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Розглядаються способи підвищення ефективнос
ті моніторингу процесів хмарної інфраструктури, які 
полягають в зниженні витрат обчислювальних ресурсів 
при збереженні необхідного рівня точності вимірювань. 
У даній роботі отримав подальший розвиток спосіб 
організації моніторингу процесів хмарної інфраструк
тури, заснований на апроксимації вимірювань, що нако
пичуються. Сформована необхідна і достатня множи
на апроксимуючих функцій, що відповідають ключовим 
властивостями спостережуваних процесів. Розроблено 
метод вибору апроксимуючих функцій для спостережу
ваних процесів хмарної інфраструктури. Метод скла
дається з оцінювання властивостей спостережуваного 
процесу та вибору його апроксимуючої функції.

Практична цінність роботи полягає в можливості 
зниження витрат обчислювальних ресурсів за рахунок 
зменшення кількості планових вимірювань при допусти
мому рівні зниження їх точності. Оригінальність під
ходу полягає у використанні апріорних даних про спо
стережувані процеси з метою отримання більш точних 
оцінок їх властивостей. Практична реалізація запро
понованого методу показує 20–40 % зниження кіль
кості планових вимірювань при збережені точності 
моніторингу на рівні не нижче 95 %. Таким чином, запро
понований метод дозволяє знизити навантаження на 
компоненти хмарної інфраструктури, зменшити вико
ристання процесорного часу і заощадити дисковий та 
оперативний простір фізичних і віртуальних вузлів. 
Результати дослідження можуть бути використані 
для програмної реалізації систем моніторингу хмарної 
інфраструктури

Ключові слова: моніторинг хмарної інфраструк
тури, комп'ютерна мережа, апроксимація функцією, 
витрати обчислювальних ресурсів
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1. Introduction

The main purpose of monitoring any information sys-
tem (IS) is to obtain up-to-date and complete information 
about its state. The effectiveness of decision making, directed 
to ensure the required quality of the IS operation, depends 
on the success of achieving this goal. The applied monitoring 
techniques must correspond to the technical conditions of 
the information environment, meet the requirements for the 
quality of collected information and the level of the compu-
tational burden.

At present, many software solutions [1] have been deve-
loped to monitor a cloud-based IS. Many of them implement 
the function of continuous monitoring with the help of stan-
dardized technologies such as SNMP [2] or WMI [3]. These 
technologies are deeply integrated with existing operating 
systems and are characterized by high scalability, adaptabi-
lity, and predictability of overheads.

The distributed multi-level architecture of the cloud 
based IS implies using the client-server technologies to col-
lect the values of observable variables. Monitoring a large 
number of distributed objects of the physical and virtual 
levels and transmission of large arrays of collected data to 

centralized warehouses cause significant computational bur-
den and increase the costs of operation of a cloud-based IS.  
It is required to find solutions to reduce the excessive 
computational burden generated by monitoring the cloud 
infrastructure processes. Computational resources such as 
the bandwidth of network communication channels, the use 
of processor time by the nodes of monitoring sites, and data 
storage space, are expected to be saved.

2. Literature review and problem statement

One of the challenges in the organization of monitoring 
cloud infrastructure processes is the issue of the generated 
excessive computational burden. In paper [4], it is argued 
that continuous monitoring of various types of services of  
a hybrid cloud-based IS can lead to the reduction of its total 
bandwidth and increase the cost of its operation. To reduce 
the operating burden, the optimal topology of monitoring 
agents should be developed and the level of data redundancy 
should be minimized. In [5], it is said that the cloud based 
IS is the future of cloud computing. The functions of cloud 
resources management are classified. The importance of  
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ensuring the required level of monitoring cost-effectiveness 
is indicated. In [6], the task of the organization of cost-effec-
tive monitoring in the context of minimizing delays and ana-
lyzing large data arrays in real time is considered. Paper [7] 
proposes a new monitoring architecture, which shows a high 
level of cost-effectiveness under limited conditions: a 0.05 % 
degradation of the response of the offered service while moni-
toring a small number of indicators of the performance of 
virtual machines.

Various methods of technical and organizational nature 
were developed to solve this problem: load redistribution by 
the communication channels [8, 9], compression of transmit-
ted data [10], statistical processing of measurements [11] and 
others [12]. However, there is a not solved issue of ensuring 
the required accuracy of measurements when achieving the 
goal of reducing the total computational burden. The reason 
for this is the objective difficulty of finding effective ways to 
implement monitoring that is independent of the changing 
conditions of the cloud environment.

