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Large enough structured neural networks are 
used for solving the tasks to recognize distorted 
images involving computer systems. One such neu-
ral network that can completely restore a distor-
ted image is a fully connected pseudospin (dipole) 
neural network that possesses associative memory. 
When submitting some image to its input, it auto-
matically selects and outputs the image that is clo-
sest to the input one. This image is stored in the neu-
ral network memory within the Hopfield paradigm. 
Within this paradigm, it is possible to memorize and 
reproduce arrays of information that have their own 
internal structure.

In order to reduce learning time, the size of the 
neural network is minimized by simplifying its struc-
ture based on one of the approaches: underlying the 
first is «regularization» while the second is based on 
the removal of synaptic connections from the neu-
ral network. In this work, the simplification of the 
structure of a fully connected dipole neural network 
is based on the dipole-dipole interaction between the 
nearest adjacent neurons of the network.

It is proposed to minimize the size of a neural 
network through dipole-dipole synaptic connec-
tions between the nearest neurons, which reduces 
the time of the computational resource in the rec-
ognition of distorted images. The ratio for weight 
coefficients of synaptic connections between neu-
rons in dipole approximation has been derived.  
A training algorithm has been built for a dipole 
neural network with sparse synaptic connections, 
which is based on the dipole-dipole interaction 
between the nearest neurons. A computer experi-
ment was conducted that showed that the neural 
network with sparse dipole connections recognizes 
distorted images 3 times faster (numbers from 0 to 9, 
which are shown at 25 pixels), compared to a fully 
connected neural network
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1. Introduction

Intensive research is underway on the use of neural net-
works to solve a wide class of problems related to intelligent 
data analysis (detection of non-stationary chaotic processes, 
clustering, intelligent control, diagnostics of biosystems, 
forecasting, emulation and pattern recognition). In par-
ticular, papers [1, 2] consider a technique of recognition of 
multispectral images with a signal amplitude commensurate 
to the noise level due to information resonance. The authors 
of [3] tackled the task of recognizing aerial photographs with 
a multilayer perceptron based on adaptive resonance.

Recognition of distorted images by using neural networks 
is a relevant issue in the field of Data Mining. In particu-
lar, study [4] analyzed the effects of white Gaussian noise, 
pixel maximization, and brightness minimization on image 

recognition quality; paper [5] examined the neural network 
technology of recognition of handwritten documents where 
the role of distorted images belongs to different styles of 
writing letters. In addition, it is proposed in [6, 7] to detect, 
and in [8, 9] to categorize, distorted images by using convo-
lutional neural networks.

Our review of the above methods for solving the tasks 
of recognition of noise distorted images by neural networks 
reveals a number of practical issues. In particular, minimizing 
the size of a neural network and the architecture of synaptic 
connections between neurons, reducing the learning time of 
a neural network, and increasing its capacity, improving the 
degree of generalization of the functional ability of the neural 
network without losing its performance.

The artificial pseudospin neural network discussed in [10] 
is a prototype of a natural neural network consisting of dipole  
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neurons that are structural elements of the cytoskeleton 
microtube [11, 12].

It is a relevant task to design the architecture of an ar-
tificial neural network with synaptic connections between 
the nearest dipole neurons since such a neural network could 
improve the efficiency of recognizing distorted images by 
reducing the computing resource used.

2. Literature review and problem statement

Studies [11, 12] examine the physical model of represen-
tation and recognition of images in the neuron cytoskeleton 
microtube. In particular, paper [11] reported a physical 
model of associative memory based on an unordered dipole 
system of the cytoskeleton microtube, which acts as a dis-
tributed structure with associative memory. It should be 
noted that for recording N different images-references in an 
unordered dipole system, it is necessary for each of these im-
ages to create their own configuration of the dipole. Different 
configurations of dipoles must be orthogonal. The dipole sys-
tem of the cytoskeleton microtube with the relaxation law of 
evolution has a memory that retains some predetermined set 
of reference images and tries to remember one of them when 
it is given any of these noise-distorted images.

