 3anponoHosamno zenepamop
UUKTIMHUX NePecmano6ox Ha 0cHosi 06ox asmomamie Mypa.

Ha ocnosi agmomamiozo npeocmasiienis uuKJiMHUX K00i6 npoge-
0eHO0 00CTLOHCEHHA PeLYNAPHUX | HEPeYNAPHUX CIANIE JUHIIHUX NOCII-
dognictux cxem (JIIIC). Iloxasana moxcaugicmo Cymmesozo cnpoujen-
Hs 0eK00YBaAHHA UUKIITMHUX K0016 HA 0CHOBL Nepe6edeHHs Hepe2yYaAPHUX
cunopomie JIIIC 6 pezyaspHi 3a 00noMm02010 nepecmamnosox.

Po3spobaeno popmanizoeani memoou UHAUEHHA KOPEKMYBAILHOL
30amuocmi yuxaiunux Kooie, wo imepamueno dexooyromocs (IAIK).
Tpaouuiiinuii noenuii nepedip 6Cix MONCIUBUX 6APIAHMIE NOPIGHIHHS
K0006UX Ci6 3AMIHEHO HANPABICHUM NOWYKOM PO36 A3AHHS NOCMAS-
Jlenoi 3adaui, wo Npu3eo0UmMs 00 3HAMHOI eKOHOMIL HACY 0OUUCeHD.
Hasedeno anzopumm eusnauenmns xopexmyeanvhoi 3oammocmi IJIIK
810HOCHO NOOGIUHUX NOMUTLOK.

Hokazano, wio eci imepamueni Ko0u nidéuwyrons c6010 Kopexmy-
eamu y idcomxax 0ns NOMUNOK piznoi kpamuocmi. Cunopomu nomu-
JIOK PO3NOOINAIOMBCA NO OKPEMUM TMEPaUisam, wo 00360JI1€ 3MEHWUMU
PO3PAOHICIL NEPesipILHO20 C06a K0OY. B Kinuesomy pesynomami ue
npu3600umov 00 30invUeHH WEUOKOCHI imepamueHux Ko0ié 6 nopie-
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1. Introduction

The error correcting coding theory has passed a complex
and controversial path in its development. The entire 70-year
period has been the search for answers to the main questions:
which code is the best and how to construct it?

These questions are interesting not only from the point
of mathematics. Error correction codes have found wide
application in various technical fields, such as satellite and
mobile communications, data storage and archiving systems,
etc. Even a small advance in the theory can yield a huge eco-
nomic gain in practice.

Paper [1] justified the basic principles of construction of
error correction codesand proposed the criterion of the best
code. It is the maximum approximation to channel capacity
for data transmission. But codes, which began to appear from
the very beginning, were not bad from the practical side, but
they did not meet the Shannon criteria. Several directions
emerged in error correction coding. They develop separately
and interact with each other rarely. Therefore, combined
analysis and comparison of characteristics of various classes of
codes is difficult. A comparative study of the error-correcting
capabilities of error correction codes is particularly important
from both points of view — theoretical and practical ones.

The main trend in development of modern communica-
tion systems is a constant increase in transmission rates and
practical development of the terabyte range. As in previous

years, the main reserve in improvement of the quality and
rate of transmission is the use of error correction coding.
Modern technologies require new ideas and new ways to
convert data. Iterative error correction codes are very prom-
ising for solution of such problems.

2. Literature review and problem statement

The basis of the coding theory is the theory of informa-
tion. We can define encoding (decoding) of information as
its transformation, when an amount of information remains
unchanged, but a qualitative nature of information carrier
changes [2]. To perform any transformation of information,
it is necessary to present it mathematically and to specify a
method for its measurement.

In [3] it is proposed a combinatorial method for measure-
ment of information based on a choice from a certain set of
possibilities.

The term “bit” has been widely applied to denote a unit
of information since 1948 [1]. According to Shannon, an
amount of information is equal to removal of uncertainty
(entropy) before an experiment and after an experiment.
The method requires statistical characteristics of individual
symbols and messages.

In [4] it is presented an algorithmic method for mea-
surement of an amount of information: we can consider




I(p) minimum length of p “program”, which is necessary for
conversion of x to y as are lative complexity of y object for a
given x object.

Since the error correcting coding theory appeared as
a response to needs of communication systems (primarily
space communications), the coding theory began to develop
based mainly on the probabilistic approach, i.e. Shannon
approach to the information theory.