Typically, the process of reducing the computational bur-
den remains outside the scope of standardized technologies 
of cloud infrastructure monitoring. The task of improving 
the cost-effectiveness of monitoring is solved by developing 
additional methods and technologies. The issue of organizing 
the platform-independent cost-effective monitoring of large 
hybrid cloud-based IS remains unresolved.

A variant of overcoming these difficulties may be using 
monitoring methods based on approximation of measure-
ments. However, the effectiveness of such methods depends 
significantly on the adequacy of the chosen approximating 
function. Research into the problems of approximation of va-
lues of observable processes of cloud infrastructure is appro-
priate. The formal approach can be based on the information 
models and the methods for their estimation proposed in [13].

3. The aim and objectives of the study

The aim of this study is to develop an approach to reduc-
ing the computational burden generated by monitoring the 
processes of the cloud infrastructure based on the approxi-
mation of measurements. The research is aimed at improving 
the accuracy of approximation of the values of observable 
processes by selecting an adequate approximating function.

To achieve the set goal, the following tasks are to be 
solved:

– to analyze the methods for approximation of observable 
processes and describe the necessary and sufficient condi-
tions for choosing the optimal approximating function;

– to develop the method for selecting approximating 
functions for observable processes of cloud infrastructure;

– to test the developed method.

4. Studying the techniques for selecting the 
approximating functions for the observable processes  

of cloud infrastructure 

4. 1. Provisions of the approximation of observable 
processes of cloud infrastructure

Any observable process of cloud infrastructure can be 
considered a random process. Therefore, some approximating 
function may be chosen for it. We will formulate the state-
ments that are relevant to solve the problem of selecting the 

approximation functions for the observable processes of the 
cloud infrastructure.

Statement 1. The true function f t( )  of any observable 
process of the cloud infrastructure can be approximated by  
a pre-selected function 



f t( )  with adequacy not lower than A. 
The feature of cloud infrastructure monitoring is that 

many of the measured indicators describe well-studied and 
understandable processes. This allows pre-selection (before 
measurements) of the structure of an approximating function 
based on the most significant properties of an observable pro-
cess. Thus, during measurements, it remains only to choose 
the parameters of the function by ensuring the required de-
gree of approximation adequacy.

If the set of functions 


Φ with different properties is 
formed, according to [14, 15], there can be found at least one 
function 





f t( ) ∈Φ that allows approximating the values of 
an observable process with the adequacy that is not worse 
than A, provided that an observable process has a functional 
dependence.

Statement 2. To approximate the observable processes, 
it is enough to choose the finite set of approximating func-
tions 



Φ  in accordance with the established requirements for 
approximation adequacy not lower than A.

The structural adequacy of the approximating func-
tion 



f t( ) is determined by the degree of its proximity to the 
true function of the process f t( )  by their properties. For all 
possible combinations of a priori selected values of the ob-
servable process, it is possible to form the finite set of approx-
imating functions 



Φ.  In this case, according to statement 1, 
there can be found at least one function 





f t( ) ,∈Φ  that allows 
approximating the values of an observable variable with ade-
quacy not worse than A.

Statement 3. To approximate any observable cloud in-
frastructure process, a limited set of approximating func-
tions 




F ⊂ Φ  are necessary and sufficient.
It is enough to select the functions non-recurrent by 

properties out of the set of approximating functions 


Φ, that 
correspond to pre-selected properties of an observable pro-
cess. The resulting set of approximating functions 




F ⊂ Φ is 
sufficient to approximate any observable process of the cloud 
infrastructure.

4. 2. Assessing the properties of the observable pro-
cesses of cloud infrastructure

Paper [16] described the key properties of the observ-
able processes of the cloud infrastructure for the selec-
tion of approximating functions. Formally, these proper-
ties are represented in the form of a priori information 
model C d l s t− =1 { , , , }j j j j  and a posteriori information model 
C d l s t l c m uf f f f1 = { , , , , , , , }.j j j j  Their parameters are presented 
in Table 1.

