ВИЗНАЧЕННЯ ТРАЄКТОРІЙ РУХУ ЛЕГКИХ ДОМІШОК В ОСНОВНІЙ ЗОНІ ОЧИСТКИ КОНУСНО-КАСКАДНОГО ВІЯЛО-КІЛЬЦЕВОГО ПНЕВМОСЕПАРУЮЧОГО ПРИСТРОЮ

Сліпченко М.В. к.т.н., доц.

Харківський національний технічний університет сільського господарства імені Петра Василенка

В статті розглянуто визначення траєкторій руху легких домішок в основній зоні очистки експериментальним та теоретичним шляхом. Встановлено їх залежність від конструктивно-технологічних параметрів.

Постановка проблеми. Очищення зернових сумішей (ЗС) від легких домішок здійснюється за допомогою повітряного потоку (ПП). Ефективність очистки ЗС залежить не тільки від кута, під яким ПП зустрічається з ЗС, а й від швидкості їх руху та подальшої траєкторії руху ПП з виділеними легкими домішками. Для підвищення ефективності процесу очистки ЗС від легких домішок створено новий віялово-кільцевий конусно-каскадний пневмосепаруючий пристрій (ПСП), що встановлюється на сепараторах серій СВС та БЦСМ ВАТ "Вібросепаратор" (м. Житомир) [1]. Очистка ЗС у розробленому ПСП зійснюється як у основній, так і в трьох додаткових зонах, що потребує визначення факторів, впливаючих на ефективність процесу очистки.

Формулювання цілей статті. Визначення траєкторій руху легких домішок, ЗС та ПП в основній зоні очистки створеного ПСП. Встановлення конструктивно-технологічних параметрів, що впливають на траєкторії руху легких домішок.

Основна частина. Визначення траєкторій руху у розробленому ПСП (рис. 1) експериментальними методами пов'язано зі значними труднощами, що не дозволяють візуалізувати результати досліджень. А визначення траєкторій на лабораторній установці є більш зручним, дозволяє швидко змінювати конструктивно-технологічні параметри та дозволяє візуалізувати результати досліджень (рис. 2) та порявняти з даними отриманими теоретично.

Для встановлення траєкторій руху частинок використаємо розрахункову схему, представлену на рис. 3.

Векторне рівняння, що описує рух домішок у основній зоні очистки, має вигляд [2, 3]:

$$m\frac{d\vec{\mathbf{v}}_2}{dt} = -mg\vec{k} - 6\pi\mu_3 a_2(\vec{\mathbf{v}}_2 - \vec{w}_{IIII}),\tag{1}$$

де $m = \rho^0 \frac{4}{3} \pi a^3$ – маса частинки;

 a_2 – радіус частинки («еквівалентний» радіус); μ_3 – коефіцієнт динамічної в'язкості засміченого ПП; $\vec{v}_2 = \dot{x}_2 \vec{i} + \dot{z}_2 \vec{k}$ – вектор швидкості руху частинки домішок; $\vec{w}_{BII} = w_{BII} \sin \beta \vec{i} + w_{IIII} \cos \beta \vec{k}$ – швидкість ПП, 2 - зернова фаза, 3 - домішкова фаза.

Розвязок цього рівняння описано у [4]. Це дозволяє встановити траєкторію руху у основній кільцевій зоні очистки і порівняти отримані теоретичні та експериментальні дані.

Рис. 1 – Конструктивна схема розробленого віяло-кільцевого конусно-каскадного ПСП:

1 - патрубок завантажувальний; 2 - клапан дозуючий; 3 - розкидач тарілчастий; 4 - вікна повітрозабірні, 5 - кожух сепаратора; 6 - конус каскадний складений; 7 - діафрагма; 8 - патрубок відвідний; 9 - розкидач дисковий; 10 - блок решітний; → – рух 3С; – – – ПП; – · → – ПП з легкими домішками.

a)

б)

Рис. 2. Візуалізація траєкторій руху:

а) – 3С, б) – ПП з легкими домішками

На динаміку руху частинок у основній кільцевій зоні очистки значний вплив здійснює динаміка руху ЗС по тарілчастому розкидачу (ТР) [4]. Тому з'ясуємо, як впливають на траєкторію руху як умови сходу ЗС з тарілчастого розкидача, так і конструктивно-технологічні параметри ПСП. Значення оптимальних кутів α та β встановлено попередньо [4]. Апріорі встановимо, що за траєкторією руху легких домішок можна спрогнозувати ймовірність їх вилучення. Так, якщо на обмеженій довжині (ширина кільцевого каналу основної зони очистки – координата x на рис. 4-7) частинка перетне верхню границю (z = 0,2 м), то будемо вважати її вилученою.

Рис. 3. Розрахункова схема руху потоку ЗС в основній кільцевій зоні.

Теоретичними дослідженнями встановлено, що на вилучення домішок в основній кільцевої зоні впливають істотно умови сходу їх з ТР. Так як траєкторії руху частинок легких домішок залежать від їх положення в шарі, то найгірші умови вилучення будуть у частинок, що знаходяться в нижній частині шару. Розглянемо шар ЗС висотою 0,04 м.

При підвищенні кутової швидкості ТР маємо більшу довжину польоту домішок (рис. 4). Зі збільшенням кутової швидкості ТР від 6,2 до 12,4 с⁻¹ горизонтальна проекція траєкторії часток збільшується в 4,3 рази, з 0,045 до 0,195 м. Залежності 1-4 перетинають верхню межу графіка, що свідчить про їх вилучення. Використання ПСП з великими розмірами основної кільцевої зони вимагає застосування більш продуктивних вентиляторів (збільшення витрат повітря при збільшенні ширини кільцевої зони) [5]. Так як ТР встановлений на одній осі обертання 3 блоком решіт, то для забезпечення необхідного для процесу сепарування 3С коефіцієнта відцентровості [5], кутова швидкість ТР фіксована [6]. Наступні залежності отримані для цієї кутової швидкості. Ці значення дозволяють визначити ширину основної кільцевої зони очищення.

Проаналізуємо вплив інших факторів на траєкторії легких домішок. Зі збільшенням розмірів частинок від 1 до 2 мм протяжність проекцій їх траєкторій збільшується в 1,8 разів, з 0,14 до 0,25 м. Причому, як видно з рис. 5, частинки розміром 2 мм не перетинають верхню межу, а значить - не вилучаються з нижніх шарів. Для їх вилучення необхідне збільшення швидкості ПП.

Майже аналогічні дані отримані і для частинок розміром 1,5 мм при

збільшенні насипної щільності з 150 до 450 кг/м³ (рис. 6). Протяжність проекцій траєкторій збільшується в 1,6 разів, з 0,16 до 0,25 м. Звідси випливає, що збільшення розмірів частинок і насипній щільності впливають на збільшення протяжності проекцій траєкторій майже в рівній мірі. А при виборі ширини основної кільцевої зони очищення необхідно враховувати обидва показники.

Рис. 4. Траєкторії частинок домішок в основній зоні очистки розробленого ПСП в залежності від кутової швидкості ТР:

1) –
$$\Omega = 6,2 \text{ c}^{-1}$$
; 2) – $\Omega = 8,7 \text{ c}^{-1}$; 3) – $\Omega = 11,2 \text{ c}^{-1}$; 4) – $\Omega = 12,4 \text{ c}^{-1}$; — – теоретичні; – – експерементальні (h=0,04 м; $a_2 = 0,001 \text{ м}$, $\rho_2 = 300 \text{ кг/м}^3$, $V_{BII} = 5 \text{ м/c}$)

Рис. 5. Траєкторії частинок домішок в основній зоні очистки розробленого ПСП при розмірах їх часток:

1 – $a_2 = 0,001$ м; 2 – $a_2 = 0,0015$ м; 3 – $a_2 = 0,002$ м; _____ – теоретичні; _____ – експерементальні ($V_{IIII} = 5$ м/с, h = 0,04 м, $\rho_2 = 300$ кг/м³)

Збільшення швидкості ПП дозволяє вилучати частинки більших розмірів або насипної щільності (рис. 7). На практиці його значення обмежується нормами втрат зерна. Для частинок розмірами 1,5 мм і щільністю 300 кг/м³

підвищення швидкості ПП з 5 до 7 м/с зменшують протяжність проекцій траєкторій вилучених частинок на 15,9%, з 0,22 до 0,185 м.