It was the optimal choice from the practical point of
view, but many questions arose from the theoretical point
of view. Some of them still have no resolution. Researchers
noted disadvantages of the probabilistic approach in the 60s
and 70s: “information theory should precede probability the-
ory; it should not rely on it” [5]. Further research confirmed
that “the amount of information is not necessarily connected
with random events” [6]. Gaps in the theory manifested
themselves in practice soon.

Founders of the error correcting coding theory con-
sidered a code, which corresponded to various theoretical
limits and relationships between code parameters and its
error-correcting capabilities to the maximum extent, as the
“best code”. However, codes known by that time had sig-
nificantly worse characteristics than codes predicted by the
theory. Therefore, the objective was to build codes, for which
“theoretical interest depended on how realistic was creation
of equipment for their practical use” [7].

Improvement of some characteristics of codes leads, as
a rule, to deterioration of another ones [8]. We should give
preference to the problem of increasing of ability of codes to
detect and correct errors from the practical point of view.

We can limit ourselves to the class of linear codes
among all error correction codes. And we should distinguish
probabilistic codes (for example, low-density parity-check
(LDPC)-codes) and deterministic codes (for example, cyclic
codes). These codes are most common now in various tech-
nical areas.

The basic idea of encoding of linear codes is to add addi-
tional check binary digits to a source information word either
in explicit or implicit form and obtaining of codeword Z.
As a result, we get a “coding gain,” that is, ability to detect
and to correct errors in Z [9]. It is quite difficult to evaluate
the “coding gain”analytically.

Usually, analysis of various codes occurs by comparison
of curves (Fig. 1). This curves show the dependence of p; av-

erage probability of an erroneous bit on % ratio for these

codes (E} is bit energy, Ny is spectral density of noise power).
All curves should be at the right of the vertical ordinate
with a value of —1.6 dB, which indicates a Shannon limit.
We can determine a distance from a code curve to Shannon
limit using such a graph (we can call it BER — bit error rate
briefly), and the closer it to Shannon limit is, the better is the
code. One code will be better than another one in proportion
to y, value.

There is an integer characteristic of the ability to detect
and correct errors — the minimum code distance d,;, in addi-
tion to the probabilistic estimate. By definition, dy;, is equal
to the smallest of all Hamming distances between different
pairs of code words. d;, parameter dy,;, makes possible to
determine amount of 1, detected errors and T, corrected
errors by a given code accurately:

d.27,+1, +1=21 +1=1,+1.

min

The basis of the universal method for the exact calcula-
tion of parameter dy;, for an arbitrary block linear code is
the analysis of weights spectrum of a code. We know weights
distribution of the code, even in analytical form, for some
subclasses of cyclic codes. However, there is no resolution
of this problem for all codes, since it belongs to NP-hard
problems [10].
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Fig. 1. Graph of the dependence of p, on £,/ N, ratio

The complexity of calculation of dy,;, exact values con-
tributed to emergence of various asymptotic bounds that es-
tablish the relationship between d,,;, and code redundancy.
Hamming, Plotkin, and Elias bounds set the upper bound
for dyin, and Varshamov — Hilbert bound set the lower
bound for dpi, [7].

It is more acceptable to use BER curve for probabilistic
codes, but the minimum code distance and the correspond-
ing asymptotic bounds are more acceptable for deterministic
codes.

And here we meet with serious problem —how to compare
error-correcting capabilities of such different codes. We can
try to accomplish this task using both criteria for all codes.

For example, we can show both LDPC codes and cy-
clic codes on a single BER curve together. However, this
approach will be correct for random errors of arbitrary
multiplicity only. Cyclic codes can also correct burst errors
of various lengths. In [11] it is shown that the distance to
the Shannon limit will be the same, that is, we will not
receive a full error correction estimate by cyclic codes for
all Fire codes.

Let us consider the opposite approach: estimation of the
error-correcting capabilities of probabilistic codes using
parameter dpi,. A huge amount of research on this issue ap-
peared over the past decade. We can summarize the results
obtained regarding LDPC codes and make the following
conclusions:

1. We should still calculate minimum code distance dp;,
based on weight distribution [12].

2. Therefore, it is not surprising that the calculation of
dpin for LDPC codes is an NP-hard problem [13].

3. We obtain values of parameter dy,;, for specific LDPC
codes as a result of numerical experiments on a supercomput-
er [14]. We compensate the absence of mathematically sound
methods for estimation of the error-correcting capabilities of
codes by search algorithms that require huge computational
resources.