The represented models were revised in the current 
paper. Thus, to increase informativeness and brevity, the 
«lifetime» parameter of the a priori model was renamed 
«variability» and the «bulge/concave» parameter of the 
posteriori model was renamed «bulge». The «continuity» 
parameter was excluded from a posteriori model as not re-
levant. The values of the «monotony» and «bulge/concave» 
were reduced to set {0, 1}, where 0 is no monotony or bulge, 
respectively, 1 – the existence of monotony or bulge, respec-
tively. The values of other parameters remained the same. The 
designation of a priority model was changed from C1 to I–,  
of a posteriori information from C2 to I+, the index was re-
moved for all parameters, and parameter lf was renamed for p.
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The new records of a priori and a posteri-
ori information models I d l s t− = { , , , }  and I d l s t p m u+ = { , , , , , , } 

I d l s t p m u+ = { , , , , , , } respectively, where d is dy-
namicity, l is linearity, s is stationarity, t is the 
variability, p is linearity degree, m is monotony, 
u is the bulge. 

Estimation of models I d l s t− = { , , , } and I d l s t p m u+ = { , , , , , , } 
I d l s t p m u+ = { , , , , , , } is based on the method [13]. 

The source data are formed in the form of the 
monitoring specification M G F S T V= { , , , , }, where 
G is the aims of monitoring, F is the functional 
tasks of monitoring, S is the characteristics of an 
observable system, T is the monitoring tools, V is 
the set of observable variables (processes).

To assess a priori model I d l s t− = { , , , },  information about 
the character of an observable process is collected. A short-
term measurement session for obtaining the sample of values 
of observable process X– is carried out. Based on X–, a priori 
analytical data Α( )X −  – basic statistical indicators and dia-
grams for graphic-visual analysis are formed. The parameters 
of model I d l s t− = { , , , } are calculated based on Α( )X −  and 
rules R. The formed a priori model I d l s t− = { , , , } can be used 
both for the choice of the approximating function for an ob-
servable process, and more detailed analysis of its properties 
and the formation of a posteriori model I d l s t p m u+ = { , , , , , , }.

A posteriori model I d l s t p m u+ = { , , , , , , }  is assessed based 
on the data obtained after longer measurements of an ob-
servable process. The plan for measurements P, containing  
a set of measurement sessions non-intersecting in time p Pi ∈  
is chosen. The specification p t ti = { , , }0 Δτ  is chosen for each 
session, where t is the measurement duration, t0  is the time 
of the beginning of measurements, Δτ  is the measurement 
interval. P is formed expertly based on the pre-selected  
a priori model I d l s t− = { , , , }  and specification of monitor-
ing M G F S T V= { , , , , }.  Specification of data post-processing 
N = {ℜ, Δt} is formed, where ℜ is the rules of converting the 
measured values, Δt  is the assessment interval. The elements 
of the analyzed series of values are shown in Fig. 1. 

As a result of the implementation of measurement plan P,  
a series of measured values Х+ is formed for an observ-
able process. In accordance with Δt,  series Х+ is split 
into segments, for each of which an instance of model 
I d l s t p m u+ = { , , , , , , } is selected. The assessment of a posteriori 
model is based on rules R+ .  All the resulting instances of 
model I d l s t p m u+ = { , , , , , , } are recorded in the form of a fre-
quency distribution table Δ+.

4. 3. Selection of the set of approximating func-
tions 




F ⊂ Φ
In accordance with section 4.1, we will select the initial 

set of approximating functions 


Φ.
We will consider one of the basic sets of functions for 

the approximation of a time series [17]. These include such 
functions as linear, quadratic, cubic, power, exponential, 
fractional-linear, logarithmic, hyperbolic, fractional-ratio-
nal and moving average. According to statement 3, it is 
possible to choose from the described set of functions 



Φ 
such set 




F ⊂ Φ, that will correspond to all possible vari-
ants of instances of a posteriori model. As a result, out of 
all mathematically possible combinations of the values of 
parameters of a posteriori models, we obtain the follow-
ing admissible combinations: 0101010, 0110000, 0001111, 
0001101, 0001201, 0000201, 0000200, 0000111, 0000210, 
0010200, 0001110, 0001210, 0001200, 0011200, 1001200, 
1001100, 0001100, 0101111, 1001111. Following the prin-
ciple of the choice of the simplest approximating function 
and excluding redundancy, we will choose the final set of  
functions 



F :
1) linear: 



f t a t a1 1 0( ) ;= +
2) quadratic: 



f t a t a t a2 2
2

1 0( ) ;= + +
3) cubic: 



f t a t a t a t a3 3
3

2
2

1 0( ) ;= + + +
4) exponential: 



f t a ea t
4 1

0( ) ;=
5) moving average: 



f t f t n f t n5 1( ) ( ( ) ... ( )) .= − + + −
For each 




f t Fi ( ) ,∈  write down the corresponding in-
stances of a posteriori model in the form of set Θ i  (Table 2).