In [12], the microscopic physical model of representation 
and recognition of images in the neural dipole system of the 
cytoskeleton microtube was built, and the criterion for the 
selection of informational features of the image in the cyto-
skeleton microtube was formulated. It is shown that at a cer-
tain ratio of the constants of synaptic connections between 
the tubulin molecules, the main state of the dipole system of 
the microtube is dipole glass. Synaptic connections between 
tubulin molecules are executed in dipole approximation [12] 
as λ ij ijR∼ 1 3 (Rij is the center-to-center distance between 
the i-th and j-th molecules). Thus, when constructing an 
artificial neural network with dipole neurons, it is possible  
to limit the synaptic connections between the nearest neu-
rons λ ij ijR∼( )1 3 . That would lead to a decrease in the number 
of synaptic connections between neurons, which could ulti-
mately reduce the learning time of the neural network.

Papers [13, 14] report experimental data showing that 
in the neurons of the brain, informational protein nano-
polymers – cytoskeleton microtubes – are the corresponding 
substrates for «quantum-statistical calculations». The basic 
element of the structure of the cytoskeleton is the cytoske-
leton microtubes, which are hollow cylindrical tubes with an 
outer diameter of 25 nm and an internal diameter of about 
14 nm, and a length of 1–10 µm.

In these experimental studies performed at physiological 
temperature, it was found that the cytoskeleton microtube con-
sists of tubulin molecules. Each tubulin molecule has a dipole 
momentum of about 100 D (debay) and is a dimer consisting of 
α- and β-tubulins connected by a thin membrane. The tubulin 
dimer can exist in two different geometric configurations (con-
formations), that is, in two states, which, in the language of 
Boolean algebra, can be described by 0 and 1. Each molecule 
of tubulin (dimer) has a dipole moment. Dipole neurons with 
dipole orientation in two states +1 and 0 are the analogs of the 
tubulin molecule (dimer) in an artificial neural network.

In addition, papers [13, 15–17] indicate that cytoske-
leton microtubes flicker optically during metabolic activity, 
and the resonance frequencies of tubulin molecules are ap-
proximately 1011–1013 Hz.

With increasing requirements for efficiency in solving 
problems of recognition of distorted images, we propose to 
create a neural network with sparse dipole connections based 
on a prototype of the natural neural network of the cytoske-
leton microtube type, which would reduce the computing 
resource used to recognize distorted images.

3. The aim and objectives of the study

The purpose of this work is to build a mathematical mo-
del of an artificial dipole (pseudospin) neural network with 
dipole synaptic connections between neurons with optimized 
computational resource time for the recognition of symbolic 
characters by this network.

To accomplish the aim, the following tasks have been set:
– to derive the ratio for the weight coefficients of synap-

tic connections between neurons in dipole approximation; 
– to design an artificial neural network learning archi-

tecture with sparse synaptic connections and dipole neurons 
that have the properties of tubulin molecules in the cytoske-
leton microtube; 

– to build an algorithm for recognizing distorted images 
by an incomplete (sparse) dipole neural network.

4. The study materials and methods

Similar to the biological prototype [18, 19], paper [10] 
proposes the architecture of an artificial fully connected 
neural network consisting of neurons that are characterized 
by dipole momentum. It should be noted that the interac-
tion between adjacent neurons is carried out through dipole 
frustrated (a large number of low-energy states (attractors)) 
synaptic connections. The dynamics of the dipole neuro 
system are set by the process of relaxation of the energy of 
interaction of dipoles (pseudospins). Any initial 2N state 
coincides with one of these stationary states. As a result of 
the completion of relaxation processes in the dipole neural 
network, the input image is associated with one of those ima-
ges that were remembered earlier. Thus, we can argue that 
the dipole neural network appears as a distributed structure 
that has an associative memory [10].

Neurons of the artificial dipole fully-connected neural 
network, the architecture of which is shown in Fig. 1, are 
located at the points of space with coordinates:

r m a n a p ai i i i= + +1 2 3,  (1)

m n pi i i, , ;∈  a1,  a2,  a3  are the basis vectors [20].
Dipole neural network is most likely for a specific imple-

mentation of a dynamic neural network. This neural network 
consists of N stochastic dipole neurons, which are interre-
lated by the synoptic connections λij (i, j are the numbers  
of neurons).