4. The minimum distance of algebraic LDPC codes is
usually higher than random LDPC codes [15]. The minimum
distance of regular LDPC codes approaches the distance of
the best random linear codes [16]. Therefore, the minimum
distance of the classical (i. e. irregular) LDPC codes is low.



On the other hand, no one doubts the high error-correcting
capabilities of LDPC codes, otherwise we would not apply
these codes in practice.

We can resolve this paradox only by the recognition
of the fact that the traditional d,,;, parameter is not an
adequate estimate for error-correcting capabilities for prob-
abilistic iterative codes. Accordingly, the analysis of the
distance to the Shannon limit on BER curves would not
be the best criterion for evaluation of similar properties of
deterministic codes.

Consequently, there is currently no general methodology
for mathematically justified comparison of error-correcting
capabilities of different classes of codes.

3. The aim and objectives of the study

The aim of the study is to obtain results of a comparative
analysis of error-correcting capabilities of linear error cor-
rection codes and to obtain deterministic and accurate esti-
mates of error-correcting capabilities of iteratively decoded
cyclic codes (IDCC) based on the mathematical apparatus of
linear finite-state machines (LFSM).

It is necessary to solve the following tasks to achieve the
objective:

—study of the ability to detect and correct errors with
iterative error correction codes from the standpoint of the
information theory and coding theory;

— mathematical substantiation of permutation decoding
of cyclic codes;

— investigation of an influence of cyclic permutations on
complexity of decoding and on error-correcting capabilities
of cyclic codes;

— proposition of effective tools for estimation of er-
ror-correcting capabilities of IDCC for practical implemen-
tation.

4. Mathematical substantiation of permutation decoding
of cyclic codes

We use the following cyclic permutations of positions of
Z codeword [9, 11]:

i—(i+v)modn, GF(2) v=234,... 1)

We can consider formation of permutations as a result of
operation of some permutation generator and represent its
operation by A Moore finite-state automaton with § finite
set of states, Y finite set of outputs, a transition function

S(t+1)=PxS(t), GF(n)
and output function
Y(©)=5@), GF(n),

where P is a permutation operator.

The operation of automaton A occurs in t discrete times.
We call automaton A a high-level automaton.

The inputs of the automaton A receive only zero values,
and the outputs of the automaton A are its state. The state
in time ¢

S ={s(1), s(2), s(3),..., s(n)}

is the positions of binary digits of the code word Z.

We can assume that calculations take place in Galois
field GF(n), because elements of S and Y sets are selected
from integer alphabet {0, 1,.. , n—1} for a cyclic (n, k)-
code.

The state S(1) coincides with the initial value of code
word Z at the beginning of automaton A operation. The
task of the generator based on automaton A is to calcu-
late new positions of binary digits of code word Z in each
time. It is equivalent to obtaining of the next state S(z+1).
We call the obtaining of the next state of automaton A
iteration.

The position of first binary digit of state S(¢+1) is al-
ways the same, it is s(1)=1. We can calculate values of sub-
sequent positions of binary digits according to (1). Since
these calculations take place recursively, it is convenient
to present them using another automaton Moore (we call
it as low level automaton ) with transition and output
functions:

s(i+1)=s(i)+v, GF(n),

y(i)=s(), GF(n).

In this automaton, the value of position s(i+1) depends
both on the value of previous position s(i) and on integer
constant v, which does not change during the entire session
of automaton A operation.

It is convenient to investigate properties of sequences of
positions s(i) based on automaton =, that is, to investigate
cycles of low-level permutations. Let us consider the tran-
sition graph of automaton = for n=15 and different values of
constant v.

If i—(@i+1)modn, there is an initial cyclic sequence of
positions s(i), which coincides with the initial value of
codeword Z. If i—(i+2)modn, we get a new cyclic sequence
of positions s(i) of n=15 length. If i—(i+3)modn, we get
three separate cyclic sequences of positions s(i), each of
n=>5 length.

The structure of low-level permutation cycles depends on
the ratio between the parameters n and v. We can note the
main conformities:

— if there are no common multiple for parameters 7 and v,
then cycles of maximum length L=n are formed;

—if there are a common multiple m for parameters for n
and v, then m cycles of length L i%n are formed.

As a result, a next state S(¢) of automaton A will appear
based on one or several cycles of low-level permutations.
Getting of w of different states S(¢) will mean the possibility
of w iterations for permutation generators based on autom-
aton A.

