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This paper addresses the task to devise a statisti-
cal estimation procedure in an event where the volume 
of the array of initial data used in processing is insuf-
ficient to correctly determine the parameters of the 
response function. The object of research is the tech-
nology of statistical processing of a small sample of 
data. The subject of the study is the methods of statis-
tical estimation under conditions of a small sample of 
initial data. The main direction is to devise a special 
procedure for statistical processing of a small sam-
ple of initial data, which provides a correct statistical 
estimation of the parameters of the response function. 
The method for solving the problem is the selection of 
the most representative orthogonal replica-like sub-
plan from the plan of a complete factorial experiment 
obtained by artificially orthogonalizing the results of 
a passive experiment. The necessity and expediency of 
the proposed procedure is a consequence of the unpre-
dictability and uneven distribution of points in the 
phase space of coordinates. The result of the imple-
mentation of the corresponding procedure is a trun-
cated orthogonal plan of the full factorial experiment, 
which provides the possibility of independent esti-
mation of all coefficients of the regression polynomi-
al describing the response function. Under conditions 
of a severe shortage of the number of measurements, 
the procedure makes it possible to isolate a represen-
tative orthogonal replica from the resulting plan of  
a complete factorial experiment. Using this subplan 
of the full factorial experiment plan makes it possible 
to evaluate all the coefficients of the regression poly-
nomial that describes the desired response function.  
The corresponding computational procedure is based 
on solving the triaxial Boolean assignment problem
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1. Introduction 

The quality of solving tasks to assess the effectiveness of 
systems and control over them depends on the accuracy of 
identifying the state of these systems. In turn, the efficiency 
of the state assessment is determined by the quantity and 
quality of the controlled parameters of the system, as well as 
the level of correctness of the methods used for processing 
the results of measuring these parameters. At the same time, 
in all cases it is assumed that there is a sample of initial data 
necessary, in accordance with the standard requirements of 
mathematical statistics, for conducting the relevant research. 
The problem arises if, for objective reasons, these require-
ments are not met. Conventional technologies for solving the 
problem are reduced to the use of various types of techniques 
to reduce the number of estimated parameters of the response 
function that determines the quality of the system. The actu-
al inefficiency of these techniques leads to the need to devise 
other technologies, the use of which would solve the problem 
of the shortage of initial data. Solving this task could make 

it possible to tackle many real problems of state assessment 
and control over systems whose operating conditions are not 
stable. Ignoring this feature of actual arrays of initial data can 
lead to unacceptably gross errors in assessing the state of ob-
jects and managing them. These circumstances determine the 
high relevance of research aimed at devising reliable methods 
for statistical processing of real source data under conditions 
of their scarcity when the use of conventional technologies is 
not entirely correct.

2. Literature review and problem statement

To solve the problems of assessing the state of objects 
based on the results of statistical processing of the initial 
data, depending on the task set, methods of multivariate dis-
criminant analysis can be used [1]. An obvious drawback of 
the multivariate discriminant analysis method is as follows. 
The identification of the state is based on the dissection of the 
phase space of coordinates corresponding to the controlled  
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parameters of the system with the help of hyperplanes. The 
results obtained in this case are easily interpreted if the 
dimensionality of the phase space is not large [2]. However, 
if otherwise, the correctness of the decisions made is com-
promised. Clustering methods [3, 4] confidently solve the 
problem of state estimation based on the results of measuring 
a set of controlled parameters [5, 6]. A significant drawback 
of the method is the inability to take into account the con-
tinuity of the processes of transition of the system from one 
state to another, which is typical for many real objects, and 
it is unacceptable not to take this into account (for example,  
in medicine when assessing the condition of patients).