The formed sets Θ i consist of instances I d l s t p m u+ = { , , , , , , }, 
obtained after verification and validation of all the values of 
parameters of the model separately and in combination with 
each other.

Table	1
Values	of	parameters	of	models	 C d l s t− =1 { , , , }j j j j 	and	 C d l s t l c m uf f f f1 = { , , , , , , , }j j j j

Parameter Value

Dynamicity dj 0 – low dynamicity, 1 – high dynamicity

Linearity lj 0 – non-linearity, 1 – linearity

Stationarity sj 0 – stationary, 1 – non-stationary

Lifetime tj 0 – no changes, 1 – existence of changes

Non-linearity degree lf
0 – no non-linearity, 1 – first degree non-linearity (existence and permanence of a derivative of first order), 2 – se-
cond degree non-linearity (existence and permanence of second order and higher)

Continuity cf
0 – piece-continuous function with a break of first kind, 1 – piece-continuous function with a break of second kind, 
2 – continuous function that has no breaks

Monotony mf –1 – monotonous decrease, 1 – monotonous increase, 2 – no monotony

Bulge/concave uf –1 – bulge, 1 – concave, 2 – no bulge/concave

t

Δt

Δτ

Fig.	1.	Relations	between	measurement	duration	t,	measurement		
interval	Δτ	and	assessment	interval	Δt
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Table	2

Set	 Θi 	of	instances	 I d l s t p m u+ = { , , , , , , } 	for	




f t Fi ( ) ∈

Θ1 Θ2 Θ3 Θ4 Θ5

0101010 0001111 0000201 0001110 1001111

0110000 0001101 0000200 0001210

0001201 0000111 0001200

0000210 0011200

0010200 1001200

1001100

0001100

0101111

4. 4. The rule of choosing an approximating function 
for an observable process of cloud infrastructure

For the rule of choosing 




f t Fi ( ) ,∈  designated as ρ( , ),Θ Δ+  
the original data are: Θ  –the set of admissible instan-
ces I d l s t p m u+ = { , , , , , , } for all 




f t Fi ( ) ∈  (Table 2), Δ+ – fre-
quency table of instances distribution I d l s t p m u+ = { , , , , , , }  
for v Vi ∈ . There is a search for the closest by properties 




f t Fi ( ) ∈  for v Vi ∈  based on the normalized indicator of  
Euclidean distance between instances I d l s t p m u+ = { , , , , , , } 
from sets Θ  and Δ+ :

D N d d d Ij j kj j
= ( )⋅ ( )( )( )+

+Σ
Δ

min , ,..., ,1 2 δ  (1)

where

d I i I ikj k j
i

= −( )+ +

=
+∑ θ [ ] [ ] ,

Δ

2

1

7

I ik1
+ [ ] is the i-th parameter of the k-th instance of the model 

from Θ, I i
jΔ+

+ [ ]  is the i-th parameter of the j-th instance of the 
model from the table Δ+, N is the normalizing function.

The criterion of choosing 




f t Fi ( ) ∈  is the minimization of 
indicator (1).

5. Formation of the necessary conditions for the adequate 
approximation of the observable processes of cloud 

infrastructure 

5. 1. Description of a method for the selection of ap-
proximating functions for the observable processes of 
cloud infrastructure

The method for selecting approximating functions for 
observable processes of cloud infrastructure with partial  
a priori and a posteriori certainty is proposed.

The original data of the method are the specification of 
monitoring of cloud infrastructure M G F S T V= { , , , , }, where 
G is the monitoring aims, F is the functional tasks of moni-
toring, S is the characteristic of an observable system, T is the 
monitoring tools, V is the set of observable processes.

The result of the method application is the choice of appro-
ximating function 



f t Fi ( ) ∈  for each observable process v Vi ∈ .
The method consists of twelve steps, carried out for  

each v Vi ∈ :
1) a short-term measurement session for the observable 

process vi  is carried out to form the sample of values Х–. 
The recommended session duration is 30 minutes with the 
measurement interval from 1 to 10 seconds;

2) based on X − ,  a priori analytical data Α( )X −  – basic 
statistical indicators and diagrams – are formed;

3) graphic and visual analysis of Α( )X −  is performed, 
within which model I d l s t− = { , , , }  is estimated with the help 
of rules R–;

4) the hypothesis about the necessity of a detailed analy-
sis of properties of the observable process vi  is verified. If the 
hypothesis is rejected, proceed to step 12, otherwise, to step 5;