Table 1 shows the parameters of the permutation genera-
tor for n=15 and possible values of v constant.

Computer modeling shows that this generator property
is possible if L=n only. A permutation of i—(i+2)modn pro-
vides this in the most cases.

Sometimes there are pairs of positions called pendulum
positions. They only replace each other or stay on one place
permanently. There is no point to continue iterations specif-
ically for pendulum positions after permutations of all other
positions.



Fig. 2. Cyclic permutations of /—~(/+v)mod15 for v=1 (blue)
and v =2 (red)

We can call this effect, when it is not possible to correct
some errors at decoding, the correction threshold. Such sit-
uation is typical for all iterative codes (it is known as “error
floor” for LDPC codes and turbo codes [17]). We know the
exact condition for appearance of a correction threshold in
IDCC unlike in probabilistic codes.

%+1 and 2’%+1.

Pendulum positions exist only for (n, k)-codes with odd
length multiple of three at permutations with v=2 parameter.
Their positions in a codeword are as follows:

%+1 and 2"3+1.

It is necessary to generate check sets additionally for
pendulum positions.

Table 1
Possible parameters of the permutation generator
n V=2 w L
15 2,7,813 4 15
15 4,11,14 2 15
15 3,6,9,12 3 5
15 5,10 5 3

It is very simple to determine a number of iterations for a
given cyclic code. If the previously considered automaton A
passed to state S(¢) again from initial state S(¢) on (w+1)-th
time of operation, therefore, such generator has w iterations
of permutations. The generator with the highest number of
iterations is the best, because it corrects more errors.

5. Influence of permutations on the complexity of
decoding of traditional cyclic codes

Let us consider the influence of permutations on com-
plexity of decoding of cyclic codes in more detail.

The task of decoding cyclic codes began to be considered
as solved after the appearance in the 60s of various algebraic
decoding methods, in particular, the Berlekamp-Massey
method [18].

We should clarify that the problem is really solved, but
only theoretically. Complexity of calculations is increas-
ing rapidly with an increase in the number of errors and
the length of a codeword. Therefore, various probabilistic
methods for decoding of linear codes appeared [9]. Howev-
er, complexity of calculations increased even more (mainly
due to the use of non-integer arithmetic), and guarantees of
obtaining of exact solutions disappeared at the same time.

Therefore, the problem of finding of exact solutions
with acceptable calculational complexity remains the
most important unsolved problem in the error correcting
coding theory.

A promising direction in this regard is a use of automaton
representation of cyclic codes. We use one more automaton
model [19]. Its basis is a special type of linear finite autom-
aton — linear finite-state machines (LFSM). A transition
(state) function describes LFSM with » memory elements, /
inputs and m outputs over GF(2) Galois field

SE+1)=AxS@)+BxU(t), GF(2) (2)
and output function

Y(t)=CxS@t)+DxU(®t), GF(2),
where

A=|aij

. B=b,

U

C= |c..

y

and D= |d1-]-

y
rxr rxl mxr mxl

are the characteristic matrix of LFSM; S(¢)= |si|’_ is a state
word; U(t)=|u1-|l is the input word; Y(t)=|yl-|m is the out-
put word.

The decoding process of cyclic (n, k)-codes based on au-
tomaton models consists of two stages:

— determination of presence or absence of an error;

— determination of error parameters, if any.

The first stage consists in calculation of state S(n):
LFSM will go into this state after supply to the input of
n-digit codeword Z using the recursive formula following
from (2):

S(j+1)=AxS(j)+Bxz, GF(2), z,€Z, j=1+n.

The state S(n) is usually called a syndrome. A zero value
of this state indicates absence of errors in a transmitted
codeword within detecting capabilities of the selected cyclic
code. If there is an error of multiplicity t in a code word,
which we denote Z'”, we will obtain a non-zero error syn-
drome — SP().

The peculiarity of cyclic codes is that we get n shifts of
j-th error pattern E}’) of multiplicity t after 7 shifts of cyclic
code word ZP.

Each E](.‘) shift corresponds to j-th error syndrome S().
All nshifts of E{ correspond to n syndromes of S$D(), which
form zero cycles (ZC) for errors of multiplicity t [20].

It is sufficient to select one syndrome only in each ZC to
correct errors in accepted code word Z. We should give
preference to the regular syndrome $(), which is an r~dig-
it cyclic word containing t units and (r—t) zeros, and with a
unit in the lower (left) position (r=n—Fk) bit [21].