A fundamentally different approach to assessing the state 
of objects is implemented in expert systems for identifying the 
state based on the results of measuring the values of controlled 
parameters. Such systems work as follows [7, 8]. It is assumed 
that the system can be in one of the set of (H1, H2, …, Hm)  
states, and n controlled parameters (x1, x2, …, xn) are used 
to evaluate the state. The range of possible values for each 
of the controlled parameters is divided into m intersecting 
subintervals. For each pair (xj, Hi), the μ(xj/Hi) function is 
introduced, the value of which is interpreted as the degree 
of confidence that, based on the result of monitoring the 
parameter xj, it is possible to make a decision regarding the 
system’s stay in the Hi state. Various systems of this type dif-
fer from each other in the technology of production rules for 
making decisions about the state of the system. 

Expert systems of this kind work successfully if the set of 
possible states and the number of controlled parameters are 
small. However, as the values of m and n increase, the total 
number of necessary production rules N grows rapidly in 
accordance with the relation N = mn, which in many practical 
situations significantly complicates the application of this 
procedure [9]. In addition, the design of the inference mecha
nism does not provide for the need and usefulness of taking 
into account the influence of the interaction of factors [10]. 
Another issue arises when using one of the most powerful 
parametric identification methods – regression. The meaning 
and mathematical tools of the corresponding procedure is to 
calculate some reasonably chosen numerical characteristics, 
the analysis of which makes it possible to confidently identify 
the state of the system [11, 12]. To implement this method, 
regression analysis technology is used.

It is clear that the number of coefficients of the de-
sired regression polynomial to be estimated depends on the 
number of factors and the order of interactions taken into 
account and grows rapidly with this order. The natural ap-
proach to solving the problem in this case is to reduce the 
number of factors [13, 14]. To this end, firstly, it is possible 
to statistically estimate the level of correlation between 
factors and exclude one of them for each pair of strongly 
correlated ones [15]. However, the appropriate cut-off level 
is not discussed. Secondly, it is possible to estimate the infor-
mational value of controlled factors, for example, according 
to the Kullback criterion [16], and remove uninformative 
ones from the resulting equation. A structural shortcoming 
of the method is the dependence of the result of evaluating 
the information content on the order in which its constituent 
elements are included in the calculation formula. A common 
drawback of these approaches is their unpredictable a priori 
efficiency. Another, more promising approach is based on the 
method of artificial orthogonalization of a passive experi-
ment proposed in [17, 18]. In accordance with this method, 
an r-factor orthogonal plan is formed based on the results 

of a passive r-factor experiment. The standard processing 
of this orthogonal plan makes it possible to estimate all the 
coefficients of the regression equation and remove the insig-
nificant ones [19, 20]. Under conditions of a small sample of 
initial data, in some cases it may be useful to use any of the 
fractional replicas of the full factorial experiment [21, 22].  
A significant strengthening of this idea is to find and devise  
a procedure for extracting an orthogonal representative 
replica-like truncated plan from the full plan of this experi-
ment, which could be used to estimate all the coefficients of 
the regression equation.

3. The aim and objectives of the study

The aim of this study is to devise a method for statistical 
analysis of a small sample of initial data when the available 
volume of this sample is not sufficient to apply standard meth-
ods of mathematical statistics. The practical usefulness of the 
method is determined by the possibility of its use in a deadlock 
situation when the actual amount of initial data does not al-
low the use of conventional approaches of statistical analysis.

To achieve the goal, the following tasks were set:
– to devise a method of initial selection from the plan 

of a complete factorial experiment of an orthogonal replica- 
like subplan;

– to devise a method for optimizing the initial choice to 
obtain the most representative orthogonal subplan.

4. The study materials and methods 

The object of our research is the regression method of sta-
tistical analysis. The situation is considered when the insuffi-
cient available amount of initial data excludes the possibility 
of using standard methods of mathematical statistics for esti-
mating the coefficients of the desired regression polynomial. 
The proposed method for solving the problem is based on the 
idea of extracting an orthogonal representative replica-like 
subplan from the plan of a complete factorial experiment.  
To implement the method, a computational technology for 
solving triaxial Boolean assignment problems is used.