5) the plan of measurements P for the observable pro-
cess vi  is formed; for each session p Pi ∈ ,  specification 
p t ti = { , , },0 Δτ  is described, where t is the session duration,  
t0 is the time of the beginning of the session, Δτ  is the mea-
surement interval. Plan P is formed in an expert way based 
on the monitoring specification M G F S T V= { , , , , }  and mo-
del I d l s t− = { , , , };

6) within the implementation of the plan of measure-
ment P of observable process vi , series of measured values X+ 

is formed;
7) the rules of converting the measured values ℜ are 

selected;
8) the series of values X +  is processed according to 

rules ℜ for a whole series of values;
9) estimation interval Δt  is selected in the range from 

10 to 15 values;
10) the whole set X +  is split into sections x Xi ∈ + ac-

cording to Δt;
11) the cycle of analysis of all x Xi ∈ +  is implemented. 

The values are converted according to ℜ and instances of  
a posteriori model I d l s t p m u+ = { , , , , , , }  are selected with the 
help of rules R+ . The frequency table of distribution Δ+ of all 
computed instances of the model is formed;

12) 




f t Fi ( ) ∈  is selected using rule ρ(Θ, Δ+).

5. 2. Verifying the adequacy of approximating func-
tions of the observable processes 

The adequacy criteria 




f t Fi ( ) ∈  are based on indica-
tors from [18]:

1. The existence of a trend in the training sample. The 
hypothesis about the absence of a trend is checked using the 
method for checking the average levels’ differences. Within 
this method, using the Fischer criterion F X Y=

 

δ δ2 2 , where  


δ2 is the selective variance, the hypothesis about the homo-
geneity of variances is verified. If this hypothesis is accepted, 
we proceed to the next stage of verification of the trend 
existence, otherwise, the method does not give an answer 
to the question of whether there is a trend or not. The final 
verification of the hypothesis about the absence of a trend is 
made using a two-selective t-criterion by Student:

t
Y Y

n n

=
−

+

1 2

2 2

1 1δ
,  (2)

where δ  is the root mean square deviation of the difference 
of the mean.

If the hypothesis is accepted, the trend is absent, other-
wise, the trend is proved.

2. The randomness, normal distribution, zero mathema-
tical expectation and lack of autocorrelation of residuals.  
A series criterion is used to verify the residual’s randomness:

k n

v n n

max . lg

. . ,

< +( ) 

> + − −( )











3 3 1

0 5 1 1 96 1
 (3)
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where kmax  is the duration of the longest series, v is the to-
tal number of series, n is the length of the sample of values, 
square brackets designate the whole part of a number.

If at least one inequality of (3) is broken, the approximat-
ing function is considered inadequate.

The peak criterion is also used to verify the randomness:

p p p> −



1 96 2. ,δ  (4)

where square brackets designate the integer part of the 
number, p is the number of peak points, p  is the mathematic 
expectation of the number of peak points, δ  is the variance 
of the number of peak points.

If inequality (4) is met, the approximating function is 
considered adequate.

To verify the normal distribution of the residual value, 
indicators of asymmetry and excess indicators are used:









γ σ

γ σ

γ

γ

1

2

1 5

6
1

1 5

1

2

<

+
+

<









. ,

. ,
n

 (5)









γ σ

γ σ

γ

γ

1

2

2

6
1

2

1

2

>

+
+

≥









,

,
n

 (6)

where 
γ1, 
γ 2 are selective characteristics of asymmetry and 

excess, σγ1
, σγ2

 are corresponding root mean square errors.
If both inequalities in (5) are true, the hypothesis about 

the normal character of the distribution of residual com-
ponent is accepted. If at least one of the system’s inequali-
ties (6) is true, the hypothesis of the normal character of 
distribution is rejected and the approximating function is 
considered inadequate. 

The verification whether a mathematical expectation of 
residual component is equal to zero is based on the single- 
selective t-criterion by Student:

t
S

n= ε ,  (7)

where ε  is the mathematic expectation, S is the standard 
deviation. If (7) is smaller than the tabular value with sig-
nificance α  and the number of freedom of powers n–1, the 
hypothesis about the equality of mathematical expectation to 
zero is accepted, otherwise this hypothesis is rejected and the 
approximating function is considered inadequate.

Verification of independence of values of the residual com-
ponent is performed using the d-criterion by Darbin-Watson.

d
t t

t

n

t
t

n=
−( )−

=

=

∑

∑

ε ε

ε

1

2

2

2

1

,  (8)

The value (8) is compared with tabular values of d1  
and d2. If d d> 2,  the hypothesis about the independence  
of the levels of the residual sequence is accepted – the ap-
proximating function is adequate. If d d< 1, the hypothesis 
is rejected and the approximating function is not recognized 
as adequate. At values d d d1 2< > , it is impossible to draw  
any conclusion.