The symmetrical matrix of fully related synaptic connec-
tions takes the following form [20]:
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To minimize the learning time of the neural network, it 
is proposed to reduce the symmetrical matrix of fully-con-
nected connections of the dipole neural network 



λ tot (2)  
to the matrix 



λ (9) with sparse connections between the 
nearest adjacent neurons within the dipole-dipole interac-
tion λ ij ijR=( )1 3 .

5. Results of building the mathematical model  
of a dipole neural network 

5. 1. Deriving the ratio for the weight coefficients of 
synaptic connections between neurons in dipole appro
ximation

The energy of synaptic connections λij between two di-
pole neurons in the electrostatic approximation is derived. 
The energy of interaction between two neurons can be con-
sidered as the potential energy of the charge system of one 
neuron i in the outer field, which is created by the charge 
system of the second neuron j:

λ ϕij k j k
k

M

e r= ( )
=

∑
1

,  (3)

where ϕ j kr( ) is the potential created by the system of charges 
of the j-th neuron, at the points of charge placement of the 
i-th neuron. If the neuron charge systems are far from each 
other, then the field potential ϕ j kr( ) changes slightly in the 
area of space occupied by the neuron i. In this case, it is con-
venient to expand into a Taylor series based on the powers  
of rk ,  by selecting the location point 0 inside the charge sys-
tem of the i-th neuron:
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Upon substituting (4) in (3), we obtain:
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where d e ri i i=  is the dipole moment of the i-th neuron. 
After substituting in (5), the multi-field expansion of poten-
tial ϕ j 0( ) (6) takes the form:

ϕ R e R r
q

R

dR

Rij k ij k
k ij

ij

ij

( ) = − = + +∑ 3 ...,  (6)

where the first term in (5) describes the monopole-multipole 
interaction, and the second – dipole-multipole interac-
tion, etc.

For electrically neutral neurons, the first term in the ener-
gy function (5) is d d R Ri j ij ij∇ ( )( )3 .  The action of operator ∇  
on the second term (5) led to the form:

λ
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ij
i j

i ij j ij

ijR
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1
4

3

0
3 2 ,  (7)

where ε is the relative dielectric permeability of the envi-
ronment in which neurons are located; ε0 = 8.85⋅10–12 F/m; 
Rij is the center-to-center distance between the i-th and  
j-th neurons.

Fig.	1.	Dipole	neural	network	with	fully-connected	synoptic	connections.	The	product	ViVj > 0	indicates	the	strengthening		
of	the	synaptic	connection	between	both	the	i -th	and	j -th	neuron,	and	ViVj < 0	indicates	its	weakening.		

One	neuron	corresponds	to	each	pixel
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It should be noted that the multipole expansion is valid 
over the long distances between interacting systems. A pre-
requisite for its fairness is the absence of overlapping charge 
distribution. Due to the quantum-mechanical «smearing» of 
charges, such an overlap is always in place but, for the case of 
interacting molecules of tubulin, it is very small. Since over-
lapping exponentially decreases in proportion to distance, 
the energy of electrostatic interaction in the form of a multi-
pole series means neglect of exponentially descending terms.

After the introduction of the spherical angle Θ = d li ^  (the  
angle between the directions of the dipole axis and the unity- 
normalized vector l R Rij ij= , connecting the mass centers of 
the i-th and j-th neurons), the energy of the synaptic bond  
of two electric dipoles di  and d j ,  is equal to:

λ
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i j i j
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R
d d d l d l
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 − ( )( )
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= −
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3  − 3 12cos ,Θ d dix jx  (8)

where dix, djx are the projections of the dipole 
i-th and j-th neurons onto the x axis. It follows 
from (8) that the resonant dipole-dipole inter-
action of neurons is sign-alternating. Different 
pairs of dipole neurons can interact with each 
other in both ferroelectric and antiferroelec-
tric ways. In addition, the interaction between 
dipole neurons can be random in terms of 
signs [11, 12].

Therefore, the dipole neural network will 
be dipole glass in which there is a signifi-
cant number of frustrations, which could 
lead to enormous degeneration of the ground 
state. Thus, within the system, there can exist  
a significant number of states with low ener-
gy (a large number of attractors), which is close 
to the energy of the ground state. The number 
of such states can equal 2N = exp(Nln2). This 
makes it possible to remember a large number 
of reference images.