5. Results of investigating the problem of statistical 
processing of a small sample of initial data

5. 1. Devising a method for choosing an initial repli-
ca-like subplan from the plan of a full factorial experiment

Consider the problem of choosing an orthogonal subplan 
from the plan of a full factorial experiment. Let N > 2r expe
riments be obtained as a result of an r-factor passive experi-
ment, which are summarized in a matrix containing N rows 
and 2r columns. This two-dimensional matrix is converted to 
a three-dimensional one containing p r= 3 rows, columns, 
and columns. Each section of this matrix (row, column, or 
front) is a square matrix with p2 elements. Each element 
of the resulting three-dimensional matrix will be assigned  
a number (i, j, k), i = 1, 2, …, p, j = 1, 2, …, p, k = 1, 2, …, p, which 
determines the row, column, and column for this element. 
Note that a three-dimensional cube of a full factorial experi-
ment containing p3 elements (cubes) can, in general, be trans-
formed into a three-dimensional parallelepiped with i = 1, 
2, .., m rows, j = 1, 2, …, n columns, and k = 1, 2, …, p columns.  
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In this case, the values of m, n and p must be chosen so that 
the equality mnp = r3 holds true. For each specific set of num-
bers i, j, k, we assign the value Cijk equal to the number of 
experiments that fell inside the cube with this number. The 
task is to select an orthogonal subplan from the obtained 
plan of the full factorial experiment, which has the highest 
representativeness.

Let us proceed to the description of the formal proce-
dure for constructing the required orthogonal subplan. The 
key element of this procedure is the solution of the triaxial 
assignment problem, the mathematical model of which takes 
the following form [23]: find a Boolean set x = {xijk} that ma
ximizes the function:
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The solution of problem (1), (2) defines a plan in which the 
selected elements of the matrix {Cijk} are located one by one 
in each one-dimensional section and their sum is maximum.

To solve this problem, in the three-index matrix {Cijk} we 
calculate:
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Now we introduce a special transformation of the ma-
trix {Cijk} according to the formula:

C Cijk ijk i j k
( ) ,0 = + + +α β γ 	 (6)

so that:
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The matrix Cijk
( ) ,0{ }  obtained as a result of transforma-

tion (6), will be termed normalized, and the coefficients α,  
β, γ will be termed normalizing.

To find the coefficients αi, βj, γp, we build a system of  
linear algebraic equations:
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The solution of this system of equations can be easily 
obtained and takes the form:
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If m = n = p, then:
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To solve problem (1), (2), (8), a special method [16] is 
used, the computational complexity of which grows rapidly 
with increasing problem dimensionality. At the same time, 
the matrix Cijk

( )0{ } determined as a result of applying transfor-
mation (6) can be productively used to obtain an approxi-
mate solution to this problem. The computational procedure 
contains n–1 iterations of the same type. Let q–1 iterations 
of this procedure be performed. At the next q-th iteration,  
the following steps are performed step by step:

Step 1. A normalizing transformation is carried out ac-
cording to formula (6).

Step 2. For each kO{1, 2, …, kq–1}, the two-index prob-
lem is sequentially solved: find the matrix x = (xijk) that 
maximizes:
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xijk
i

m

=
=
∑ 1

1

, j n= 1 2, ,.., , 

xijk
j

n

=
=

∑ 1
1

, i m= 1 2, ,.., . 	 (12)

Step 3. Let  x xk ijk
� �= { } be the solution to the problem for 

a specific value of k.
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By sorting out k, we choose the best solution to prob-
lem (11), (12), that is, we find:
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Thus, the index k* determines the number of the two- 
dimensional section in which the solution to problem (11), 
(12) gives the best result.

Step 4. The two-dimensional section corresponding to 
the found value of k is excluded from the matrix Cijk

( ) .0{ }
Step 5. The matrix Cijk
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a ban in the columns corresponding to non-zero elements  
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( ) 1  R is a large number.

As a result of this correction, all Cijk
q( ) ,{ }  matrix ele-

ments  for which (i, j)OMq cannot be included in subse-
quent solutions to problem (11), (12).

Step 6. Index k* completes the set of indices of excluded 
two-dimensional sections.