6. Example of implementing the method for the selection 
of approximating functions for the observable processes 

of cloud infrastructure 

6. 1. Description of specification of cloud infrastruc-
ture monitoring

Table 3 gives the specification of the planned monitoring 
of cloud infrastructure M G F S T V= { , , , , }, G is the aims of 
monitoring, F is the functional tasks of monitoring, S is the 
characteristics of an observable system, T is the monitoring 
tools, V is the observable processes.

Table	3	

Specification	of	planned	monitoring	of	cloud		
infrastructure

Parameter Meaning 

G
Ensuring the required level of performance of virtual 
cloud infrastructure nodes

F
Control of the loading level of processors of virtual 
nodes of cloud infrastructure

S
Cloud infrastructure based on VMware vSphere tech-
nology, consisting of a set of virtual servers based on 
Windows Server 2008 and Windows Server 2012

T Monitoring tools within VMware ESXi

V
Variable «CPU utilization», showing an instant value 
of percentage of using processor time

Description of the specification of the planned monitor-
ing allows proceeding to the beginning of selecting appro-
ximating functions for observable processes.

6. 2. Implementation of the steps of the developed 
method

Step 1. Form a set of values X −  by measuring the pro-
cess v1  every second within 5 minutes.

Step 2 Prepare Α( ).X −  Based on sample X − ,  calculate 
the basic statistical indicators (Table 4), plot the diagram of 
measured values X −  (Fig. 2) and the diagram of the corre-
sponding histogram (Fig. 3).

Table	4

Statistical	indicators	of	observable	process	 v1

Minimum Maximum Mean Standard deviation

15.68357 86.82031 22.72008 7.647295
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Fig.	2.	Diagram	of	the	set	of	values	X –	of	the		
CPU	utilization	variable
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Fig.	3.	Histogram	of	the	set	of	values	X–	of	the		
CPU	utilization	variable

Step 3. Choose parameters I d l s t− = { , , , }  for v1  by means 
of graphic-visual analysis Α( )X −  according to rules R –. The 
result is given in Table 5. 

Table	5

Values	of	parameters	of	model	 I d l s t−= { , , , }	for	an	
observable	process	

Parameter Value Comment

D 0
Low indicator of standard deviation rate, as well 
as the absence of a large number of strong curve 
fluctuations, indicates the lack of high dynamism

L 0
Existence of the points of the graph inflection and 
curvature characterizes the process as non-linear

S 0
Inconstant character of variance and the mean 
indicates the lack of stationarity

T 1
Observable process is long-term because its va-
lues differ at any moment of time

Thus, I − = { , , , }.0 0 0 1
Step 4. Consider that the observable process v1  requires 

more detailed analysis since the existence of a weakly pre-
dictable noise component does not allow determining quite 
exactly the character of the process based on a priori data. 
Proceed to step 5.

Step 5. Choose the measurement plan P for process v1. 
Based on the description of the system, the basic period of 
activity of the database servers under consideration is from 9  
to 18 hours. Carry out 6 measurement sessions p Pi ∈ , widely 
embracing the specified period of activity. Select the specifi-
cation of measurement sessions p t ti = { , , },0 Δτ  where t is the 
session duration, t0 is the time of the beginning of the ses-
sion, Δτ is the measurement interval: s1 = {30 min, 11:30, 1 s.}, 
s2 = {30 min, 12:30, 1 s}, s3 = {30 min, 14:30, 1 s}, s4 = {30 min, 
15:30, 1 s}, s5 = {30 min, 16:30, 1 s}, s6 = {30 min, 17:30, 1 s}.

Step 6. Perform the measurements of the observable pro-
cess v1  according to plan P and form the sample of values X + 
with the capacity of 10800 values.

Step 7. Select the rules of converting the measured 
values ℜ: sharply outstanding values (exhausts) should be 
eliminated using the Irvine criterion [19] and exponential 
smoothing with alpha constant 0.8 should be performed in 
each estimation interval.

Step 8. As rules ℜ, applied to the entire X + were not se-
lected, proceed to the next step.

Step 9. Select the estimation interval Δt equal to 10 values.
Step 10. Split set X + into sections x Xi ∈ + according  

to Δt, where each subsequent section xi is taken by means of 
shifting the value window having length Δt  by one position 
to the right. As a result, we form 10791 sections x Xi ∈ + .