Рис. 6. Траєкторії частинок домішок в основній зоні очистки розробленого ПСП при їх насипній щільності:

1 – $V_{\Pi\Pi} = 5 \text{ м/c}$; 2 – $V_{\Pi\Pi} = 6 \text{ м/c}$; 3 – $V_{\Pi\Pi} = 7 \text{ м/c}$; _____ – теоретичні; _____ – експериментальні ($\rho_2 = 300 \text{ кг/м}^3, h = 0,04 \text{ м}, a_2 = 0,0015 \text{ м}$)

Висновок. Теоретично та експериментально встановлені траєкторії руху домішок мають розбіжність менш ніж 5 %, що підтверджує адекватність побудованої математичної моделі та дає змогу в подальшому теоретично визначати ефективність очистки, або розрахувати параметри основної зони очистки.

Таким чином, маючи дані про склад ЗС і конструктивно-технологічні параметри ПСП, можна прогнозувати можливість вилучення легких домішок, а також ефективність процесу очистки.

Список використаних джерел

- 1. Пат. 50587 Україна, МПК⁹ В07В 1/00, В07В 4/00. Вібровідцентровий сепаратор / Тіщенко Л.М., Пастушенко М.Г., Харченко С.О., Сліпченко М.В.; заявник та власник Харківський національний технічний університет сільського господарства ім. Петра Василенка. № и 201000743; заявл. 26.01.10; опубл. 10.06.10, Бюл. №11/2010.
- 2. Калиткин Н.Н. Численные методы / Н.Н. Калиткин. М.: Наука, 1978. 512 с.
- 3. Нигматулин Р.И. Основы механики гетерогенных сред / Р.И. Нигматулин. – М.: Наука, 1978. – 336 с.
- 4. Слипченко М.В. Исследование очистки зерновых смесей при сходе с тарельчатого разбрасывателя пневмосепарирующего устройства виброцентробежного епаратора / М.В. Слипченко // Motrol. Commission and Energetacs in Agriculture. Lublin-Rzeszów, 2014. Vol. 16, No 7. P. 89-91.
- 5. Гончаров Е.С. Механико-технологическое обоснование и разработка универсальных виброцентробежных зерновых сепараторов: Автореф. дис. ...докт. техн. наук: 05.20.01 "Механизация сельскохозяйственного производства" / Е.С. Гончаров. М.: ВИМ, 1986. 34 с.
- 6. Сепаратор-ворохоочиститель самоходный СВС-25. Паспорт. Житомир: Облполиграфиздат, 2009. 35 с.

Аннотация

ОПРЕДЕЛЕНИЕ ТРАЕКТОРИЙ ДВИЖЕНИЯ ЛЕГКИХ ПРИМЕСЕЙ В ОСНОВНОЙ ЗОНЕ ОЧИСТКИ КОНУСНО-КАСКАДНОГО ВЕЕРО-КОЛЬЦЕВОГО ПНЕВМОСЕПАРУЮЩЕГО УСТРОЙСТВА

Слипченко М.В.

В статье рассмотрены определения траекторий движения легких примесей в основной зоне очистки экспериментальным и теоретическим путем. Установлено их зависимость от конструктивно-технологических параметров.

Abstract

DEFINING TRAJECTORY OF MOVEMENT OF LIGHT IMPURITIES IN THE MAIN CLEANING ZONE OF CONE-CASCADE HARP-ANNULAR AIR ASPIRATION DEVICE

M. Slipchenko

The article deals with determining the trajectories of light impurities in the main cleaning zone by experimental and theoretical way. Established their dependence on the structural and technological parameters.