The regular syndrome (we call ZC, which contains it,
regular also) corresponds to this configuration of erroneous
binary digitsin Z'”, when all of them fall into the r-position

XP (X cZP) check window. It is sufficient to perform



the following operation to obtain positions of X‘® check
window without errors

XO=XD+8" (n), GF(2).

Irregular S() syndrome (we call ZC, which contains
it, irregular also) corresponds to such a pattern of erroneous
digits, when they are located along the entire length of code
word Z and, as a result of a shift, never enter 7-position
check window. It is necessary either to keep a cumbersome
correspondence table between S”() and Z'”, for such er-
rors or to perform complex algebraic transformations.

For a cyclic (n,k)-code in the presence of t errors, we
determine amount of regular ZC from formula:

N =("‘k‘1} 3)

-1

and irregular ZC:

e
T)n -1

where (]) is the number of combinations from j to i.
i

It follows from (3) and (4) that we obtain only regular
error syndromes within the limits of the error-correcting
capabilities of (n, k)-code, if the inequality

n—k—-1 n\1| .
> — | is correct for t=1..T .
-1 T)n

For example, (15,7)-BCH code, which corrects two er-
rors, meets this requirement, it has all regular ZCs for t=2
and, therefore, it is easy to decode it. But a quadratic-resi-
due (17,9)-code with the same error-correcting capabilities
(dmin=5) has one irregular ZC for t=2.

In general, a amount of irregular ZC increases and, ac-
cordingly, difficulty of correction of such errors increases,
with an increase in the length of # code and t number of
corrected errors.

And here we can use permutation decoding. Transforma-
tion of irregular syndromes into regular ones occurs under
the influence of cyclic permutations. A larger number of error
patterns fall into the check window and get corrected due to
the shift of positions of code word Z'? at each iteration.

Fig. 3—5 shows curves of a gradual increase in regular
ZCs with an increase in iterations for several codes.
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Fig. 3. Share (in %) of regular error syndromes by iterations
for quadratic-residual (17,9)-code, error multiplicity t=2

Fig. 4. Share (in %) of regular error syndromes by iterations
for (63,51) BCH code, error multiplicity =2

Fig. 5. Share (in %) of regular error syndromes by iterations
for (23,12)-Golay code, error multiplicity =3

Example 1. In the known (23,12) Golay code with gen-
erator polynomial

g()=1+x "+ x" + 27 + a5+ 2"+ x"

regular ZCs correspond to all single errors, 91 % of double
errors and 58 % of triple errors. Let us analyze only the
influence of permutations on complexity of error detection
without considering the decoding procedure described in
detail in [21]. Let us assume we obtained a code word with
three errors (marked in red) via the communication channel:

Z9=10000000100011000011110.  (5)

The pattern of error positions in (5) does not make them
fall into the 11-position check window of this code, which
corresponds to the irregular error syndrome. After the first
permutation of i—(i+2)mod23 form, we get the code word

ZP"=100010100110000000 1001 1.

After the second i—(i+2)mod23 permutation, we get the
code word

Z" — MO0 1 00001000001 (6)

The code word (6) corresponds already to the regular
error syndrome, it falls into the 11-position check window
(highlighted in color) and it is easy to correct it. In conclu-
sion, it remains to make only two reverse permutations and
to get the corrected Z codeword.

Thus, we do not need neither complex algebraic transfor-
mations nor storage of additional information for decoding
of the Golay code.

IDCC phenomenon manifests itself in simplification
of the decoding process: if there are iterations, amount of
corrected errors (i. e., parameter dy,;,) does not change, and
calculational complexity decreases sharply. As a result, there
is a significant reduction of decoding time for high multiplic-
ity errors.

6. Determination of error-correcting capabilities of
cyclic codes using permutations

It is not possible yet to solve the problem of determina-
tion of the error-correcting capabilities of error correction
codes in a general form. We can only talk about individual
classes of codes today. There is the resolution of the problem
only at the level of various types of approximation of exper-
imental data with analytical expressions for probabilistic
codes, in particular for LDPC codes [14].

The basis of the task of determination of the error-cor-
recting capabilities of codes is a check algorithm, which
determines its belonging to NP-hard problem. It is necessary
to simplify a search for code words (error syndromes) as



much as possible using various properties of specific classes
of codes.

Cyclic codes are the most suitable for this objective.