Analyzing (8) has revealed that the set-
tings of synaptic connections between neurons 
during neural network learning can be assigned 
by changing the topology of their arrange-
ment (changing the distance Rij between the 
i-th and j-th neurons) or by changing the an-
gle Θ = d li ^ .

5. 2. Building an artificial neural network architecture 
with dipole neurons

Within the dipole-dipole interaction between neurons, 
the architecture of the dipole (pseudospin) neural network 
with fully-connected synaptic connections (Fig. 1) takes the 
form shown in Fig. 2.

The synaptic connections between the dipole neural 
network neurons are sparse in such a way that their synaptic 
connections in each row and columns of the single-layer neu-
ral network exist only between the nearest adjacent dipole 
neurons (Fig. 2).

The incomplete sparse matrix of synaptic connections 
of the dipole neural network of dimensionality n⋅n (n is the 
number of neurons in a row or column) with the number of 
neurons N = n2 takes the form:
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If N = n2 is the number of neural network neurons, then 
the number of synaptic connections N 

λ  in the flat inferior 
neural network (9), shown in Fig. 2, is defined by:

N n n

λ = −( )4 1 , n ≥ 2, (10)

where as the number of synaptic connections of the fully- 
connected symmetrical square matrix (2), whose main dia-
gonal hosts zero elements λii = 0, is determined from the 
following ratio [20]:

N n ntot

λ
= −( )2 2 1 . (11)

The number of synaptic connections in the incomplete 
dipole neural network relative to the fully connected one is 
less by a times:

α λ

λ

= =
+( )N

N

n ntot



1

4
. (12)

The time for setting synaptic connections λij (per ite-
ration) in a fully-connected neural network is proportional  
to the number of synaptic connections N tot

λ
, that is:

t k Ntot
tot tot=  

λ λ
,  (13)

where k tot

λ
 is the coefficient that describes the setting time of 

one synaptic connection. 

Fig.	2.	Dipole	neural	network	with	sparse	synaptic	connections
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Similarly, the time for setting synaptic connections λij (per  
iteration) in a dipole incomplete neural network is equal to:

t k Ntot =  

λ λ .  (14)

The coefficients k tot

λ
 and kλ depend solely on the archi-

tecture of synaptic connections in the corresponding neural 
networks.

Considering (10), (11), (13), (14), we obtained:

t
t

k

k

tot
tot

=


λ

λ

α,  (15)

a ratio that describes how many times the time of setting up 
synaptic connections of an incomplete dipole neural network 
is less than the time of setting up synaptic connections of  
a fully-connected single-layer neural network.

5. 3. Designing an algorithm for recognizing distorted 
images by an incomplete dipole neural network

Numerical experiments were carried out using the soft-
ware package «MATLAB» to recognize noised figures from 0 
to 9. The figures were noised using pseudo-random evenly 
distributed numbers, that is, the pixel that changed in the 
digit image was randomly selected.

In particular, the case was considered where the dimen-
sionality of the pixel matrix of the digital image of the input 
images was 5⋅5. Then the single-layer artificial dipole neural 
network would consist of 25 neurons (N = 25).

The algorithm for recognizing input images is implement-
ed using a fully connected and incomplete matrix of synaptic 
connections. In the case of a fully connected matrix, the num-
ber of synaptic connections is N tot

λ
= 600, for an incomplete 

matrix is N 

λ = 80, based on formulas (11), (10), respectively.
The algorithm of training a sparse dipole neural network 

is depicted in the form of a flowchart (Fig. 3) and is described 
in writing (step by step).

The algorithm for training a sparse dipole neural network 
consists of the following steps:

1. Enter the input vector of the image:

V V V Vi j i j, , , .* *

Here, V Vi j
* *,  are the noisy signals.

2. Initialize synaptic coefficients:

λ ij
i jVV i j

i j
=

≠

=






, ,

, , .0

3. At zero iteration, at the output of the j-th neuron, the 
value of the j-th input image is assigned:

Y Vj j0( ) = *.

