
24 “Â²ÑÍÈÊ”. Âèïóñê ¹ 2 (36), 2018

²ÍÔÎÐÌÀÖ²ÉÍ² ÒÅÕÍÎËÎÃ²¯

ÓÄÊ 519.6

BAAH V. A.
Scientific advisor: Stavytskyi Î. V., PhD
KIBiT, Êyiv

PROBLEMS OF THE THEORY OF COMPUTATIONAL COMPLEXITY

Computer science is the study of the theory,
experimentation, and engineering that form the basis for
the design and use of computers according to Stanford
Encyclopedia of Philosophy [5]. It is the scientific and
practical approach to computation and its applications
and the systematic study of the feasibility, structure,
expression, and mechanization of the methodical
procedures (or algorithms) that underlie the acquisition,
representation, processing, storage, communication of,
and access to, information. An alternate, more succinct
definition of computer science is the study of
automating algorithmic processes that scale. A
computer scientist specializes in the theory of compu-
tation and the design of computational systems [5].

Its fields can be divided into a variety of theoretical
and practical disciplines. Some fields, such as
computational complexity theory (which explores the
fundamental properties of computational and
intractable problems), are highly abstract, while fields
such as computer graphics emphasize real-world visual
applications. Other fields still focus on challenges in
implementing computation. For example, programming
language theory considers various approaches to the
description of computation, while the study of computer
programming itself investigates various aspects of the
use of programming language and complex systems.
Interaction between human and computer considers the
challenges in making computers and computations
useful, usable, and universally accessible to humans.
Today we are focusing on the theological face of
computer science which is the computational
complexity theory.

An important component of any scientific study of a
certain set of objects is a classification aimed at
identifying the characteristic and general properties of
objects. In the field of development of mathematical
and algorithmic support of computer systems, such a set
of objects are algorithms for solving problems on which
the developed software systems are based. Impressive
growth in the performance of modern computer
systems, obeying the “Moore law” [2], does not reduce
the resource requirements for algorithmic support. The
composition of these requirements includes the time

efficiency of software implementations. This is
determined by the fact that a number of today’s
computational problems have a higher degree of
polynomial complexity, which is typical for problems
from NP-complete and NP-difficult classes [4]. Another
aspect of modern computing problems is a large
dimension, for example, in real tasks that are solved
using the finite element method, especially inverse
problems [1]. The choice of mathematical methods and
decision algorithms determines the time characteristics
of the software implementation of calculations. The
solution of the practically significant problem of
choosing a rational computational algorithm can be
based on special classification methods.

You can build an algorithm not for any problem.
There are algorithmically unsolvable problems. For
example the problem of self-applicability of the Turing
machine, the problem of stopping the algorithm [3].
Another important example of an algorithmically
unsolvable problem is the automatic proof of theorems.

Computational complexity theory is a subfield of
theoretical computer science one of whose primary
goals is to classify and compare the practical difficulty
of solving problems about finite combinatorial objects –
e.g. given two natural numbers n and m, are they
relatively prime? Given a propositional formula �,
does it have a satisfying assignment? If we were to play
chess on a board of size n × n, does white have a
winning strategy from a given initial position? These
problems are equally difficult from the standpoint of
classical computability theory in the sense that they are
all effectively decidable. Yet they still appear to differ
significantly in practical difficulty. For having been
supplied with a pair of numbers m>n>0, it is possible to
determine their relative primality by a method (Euclid’s
algorithm) which requires a number of steps
proportional to log (n). On the other hand, all known
methods for solving the latter two problems require a
‘brute force’ search through a large class of cases which
increase at least exponentially in the size of the problem
instance [5].

Complexity theory attempts to make such
distinctions precise by proposing a formal criterion for



25“Â²ÑÍÈÊ”. Âèïóñê ¹ 2 (36), 2), 2), 2), 2), 2000001111188888

what it means for a mathematical problem to be feasibly
decidable – i.e. that it can be solved by a conventional
Turing machine in a number of steps which is
proportional to a polynomial function of the size of its
input. The class of problems with this property is known
as P – or polynomial time – and includes the first of the
three problems described above. P can be formally
shown to be distinct from certain other classes such
as EXP – or exponential time – which includes the third
problem from above. The second problem from above
belongs to a complexity class known as NP – or non-
deterministic polynomial time – consisting of those
problems which can be correctly decided by some
computation of a non-deterministic Turing machine in a
number of steps which is a polynomial function of the
size of its input. A famous conjecture – often regarded
as the most fundamental in all of theoretical computer
science – states that P is also properly contained in N
P– i.e. P “ N P [Ibid.].

Demonstrating the non-coincidence of these and
other complexity classes remain important open
problems in complexity theory. But even in its present
state of development, this subject connects many topics
in logic, mathematics, and surrounding fields in a
manner which bears on the nature and scope of our
knowledge of these subjects. Reflection on the
foundations of complexity theory is thus of potential
significance not only to the philosophy of computer
science, but also to philosophy of mathematics
and epistemology as well.

Central to the development of computational
complexity theory is the notion of a decision problem.
Such a problem corresponds to a set X in which we
wish to decide membership. For instance the
problem PRIMES corresponds to the subset of the
natural numbers which are prime – i.e. {n “ N#” n is
prime}. Decision problems are typically specified in the
form of questions about a class of mathematical objects
whose positive instances determine the set in question – e.g.

These problems are typical of those studied in
complexity theory in two fundamental respects. First,
they are all effectively decidable. This is to say that they
may all be decided in the ‘in principle’ sense studied
in computability theory – i.e. by an effective procedure
which halts in finitely many steps for all inputs. Second,
they arise in contexts in which we are interested in solving
not only isolated instances of the problem in question, but
rather in developing methods which allow it to be
efficiently solved on a mass scale – i.e. for all instances in
which we might be practically concerned [Ibid.].

The resources involved in carrying out an algorithm
to decide an instance of problems can typically be
measured in terms of the number of processor cycles
(i.e. elementary computational steps) and the amount of
memory space (i.e. storage for auxiliary calculations)
which are required to return a solution [Ibid.].

The theory of computational complexity is a rapidly
developing field of theoretical computer science and
covers both purely theoretical issues and issues directly
related to practice. Methods of constructing and
analyzing effective algorithms are among the most
important applications of this theory, as well as modern
cryptographic methods. Therefore, familiarity with the
basics of complexity theory is certainly useful for
anyone who is going to seriously engage in practical
programming or theoretical research.

REFERENCES

1. Aleksandrov A.E. Jevoljucionnaja metodologija razrabotki
i soprovozhdenija matematicheskogo i programmnogo obespechenija
tehnicheskih sistem. M.: Mashinostroenie, 2001.

2. D’jakonov V.P. “Zakon Mura” i komp’juternaja matematika
// Exponenta Pro. Matematika v prilozhenijah. 2003. ¹ 1. C. 82–86.

3. Erusalimskij Ja.M. Diskretnaja matematika: Teorija, zadachi,
prilozhenija. M: Vuzovskaja kniga, 1998.

4. Gjeri M., Dzhonson D. Vychislitel’nye mashiny i
trudnoreshaemye zadachi M.: Mir, 1982.

5. Stanford Encyclopedia of Philosophy [Electronic resource].
– Access mode : https://plato.stanford.edu/entries/computational-
complexity/.