Firstly, it is possible to replace n error patterns of n-digit
code word with a single error pattern due to the cyclical
property. In addition, there are T equivalent error patterns
for each error multiplicity 1. It is enough to use only one
(basic) error pattern. As a result, it is possible to reduce an
amount of data analyzed in nt times.

Secondly, it is possible to reduce search and make it more
formalized using cyclic permutations of positions of code
words.

Let us consider the method of determination of the
error-correcting capabilities of IDCC in more detail. The
basis of the method is a generalized algorithm for accurate
determination of a degree of correction of errors of various
multiplicities. There are different options of the algorithm
for each error multiplicity t. They differ in complexity of
calculations. An increase in error multiplicity 1 leads to an
increase in complexity and execution time of the algorithm.
Moreover, it is possible to perform the indicated options of
the algorithm for each error multiplicity in parallel.

Based on this method, it is possible not only to determine
an exact number of corrected errors of various multiplicities,
but also their dependence on code parameters.

7. Algorithm for determination of error-correcting
capabilities of IDCC relatively to double errors

Let us assume we have a cyclic (n, k)-code with the

The main idea of the algorithm is that positions of error
patterns of multiplicity 7 fall into left and right check win-
dows during several iterations (can occur simultaneously).
The presence of such patterns ensures verification of the
corresponding errors of multiplicity t.

This algorithm is convenient to perform in the table.

Example 2. Let us determine the degree of error-cor-
recting capabilities with respect to double errors of a cyclic
(31,26) Hamming code with a primitive generator polyno-
mial g(x) of degree 5 (Table 2). Such errors correspond to
30 double errors patterns

21,22,

21,23,

21,231.

After formation of three check windows, we can see that
checking of positions zy,z9,23,24,z5 and positions z,8,229,230,
z31 (highlighted in red) occurs at the first iteration. New po-
sitions z7 and zg fall into the left check window, and positions
z94 and zo4 fall into the right check window at the second
iteration with the permutation of i—(i+2)mod31 form. We
notice these new positions in X main check window.

New positions zq3 and z7 fall into the left check window,
and positions zyg and zy fall into the right check window at
the third iteration. There are new positions added in both ex-
treme windows at the fourth iteration: zo5 andzg. At the fifth

iteration, there are new positions in both extreme windows:
z13 and zy5. Here permutations lead to the source codeword.

Table 2
code word
Checking of codeword positions Z in iterations
Z=21 2y ..2p-12n, D iera. | X Left Xy Right
tions check X@Main check window check
1. To set the iteration number w=1. To generate the window window
current code word Z., which coincides with the source ) Dt LS s |
word ). T | 247218219290291299293704 295796297298 729730231 o
2. To form three check windows of n positions of 5 S TALYLSLALSLGLTIS I L 2S5 |
code word Z,: i 2477487197002 299793724 75706707708709730731 | -
— left check window Xj; (lower 7 positions of the R D B L I T U I,
current code word Z) DTN | 2472487497007 29979374795 7967977 987:007:307 3. ’
b | zizezigzezy || PISPSILTISISE TG |
21y 22yeer s Zr152p, 247218219720221229223724725726Z272987297:30231
5 2172971873 7129732.42526272829210211212213214215216 130715731746
— right check window X, (higher r—1 positions of * | 247218249700701290295794795706 7977087 09%30%31 |

the current code word Z,.)
Zimy Zmtyer s Zny(M=N—21=2)

and main check window X® (all positions of the source
word (7)).

3. To mark all positions of code word Z located in win-
dows Xj, and X,,, during w iteration in X® main check win-
dow X,

If all positions in window X® are marked, then all digits
of word Z are checked during w iterations, go to step 5.

4. To increase the iteration number w=w+1. To perform
permutation (for example, of i—(i+2)modn form) of posi-
tions of code word Z, and to form the next current code word
Z. of the permutated positions.

If the permutated code word Z, coincides with the source
word (7), then go to step 5, otherwise go to step 2.

5. The end.

Thus, it is possible to identify and correct 21 double error
patterns, which is 68 % of all possible double errors for a giv-
en code, after 5 iterations. Thus, we replace the traditional
complete checking of all possible options of comparison of
code words with the algorithm of directional search for a
solution to the problem, which leads to significant savings in
calculational time.

8. The relationship between error-correcting capabilities
and parameters of IDCC

Iterative decoding methods of deterministic codes give
possibility to approach the solution of the key problem of
coding: finding the minimum code redundancy to provide
the specified error-correcting capabilities of a code, from a
new perspective.



