ПРОЧНОСТЬ СТРОИТЕЛЬНОГО РАСТВОРА НА МЕХАНОАКТИВИРОВАННОМ ЦЕМЕНТОЗОЛЬНОМ ВЯЖУЩЕМ

Мостовой С.Н., аспирант, **Барабаш И.В.**, д.т.н., профессор, **Ксёншкевич** Л.**Н.,** к.т.н., доцент, Даниленко А.В., к.т.н. ассистент

Одесская государственная академия строительства и архитектуры

Зола-унос широко используется в качестве тонкодисперсной минеральной добавки к портландцементу, оказывающую уплотняющее влияние на структуру цементного камня. В то же время, вследствие низкой активности золы в процессе гидратации портландцемента возникает необходимость повышенного расхода вяжущего для обеспечения требуемых показателей прочности раствора [1, 2, 3]. Одним из способов повышения прочности цементного камня и раствора на его основе является механоактивация цемента [4, 5].

Представлял интерес выяснить влияние содержания золы-унос в портландцементе на прочность при сжатии строительного раствора состава 1:2.

В эксперименте использовалась зола-унос Ладыженский ТЭС в количестве от 0 до 80% массы вяжущего. Для снижения водопотребности цементозольной суспензии использовался суперпластификатор С-3 в количестве от 0 до 1% массы вяжущего. В качестве мелкого заполнителя применялся песок кварцевый Никитовского карьера с $M_{\kappa p} = 2,7$. Прочность раствора определялась путём испытания образцов-балочек 4x4x16 см в 2-х и 28-и суточном возрасте. Твердение образцов осуществлялось в камере нормального твердения при температуре +20°C и относительной влажности воздуха \geq 95%.

Условиями эксперимента предусматривалась механоактивация цементозольного вяжущего в скоростном смесителе-активаторе. Для контроля использовалась цементозольная суспензия, вяжущее которой активации не подвергалось.

Эксперимент проводили по 2-х факторному плану. В качестве независимых переменных были приняты следующие факторы варьирования:

 X_1 - расход золы в портландцементе (40±40) %;

 X_2 - концентрация C-3 в вяжущем $(0,5\pm0,5)$ %.

Выполнялись две параллельные серии экспериментов. Первая предусматривала приготовление растворной смеси по традиционной технологии. Вторая - с применением механоактивации вяжущего. Активированная суспензия смешивалась с кварцевым песком в тихоходной мешалке до однородного состояния.

Показатели прочности цементнопесчаных образцов при изгибе и сжатии приведены в таблице 1.

Таблица 1 План эксперимента и механические характеристики образцов

Nº	Уровни варьи- рования		Зола-унос, %	C-3, %	Отклики							
					R_{use}^{κ} , M\Pi a		R_{u3z}^a , $M\Pi a$		$R_{csc}^{\kappa}, M\Pi a$		R^a_{cxc} , $M\Pi a$	
	v	$X_1 X_2$	Зола	0	2	28	2	28	2	28	2	28
	Λ_1				сут.	сут.	сут.	сут.	сут.	сут.	сут.	сут.
1	+	+	0	1	5.9	10.4	6.7	10.9	38,5	58,9	47.9	77.2
2	+	0	0	0.5	4.6	8.2	5.5	8.9	28,8	46,1	35.9	60.2
3	+	-	0	0	3.0	5.8	4.4	6.7	17,8	33,1	23.7	28.3
4	0	+	40	1	4.1	7.6	5,0	8.5	19,1	38,1	24.3	45.1
5	0	0	40	0.5	3.2	6,0	4.1	7.1	14,3	30,8	18.4	37.7
6	0	-	40	0	2.1	4.3	3.0	5.8	8,1	24,0	12.4	30.7
7	-	+	80	1	1.5	2.7	2.1	3.1	3,9	8,6	5.4	11.8
8	-	0	80	0.5	1.0	2.3	1.5	2.7	3,6	7,3	4.6	9.8
9	-	-	80	0	0.3	2,0	0.6	2.3	2,9	6,5	3.8	7.9

Примечание:

 R^{κ}_{usc} - прочность образцов-балочек на растяжение при изгибе, МПа. Вяжущее активации не подвергалось; R^a_{usc} - прочность образцов-балочек на растяжение при изгибе, МПа. Вяжущее механоактивированно; $R^{\kappa}_{c:w}$ - прочность образцов-балочек при сжатии, МПа. Вяжущее активации не подвергалось; $R^a_{c:w}$ - прочность образцов балочек при сжати, МПа. Вяжущее механоактивированно.