4. A new state of the j-th neurons is calculated:

S t Y tj ij
i

N

i+( ) = ( )
=
∑1

1

λ .

5. New output values are calculated:

Y t S tj j+( ) = +( )( )1 1sign .

6. If Yj(t+1) = Yj(t), then the algorithm is completed; 
otherwise, Yj(t) = Yj(t+1), proceed to the execution of step 4 
of this algorithm.

Fig.	3.	Flowchart	of	the	algorithm	for	training	a	sparse	dipole	
neural	network

Based on the given algorithm, a computer experiment 
was conducted, which showed that when recognizing the 
noisy images of digits from 0 to 9, the fully-connected dipole 
neural network recognized images where the maximum num-
ber of distorted pixels for each digit was 12 out of 25. For 
10 distorted pixels, the number of iterations is 2. The time to 
recognize images by a fully-connected dipole neural network:

t kNtot
tot

= 2 

λ ,  (16)

where k is the coefficient that describes the time of setting 
one synaptic connection. When using an incomplete matrix of 
sy naptic connections, the number of distorted pixels for each 
digit was 10 out of 25. At the same time, the maximum number 
of iterations for recognizing the input image was 5. The time 
for image recognition by an incomplete neural network is:

t kN= 5 

λ .  (17)

That is, an image of 10/25·100 % = 40 % distorted pixels 
was recognized.

6. Discussion of results of studying the dipole  
neural network morphology and the time  

of its computational resource

According to the results (16), (17), in the case of an in-
complete dipole neural network, the time t for setting synaptic  
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connections for image recognition, which has 10 distorted 
pixels, is less than the time ttot for image recognition by  
a fully-connected network by:

t
t

kN

kN

n ntot
tot

= =
+( )2

5

1

10





λ

λ

 times. (18)

For the number of neurons N = 25, this ratio is ttot/t = 3.
That is, the time of recognition of distorted images (10 di-

storted pixels out of 25) by an incomplete dipole neural net-
work (Fig. 2) is 3 times less than that by the fully-connected 
one, which could improve the efficiency of solving the tasks 
to recognize distorted images.

The comparative analysis of the time of dipole neural 
network configuration with tridiagonal synaptic connec-
tions [10] with the time of setting up synaptic connections 
between the nearest dipole neurons (9) reveals that in the first 
case, the setting time is t t ntot∼ 2 ,  whereas in the second –  
t t n ntot∼ +( )( )1 . That is, the time of setting the dipole neu-
ral network with synaptic connections between the nearest 
neurons (9), when compared to the tridiagonal dipole neural 
network [10], is less at a small number of neurons, and with 
an increase in the number of neurons n, the durations become 
almost equal.

The dipole neural network model has two main limitations:
1. The number of images that can be stored and accurate-

ly reproduced is limited.
2. The dipole neural network can be unstable if there is  

a mini-threshold distance between the training examples 
within the Euclid metrics. This issue can be resolved by the 
choice of orthogonal training examples.

The disadvantage of this model is that synaptic con-
nections between neurons are described within the nearest 
adjacent neurons since there is a dipole-dipole interaction 
between neurons. 

Further studies will experiment with more different im-
ages, as well as with a higher number of pixels contained in 
a single image.

7. Conclusions

1. The ratio for weight coefficients of synaptic connec-
tions between neurons in dipole approximation has been de-
rived, which shows that there may be a significant number of 
low energy states in the system (a large number of attractors), 
which is close to the energy of the ground state. This could 
make it possible to remember a large number of reference 
images. The number of such states may equal 2N = exp(Nln2).

2. The architecture of a dipole neural network with 
synaptic connections between the nearest neurons has been 
designed, which makes it possible to reduce the used compu-
tational resource for the recognition of distorted images by  
3 times relative to the fully-connected dipole neural network.

3. An algorithm of recognition of distorted images by an 
incomplete dipole neural network has been built; a computer 
experiment in the software package «MATLAB» was carried 
out on the basis of this algorithm, which showed that a neural 
network with sparse dipole connections is 3 times faster to 
recognize distorted images (numbers from 0 to 9, which are 
shown at 25 pixels) compared to the fully-connected dipole 
neural network.
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