We can find firstly the exact degree (expressed, for ex-
ample, in %) of error correction of the given multiplicity t for
(n, k)-code. We can gradually increase a degree of correction
of given errors gradually increasing (n—k) value, which is
equivalent to increasing of the length of check window X.

For example, it is sufficient to increase the word length
of a check word by one to correct all double errors from Ex-
ample 2 completely. For this purpose, we can use g(x)(x+1),
generator polynomial, which is equivalent to using the
(31,25) Abramson code.

The iteratively decoded cyclic (15,11)-code given in
[11] gives possibility to correct 40 % of triple errors. It is
necessary to increase the check word to digit 7 to increase
error-correcting capabilities to 100 %.

If necessary, it is possible to reduce error-correcting ca-
pabilities of a code.

Of course, there remains the task of distinguishing be-
tween errors of different multiplicities (either using a slave
cyclic code [11] or by the traditional way using additional
information from demodulator [9]).

In traditional cyclic codes, we select number of digit of
a check word ¥ (a length of check window X) based on the
requirement that it can represent all error syndromes of a
given multiplicity T. During iterative decoding, error syn-
dromes are distributed on separate iterations, which reduce the
number of digit of a check word ¥ (check window X) and the
possibility of placing error syndromes of higher multiplicity
in it is provided [6]. A decrease length of word ¥ increases
length k of informational word I, which leads to an increase
in code rate.

In known codes (for example, BCH codes), for neighbor-
ing T and t+1 values, parameters 7, £ and 7 of a code change
at large intervals. The indicated intervals are much smaller
during iterative decoding. It is convenient for practical im-
plementation.

9. The study of error-correcting capabilities of
probabilistic codes

Let us consider LDPC codes in more detail. These
codes are the most complete embodiment of the Shannon
theorem on the transmission of information via a commu-
nication channel with interference in practice. If a code
word length is infinitely long (which is equivalent to an
infinitely long decoding time), it is possible to correct
almost all errors. If the task was to correct all errors
during one time, then we would need a decoder of infinite
complexity. Creation of such an error correction code is
not possible in practice.

LDPC codes partially bypassed of the problem of com-
plexity thanks to the multi-time (iterative) decoding meth-
od. Decoding complexity decreases to acceptable values due
to an increase in decoding times (iterations) [22].

It is possible to solve the problem of error correction
capabilities in a similar way: amount of errors detected and
corrected increases due to an increase in decoding iterations.

A characteristic feature of probabilistic iteratively de-
coded codes is that it is not possible to express a degree of
their error-correcting capabilities by accurate analytical
estimates.

We can assume that to probabilistic codes will corre-
spond to probabilistic estimates for each error multiplicity
most closely. Therefore, we can represent error-correcting

capabilities of LDPC codes for errors of multiplicity t; and
less as a sequence of non-integer numbers

2,0, 2,0s... 2,40, p;0,

where p;() is the probability of correction of errors of mul-
tiplicity T,

P10=1LpiO=<pi-10).

Value pi() for a single error is always equal to 1, and
the remaining values p;() will increase gradually at each
iteration from 0 to 1, not reaching unity for large error mul-
tiplicities.

The similar situation with a change in the error-correct-
ing capabilities occurs in case of iterative decoding of cyclic
codes based on permutations of codeword positions [11]. We
can also express the degree of error correction by a sequence
of non-integer numbers (or as a percentage of the total num-
ber of errors) [23].

Factors of the error-correcting capabilities (change-
ability and non-integer representation) of iterative codes of
various classes make incorrect to compare them with the
error-correcting capabilities of traditional deterministic
codes based on a single, constant and integer parameter d,;y,.

10. Discussion of criteria for error-correcting
capabilities of codes

There are many unsolved problems in the modern theory
of error correction coding. The most important of them is
the problem of effective (not NP-hard) determination of the
error-correcting capabilities of a code.

On the one hand, there is a wide variety of error-correct-
ing codes. On the other hand, there are two main criteria for
estimation of codes:

— by the distance to the Shannon limit on BER curves;

— based on the minimum code distance and asymptotic
bounds.

The ancestor of the probabilistic branch of the informa-
tion theory, C. Shannon, also considered codes only from
the probabilistic side and, therefore, the first criterion until
today is the main one for most of error correction codes.