In this case, after the (n–1) iteration of the described 
procedure, the set Kn–1 of excluded sections will contain  
n–1 components.

Therefore, the remaining two-dimensional matrix is added 
to those found in previous iterations.

The resulting matrix x = {xijk} is an approximate solution 
to the original problem (1), (2).

Let us illustrate the technology of finding a truncated 
orthogonal plan by solving a simple problem. Let’s introduce 
a 2×2×2 matrix {Cijk} by specifying two square matrices of  
its sections for k = 1 and k = 2:
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Let’s calculate the values of the components in ratio (10):
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Let us now perform a normalization transformation of the 
elements of the {Cijk} matrix:
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The normalization procedure is completed, and the re-
sulting normalized matrices take the form:
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Thus, the solution to the original problem, satisfying the 
constraints, is obtained. Let’s calculate the corresponding 
value of the objective function:

L x C x C C C Cijk
kji

ijk
∗

===

∗( ) = = + + + =

= + +

∑∑∑
1

2

1

2

1

2

211 121 112 222

13 9 9 ++ =10 41.

Thus, a method for obtaining the initial choice of an 
orthogonal subplan from the plan of a complete factorial ex-
periment is proposed. The first problem is solved.

5. 2. Optimization method for the initial replica-like 
subplan

To improve the initial solution, we use a step-by-step pro-
cedure. At each step, the following operations are performed. 

Elements of two subsets M1 = {xijk :xijk = 1}, M0 = {xijk : xijk = 0} 
are selected in the matrix x = {xijk}. In the subset M0, an ele-

ment xi j k0 0 0
, is found such that C Ci j k i j k ijk0 0 0

0 0 0 0

= { }
∈

max .
Μ

 Next, an 

attempt is made to include this element in the plan. For this 
purpose, the following elements are found in the row {ij0k0}, 
column {i0jk0}, and column {i0j0k}:

– i1j0k0 such that xi j k1 0 0
1= ;

– i0j1k0 such that xi j k0 1 0
1= ;

– i0j0k1 such that xi j k0 0 1
1= ;

– i1j0k1 such that xi j k1 0 1
0= ;

– i1j1k0 such that xi j k1 1 0
0= ;

– i0j1k1 such that xi j k0 1 1
0= ;

– i1j1k1 such that xi j k1 1 1
1= .

These found elements form a fragment of the general  
plan x = {xijk}. Fragment element values are inverted, i.e.,  
xijk values equal to 0 are assigned the value 1, and values equal 
to 1 are assigned the value 0.

The local inversion of the plan carried out in this way 
naturally changes the value of the objective function of the 
problem. Let us determine the numerical value of this change. 
We have:

Δ = + + + − −

− −

C C C C C

C C
i j k i j k i j k i j k i j k

i j k i j k

0 0 0 0 1 1 1 0 1 1 1 0 0 0 1

0 1 0 1 0 0
−−Ci j k1 1 1

. 	 (14)

Fragment elements are included in the task plan if Δ > 0. 
Otherwise, the x0j0k0 element is excluded from the set M0 
containing potential improvements to the plan, and the pro-

cedure returns to the search for a new value C Ci j k ijk ijk0 0 0
0

= { }
∈

max .
Μ

 

The solution of the problem ends if the set M0 turns out to be 
empty by a certain step.

Let’s illustrate the described procedure by making an 
attempt to improve the plan obtained in the example. Based 
on the results of the approximate solution to the problem, we 
shall form Μ1 211 121 112 222= { }x x x x, , , , Μ0 111 221 122 212= { }x x x x, , , . 

Let’s find C Ci j k ijk ijk0 0 0
0

8 16 4 11 16= { } = { } =
∈

max max , , , .
Μ

At the same time i j k0 0 0 2 2 1= ( ). Using this element, we 
form a fragment of the plan for a possible improvement of the 
approximate solution. We have a fragment:

x221 0= , x121 1= , x211 1= , x222 1= ;

x111 0= , x122 0= , x212 0= , x112 1= .