По полученным экспериментально-статистическим моделям (1-4) были построены графические зависимости, отображающие влияние варьируемых факторов состава на прочность раствора при сжатии и изгибе в 28-и суточном возрасте, рис. 1.

$$R_{cxc}^{\kappa} = 30.9$$
 - $19.3x_1$ - $4.2x_1^2$ - $5.9x_1x_2$ + $7.0x_2$ + $0.1x_2^2$ (1)

$$R_{csxc}^{a} = 38.3 - 24.4x_{1} - 3.6x_{1}^{2} - 8.7x_{1}x_{2} + 9.5x_{2} - 0.7x_{2}^{2}$$
 (2)

$$R_{u32}^{\kappa} = 6 - 2.9x_1 - 0.7x_1^2 - 1x_1x_2 + 1.4x_2 - 0.05x_2^2$$
(3)

$$R_{u32}^{a} = 7.1 - 2.1x_1 - 0.6x_1^{2} - 0.2x_1x_2 + 1.3x_2 - 0.01x_2^{2}$$
(4)

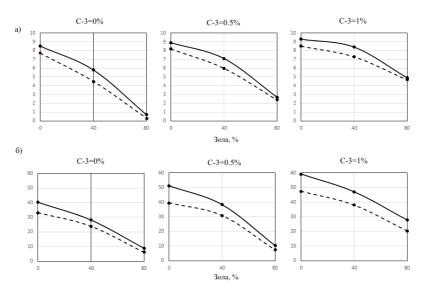


Рис. 1. Влияние содержания золы-унос в портландцементе на прочность образцов-балочек на растяжение при изгибе (а) и при сжатии (б), МПа:

- раствор на механоактивированном вяжущем;

---- - контроль

Анализ графических зависимостей свидетельствует о том, что введение золы-унос в портландцемент приводит к снижению прочности раствора. Это характерно как для раствора на механоактивированном вяжущем, так и для раствора, вяжущее которого механоактивации не подвергалось.

Экспериментально установлено, что механоактивация приводит к повышению прочности раствора по сравнению с контролем в среднем на 20-30 %. Это позволяет увеличить содержание золы в портландцементе на 15-20 %, обеспечивая при этом получение равнопрочных (по сравнению с контролем) растворов.

Выводы

- 1. Повышение концентрации золы-унос в портландцементе снижает прочность раствора. Особенно значительный сброс прочности наблюдается в диапазоне содержания золы в вяжущем от 40 % до 80 % падение прочности при этом достигает 2-х и более раз по сравнению с прочностью раствора на бездобавочном портландцементе.
- 2. Механоактивация портландцемента с добавкой золы-унос позволяет повысить прочность строительного раствора на 20-30 % по сравнению с контролем (раствор тождественного состава, вяжущее которого механоактивации не подвергалось).

Summary

It is investigated the influence of fly ash on the kinetics of curing of the mortar. It is revealed that the mechanical activation of the binder in the presence of superplasticizer C-3 increases the strength of the solution in the binder of cement-ash.

Литература

- 1. Malhotra V.M., and Ramezanianpour A.A. Fly ash in Concrete. 2-nd edition, CANMET, Ontario, 1994. pp. 21-25, 44-50; pp. 73-81.
- 2. NmaiC. K.SchlagbaumT. Violetta B. A history of mid-range water-reducing admixtures // Concrete international. April, 1998. -pp. 45-50.
- 3. Кривенко П. В., Пушкарева Е. К., Гоц В. И., Ковальчук Г. Ю. Цементы и бетоны на основе топливных зол и шлаков. Киев: ООО «ИПК Экспресс Полиграф», 2012. 258 с.
- 4. Барабаш І.В. Механохімічна активація мінеральних в'яжущих речовин.- Навчальний посібник. Одеса. Астропрінт, 2002. 100с.
- 5. Механоактивация в технологии бетонов / [Выровой В.Н., Барабаш И.В., Дорофеев А.В. и др.] /— Одесса: ОГАСА, 2014. 148с.