However, for deterministic codes other criteria (code
distance dmin and asymptotic bounds) are known [7]. These
bounds give possibility to estimate properties of codes for
detection of errors depending on the introduced redundan-
cy. The proposed IDCCs are closest ones to the asymptotic
Hamming bound. From this point of view they have a signif-
icant advantage relative to well-known codes, in particular,
BCH codes [20]. In practice, the advantage manifests itself
in an increase in code rates and transferring of more useful
information per unit of time (Table 3).

We can note regarding parameter d,;, that it gives a very
approximate estimate of the error-correcting capabilities even
for deterministic codes, since it is possible to correct errors
beyond dyi, for most codes [23]. We can obtain the most accu-
rate estimates by direct determination of amount of corrected
errors, which is relatively easy to do for IDCC codes.

LDPC codes have a deserved advantage among probabi-
listic codes due to the maximum proximity to the Shannon
limits. Attempts to estimate them using code distance dpi,
are incorrect and only diminish their advantages.



Table 3

Parameters of iterative and traditional codes

Code Code rate, k/n Lengtv}\ll(;;)rfd:?rcheck Numbezr(;rf()igrrected Decggfristfizlgor Number of iterations

(15,11) Hamming 73 % 4 1 100 % 1
(15,7) BCH 47 % 8 2 100 % 1
(15,5) BCH 33% 10 3 100 % 1
(31,16) BCH 52 % 15 3 100 % 1
(31,21) BCH 68% 10 2 100 % 1
(15,11) IDCC 73 % 4 2 87 % 3
(15,11) IDCC 73 % 4 3 40 % 4
(17,10) IDCC 59 % 7 3 100 % 4
(31,25) IDCC 81 % 6 2 100 % 5

If we use the corresponding criteria for each type of a
code, then we will see interesting patterns between the con-
sidered probabilistic and deterministic iterative codes.

Firstly, all iterative codes increase their error-correcting
capabilities gradually, with an increase in a series of iterations.

Secondly, we can set the error-correcting capabilities as
a percentage for errors of different multiplicity for the indi-
cated iterative codes.

Thirdly, iterative codes are high-rate codes.

We can choose the minimum possible length of a check
word to ensure the specified error-correcting capabilities
of a code in IDCC. This feature makes iterative codes dif-
ferent from other error correction codes, which form their
error-correcting capabilities immediately in the form of an
integer parameter dyy;p.

Each type of iterative code has its own scope of appli-
cation, where its advantages are the most useful. From this
standpoint, LDPC codes are best for large code lengths, for
which approximate estimates of their correcting capabilities
are possible with a validation less than 100 %, and IDCC
are best for small lengths of codes with accurate estimates of
their error-correcting capabilities.

Thus, studies have showed the following:

— it is necessary to distinguish probabilistic and deter-
ministic error correction codes;

— an iterative decoding approach is possible not only for
probabilistic codes, but also for deterministic codes;

— there is much in common between iterative probabilis-
tic and deterministic codes, however, the criteria for estima-
tion of their error-correcting capabilities are different;

— the advantages of the proposed permutation decoding
are reducing of complexity of calculations and complete
formalization of actions in algorithms for determination of
error-correcting capabilities of deterministic codes;

— further studies are required to simplify algorithms for
determination of error-correcting capabilities of codes.

Of course, these arguments are preliminary, the develop-
ment of the error correction codes theory continues.

11. Conclusions

1. We performed mathematical substantiation of per-
mutation decoding of cyclic codes. We proposed a genera-
tor of cyclic permutations based on two Moore automata.
Formation of one state of an automaton of the high level
occurs with the help of an automaton of the low level.
Cycles of permutations of codeword positions are formed
with the help of states of the high-level automaton.

2. We carried out the study of regular and irregular
states of an automaton based on the automaton repre-
sentation of cyclic codes and gave quantitative estimates.
We proved that irregular syndromes are transformed into
regular ones under the influence of cyclic permutations.
And complexity of decoding cyclic codes decreases with
an increase in amount of regular syndromes.

3. We proposed methods for accurate determination
of error-correcting capabilities of IDCC based on cy-
clic permutations. For these codes, as well as for other
classes of codes, complexity of resolution of this problem
will increase significantly with an increase in error rate,
but it will be slower in nt times due to a simpler code
structure.

4. We substantiated the relationship between er-
ror-correcting capabilities and IDCC parameters. We
showed a significant increase in IDCC rate in comparison
with the known BCH codes (from 1.2 to 2.2 times for the
examples given).
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