By inverting the values for the elements of the fragment, 
we get a new plan:

x221 1= , x121 0= , x211 0= , x222 0= ;

x111 1= , x122 1= , x212 1= , x112 0= .

Let us calculate the corresponding change in the value of 
the objective function:

Δ = + + + − − − − =
= + + + − − −

C C C C C C C C221 111 122 212 121 211 222 112

16 8 4 11 9 13 110 9 2− = − . 	 (15)

The change in the value of the objective function is ne
gative. Consequently, the new plan is worse than the pre
vious one and, thus, the approximate solution to the problem 
obtained above turned out to be an exact solution.
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Let us consider the main properties of a representative 
orthogonal replica-like plan obtained using the described 
technology.

Let the number of factors supposedly influencing the 
efficiency of the system be six and let the results of N ex-
periments be known. We shall assume that after the norma
lization transformation, all sets of experimental results are 
reduced to a three-dimensional matrix {Cijk} of dimensio
nality 4×4×4. We further assume that for four sections of this 
matrix {Cij1},{Cij2},{Cij3},{Cij4} problems (11), (12) are solved, 
the results of which are as follows:

xij1

0 1

1 0

0 0

0 0

0 0

0 0

1 0

0 1

{ } =



















; xij2

1 0

0 0

0 0

0 1

0 1

0 0

0 0

1 0

{ } =



















;

xij3

0 0

0 0

0 1

1 0

1 0

0 1

0 0

0 0

{ } =



















; xij4

0 0

0 1

1 0

0 0

0 0

1 0

0 1

0 0

{ } =



















.

The obtained solution has the required property: in 
each one-dimensional section (in rows, columns, and co
lumns) there is one unit, and the remaining elements are  
equal to zero.

The elements of the obtained matrices will be assigned 
the numbers of their rows in terms of a six-factor expe
riment. We have:

nij1

1 2

5 6

3 4

7 8

9 10

13 14
11 12

15 16

{ } =



















•

•

•

•

; 

nij2

17 18

21 22

19 20

23 24

25 26

29 30

27 28

31 32

{ } =



















•

•

•

•

;

nij3

33 34

37 38
35 36

39 40

41 42

45 46

43 44

47 48

{ } =



















•

•

•

•

; 

nij4

49 50

53 54
51 52

55 56

57 58

61 62
59 60

63 64

{ } =



















•

•

•

•
.

In the above matrices, elements equal to 1 are marked 
with a dot.

Let us present the plan of the complete experiment corre-
sponding to the conditions of the problem (Table 1).

Let us now single out from this plan of the full factorial 
experiment the rows corresponding to the obtained trunca
ted plan (Table 2).

It is easy to check that this plan is orthogonal. Thus, 
the task of obtaining a representative orthogonal subplan of  
the plan of the full factorial experiment has been solved.

Table 1
A plan for a complete factorial experiment

N F6 F5 F4 F3 F2 F1

1 – – – – – –
2 – – – – – +
3 – – – – + –
4 – – – – + +
5 – – – + – –
6 – – – + – +
7 – – – + + –
8 – – – + + +
9 – – + – – –

10 – – + – – +
11 – – + – + –
12 – – + – + +
13 – – + + – –
14 – – + + – +
15 – – + + + –
16 – – + + + +
17 – + – – – –
18 – + – – – +
19 – + – – + –
20 – + – – + +
21 – + – + – –
22 – + – + – +
23 – + – + + –
24 – + – + + +
25 – + + – – –
26 – + + – – +
27 – + + – + –
28 – + + – + +
29 – + + + – –
30 – + + + – +
31 – + + + + –
32 – + + + + +
33 + – – – – –
34 + – – – – +
35 + – – – + –
36 + – – – + +
37 + – – + – –
38 + – – + – +
39 + – – + + –
40 + – – + + +
41 + – + – – –
42 + – + – – +
43 + – + – + –
44 + – + – + +
45 + – + + – –
46 + – + + – +
47 + – + + + –
48 + – + + + +
49 + + – – – –
50 + + – – – +
51 + + – – + –
52 + + – – + +
53 + + – + – –
54 + + – + – +
55 + + – + + –
56 + + – + + +
57 + + + – – –
58 + + + – – +
59 + + + – + –
60 + + + – + +
61 + + + + – –
62 + + + + – +
63 + + + + + –
64 + + + + + +
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Table 2
Truncated factor plan