Step 11. For each x Xi ∈ + , convert the values in accor-
dance with rules ℜ and estimate model I d l s t p m u+ = { , , , , , , } 
using rules R+ .  As a result, form the frequency table 
of distribution Δ+ of estimated instances of model I d l s t p m u+ = { , , , , , , } 

I d l s t p m u+ = { , , , , , , } (Table 6).

Table	6

Frequency	table	Δ+	–	frequency	f	of	model	instances	
I d l s t p m u+= { , , , , , , }

I+ 0001200 0001100 0001110 0011200 0001101 0101000 0101010

f 91.16 % 8.42 % 0.24 % 0.08 % 0.07 % 0.01 % 0.01 %

Step 12. Select the approximating function 


f t Fi ( ) ∈  using 
rule ρ( , ).Θ Δ+  Calculate normalized indicator D from for-
mula (1) for each tested function (Table 7).

Table	7

Value	of	indicator	D	for	tested	approximating	functions


f ti ( ) Cubic Quadratic Moving average Exponential Linear

D 0 0.42 0.43 0.83 1

In accordance with the presented indicator, it is recom-
mended to select a cubic approximating function.

6. 3. Assessing the adequacy of the selected approxi-
mating function

Verify the adequacy of the approximating function empir-
ically. Form test samples of the values of observable process v1 
and using the rules described earlier, compare the chosen ap-
proximating function with the other functions of set 



F .
Test data were collected for a week on weekdays. Mea-

surements of the observable process v1  were performed in 
accordance with the measurement plan P. 39 samples of 
1.800 each, united into a single set of values of the capacity 
of 70.200, were formed.

The adequacy of approximating function 




f t Fi ( ) ∈  was 
estimated within estimation interval Δt, selected at step 9 of 
the method testing. The estimation interval is shifted by one 
position to the right after each calculation of adequacy indi-
cators. For the value set of the capacity of 70200, the approx-
imating function will be tested 70199 times. Using rules from 
p. 5. 2, calculate indicator А – the percentage of intervals, in 
which corresponding 



f ti ( )  is adequate (Table 8).

Table	8

Adequacy	indicator	А	of	the	tested	approximating	functions	


f ti ( ) Cubic Quadratic Exponential Linear Moving average

А, % 41.32 37.25 34.24 33.90 29.42

The resulting adequacy indicator is the best for the cubic 
approximation function, which proves the adequacy of the 
developed method. Moreover, the order of adequacy value of 
other approximating functions is also almost in line with the 
previous theoretical calculations. Only the moving average 
function got a relatively worse result than it was predicted.

The presented evidence of the adequacy of the developed 
method, calculated based on theoretical indicators, requires 
additional practical verification. Testing will be carried 
out, which will involve the implementation of the moni-
toring process in accordance with the previously described 
specification (Table 3). The results of monitoring without 
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approximation and with the approximation of each func-
tion 




f t Fi ( ) ∈  will be estimated. We expect the best indica-
tors for the previously selected cubic function. 

Table 9 gives the results of calculations of computational 
burden C and the approximation error MAPE after conduc
ted test measurements. The C indicator is calculated as an 
average bitrate of the data transmitted within the monitoring 
process. The MAPE is calculated as the average absolute 
approximation error percent.

Table	9

Results	of	measurement	of	the	observable	variable		
CPU	utilization

Indicator



f ti ( )

Without  
approximation

Cubic 
Qua-
dratic 

Expo-
nential 

Linear 
Moving 
average  

C, bite/s 360 193 267 319 337 359

MAPE, % 0 3.79 4.00 0.28 0.21 0.21

Fig. 4 shows a fragment of the curves of values of an ob-
servable variable without and with the approximation of the 
cubic function.
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Fig.	4.	True	and	approximated	values	of		
the	observable	process

The obtained results prove the adequacy of the developed 
method because the cubic approximating function received 
the best indicator of computational burden at an acceptable 
level of reduction in measurement accuracy (no more than 
5 %). During monitoring a large number of processes, signi-
ficant savings in computational burden can be achieved.

7. Discussion of results of studying the approximation 
of values for the observable processes in the cloud 

infrastructure 

One of the criteria of effectiveness of monitoring the 
cloud infrastructure processes is to achieve the required 
indicators of the level of computational burden and degree 
of measurement accuracy. The monitoring effectiveness, 
based on the approximation of accumulated measurements, 
depends, in particular, on the adequacy of the chosen appro-
ximating function.