N F6 F5 F4 F3 F2 F1

2 – – – – – +
5 – – – + – –

11 – – + – + –
16 – – + + + +
17 – + – – – –
24 – + – + + +
26 – + + – – +
31 – + + + + –
36 + – – – + +
39 + – – + + –
41 + – + – – –
46 + – + + – +
51 + + – – + –
54 + + – + – +
60 + + + – + +
61 + + + + – –

6. Discussion of results of devising a method  
for statistical processing of a small sample of initial data

The triaxial Boolean assignment problem (1), (2) to (8) 
was stated and solved. Using the obtained solution, a pro-
cedure for extracting the initial truncated orthogonal repli-
ca-like subplan (11) to (13) from the plan of the full factorial 
experiment was developed.

The selected subplan is improved to obtain the most 
representative plan. To optimize the initial plan, an appro-
priate iterative computational procedure is proposed and 
justified, which implements a step-by-step improvement of 
the plan (14), (15). At the same time, if the full plan of the 
r-factor experiment has 2r rows, then the number of rows of 
the truncated plan is 22 3r / . In the considered example, from 
the full plan of the six-factor experiment, which has 64 rows, 
a representative orthogonal plan was selected, in which there 
are 16 rows. The orthogonality of this plan provides the pos-
sibility of estimating all coefficients of the complete regres-
sion polynomial describing the response function.

A procedure has been devised that makes it possible to select 
a representative orthogonal replica-like subplan from the plan of 
a complete factorial experiment. This approach has no analogs 
and is fundamentally new. Its most important feature is the in-
tegrated use of standard methods of statistical data processing 
and multi-index optimization tools. The structural feature of 
the plan obtained in this case is that orthogonality allows using 
it to independently estimate all coefficients of the polynomial 
response function. Another important feature of the proposed 
methodology is determined by the possibility of obtaining the 
most representative plan. The proposed procedure closes the 
problem of statistical processing of a small sample of initial data.

The practical usefulness of the procedure manifests itself 
especially demonstratively in a situation where a sample is 

presented for statistical processing, the volume of which does 
not allow for the correct estimation of the parameters of the 
response function. The orthogonal truncated plan obtained 
using the obtained procedure successfully solves the problem 
that arises in this case. A certain disadvantage of the pro-
posed method is the use of the hypothesis that the initial data 
of the problem are determined exactly. Therefore, the most 
important direction to advance the study is the extension of 
the method to the case when the initial data of the problem 
are defined inaccurately, for example, fuzzy.

7.  Conclusions 

1. The task to organize statistical processing of an array 
of initial data under conditions of a small sample has been 
considered. The analysis of known methods for solving the 
problem was carried out. Taking into account the shortcom-
ings of these methods, a procedure is proposed that ensures 
the fulfillment of the standard requirement for the ratio 
between the number of objective function parameters to be 
estimated and the sample size. The proposed method is based 
on the artificial orthogonalization of the processed sample 
of initial data. In this case, the original passive experiment 
is transformed into an orthogonal plan of a full factorial ex-
periment. The situation is considered when some elements of 
the obtained orthogonal plan are not informative. To solve 
the problem in this case, a procedure for the formation of the 
initial truncated orthogonal plan of the full factorial experi-
ment, which has the maximum representativeness, was pro-
posed. The problem is solved using the technology for solving 
the triaxial Boolean assignment problem.

2. To obtain the most representative orthogonal sub-
plan, a step-by-step method for successive improvement 
of the initial plan with an optimality check after each step  
has been proposed. In order to confirm the results obtained, 
an example of solving a six-factor data processing prob-
lem  is given.
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