The studies of the ways of approximation of values of pro-
cesses of the cloud infrastructure revealed that it is possible 
to choose an adequate approximating function based on se-
ven properties of the approximating curve (information mo-
dels I d l s t− = { , , , } and I d l s t p m u+ = { , , , , , , }), in this case, five 

approximating functions (set 


F ) are enough for the approx-
imation of any process. The selection criterion 




f t Fi ( ) ∈  is 
the minimization of the indicator (1) – normalized Euclidean 
distance between the instances of model I d l s t p m u+ = { , , , , , , } 
of functions from set 



F  (Table 2) and instances of model 
I d l s t p m u+ = { , , , , , , } calculated for an observable process.

The formal approach to the selection of 




f t Fi ( ) ∈  is rep-
resented by twelve steps of the proposed method. Analysis 
of accumulated measurements according to the structure 
shown in Fig. 1, allows estimating the properties of an ob-
servable process in the form of a set of instances of model 
I d l s t p m u+ = { , , , , , , } and select 




f t Fi ( ) ∈  according to rule 
ρ( , ).Θ Δ+  The results of the method testing (Table 7) are 
verified in the study by the criteria for verification of the 
adequacy of the approximating function (Table 8). Empi-
rical indicators of monitoring efficiency (Table 9) prove the 
effectiveness of solving the problem of the generated excess 
computational burden. The positive result is reached due to 
missing the planned measurements and their replacement 
with approximated values.

A feature of the proposed method of selecting approxi-
mating functions for cloud infrastructure processes is the use 
of a priori information about observable processes. This made 
it possible to improve approximation results and ultimately 
reduce computational burden within the required measure-
ment accuracy. The designed method is the development of 
the approaches proposed in [20, 21]. The improvement lies 
in enhancing the approximation accuracy by increasing the 
number of approximating functions.

The constraints of the method are:
1) the probability of obtaining 100 % accuracy of ap-

proximation of values of observable processes tends to zero. 
Using the method when solving the problem of reducing the 
computational burden is bound to lead to some decrease in 
measurement accuracy;

2) for an observable process with a poorly predictable 
behavior or often changing properties, the use of the method 
is not effective, as in this case, it is difficult to choose an ade-
quate approximating function;

3) The method is focused on the quantitative one-dimen-
sional observable processes of cloud infrastructure. Qualita-
tive or multidimensional processes require additional trans-
formations to enable the use of the proposed method.

The disadvantages of the developed method include pos-
sible omissions of short-term bursts of measured values, a low 
probability of achieving 100 % accuracy of measurements, the 
dependence of the method effectiveness on expert evaluation. 

The proposed method can find its practical application in 
the implementation of cloud infrastructure monitoring sys-
tems. The described method for approximation of the values 
of observable processes can reduce the level of computational 
burden, provide the required level of measurement accuracy 
and promptness.

8. Conclusions

1. The set of key properties of an observable process 
of cloud infrastructure for the selection of an appro-
ximating function (information models I d l s t− = { , , , } and 
I d l s t p m u+ = { , , , , , , }) was formed. The set of approximating 
functions 



F  was selected. Criterion D and rule ρ( , )Θ Δ+  of 
selecting the approximating function 




f t Fi ( ) ∈  based on the 
properties of an observable process were developed.
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2. The method for the selection of approximating func-
tions for cloud infrastructure processes was developed. The 
method involves evaluation of the properties of an observ-
able process, comparing these properties with the properties 
of pre-selected approximating functions, and selection of 
an approximating function using the proposed criterion. 
The specific feature of the method is the use of a priori 
information about observable processes to improve the ac-
curacy of evaluation of their properties and the choice of an 
appropriate approximating function. Compared to similar 
solutions [20, 21], the difference of the proposed method is 
to enhance approximation accuracy through an expanded set 
of approximating functions and the developed method of se-
lecting them for observable processes. The method solves the 

problem of an excessive computational burden by increasing 
the number of missing planned measurements.

3. The computational research into the developed method  
was carried out by implementing the process of monitoring 
the CPU utilization variable of one of the cloud infrastruc-
ture servers. The result of the method implementation was 
verified by statistical criteria, and the obtained final assess-
ment proved the adequacy of the chosen function. The indi-
cators of computational burden and measurement accuracy 
calculated during monitoring the CPU utilization variable 
prove the effectiveness of solving the described problem of 
the research: the use of the bandwidth of communication 
channels was reduced by 40 %, the monitoring accuracy is 
ensured at the level of 95 %.
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